
Turbo-SMT: Accelerating Coupled Sparse Matrix-Tensor

Factorizations by 200x

Evangelos E. Papalexakis∗

epapalex@cs.cmu.edu
Tom M. Mitchell ∗

tom.mitchell@cmu.edu
Nicholas D. Sidiropoulos †

nikos@ece.umn.edu

Christos Faloutsos ∗

christos@cs.cmu.edu
Partha Pratim Talukdar ∗

partha.talukdar@cs.cmu.edu
Brian Murphy ‡

brian.murphy@qub.ac.uk

Abstract

How can we correlate the neural activity in the human
brain as it responds to typed words, with properties of
these terms (like ’edible’, ’fits in hand’)? In short, we
want to find latent variables, that jointly explain both
the brain activity, as well as the behavioral responses.
This is one of many settings of the Coupled Matrix-
Tensor Factorization (CMTF) problem.

Can we accelerate any CMTF solver, so that it
runs within a few minutes instead of tens of hours to
a day, while maintaining good accuracy? We intro-
duce Turbo-SMT, a meta-method capable of doing
exactly that: it boosts the performance of any CMTF
algorithm, by up to 200x, along with an up to 65 fold
increase in sparsity, with comparable accuracy to the
baseline.

We apply Turbo-SMT to BrainQ, a dataset
consisting of a (nouns, brain voxels, human subjects)
tensor and a (nouns, properties) matrix, with coupling
along the nouns dimension. Turbo-SMT is able to find
meaningful latent variables, as well as to predict brain
activity with competitive accuracy.

1 Introduction

How is knowledge mapped and stored in the human
brain? How is it expressed by people answering simple
questions about specific words? If we have data from
both worlds, are we able to combine them and jointly
analyze them? In a very different scenario, suppose
we have the social network graph of an online social
network, and we also have additional information about
how and when users interacted with each other. What
is a comprehensive way to combine those two pieces
of data? Both, seemingly different, problems may be
viewed as instances of what is called Coupled Matrix-

∗Carnegie Mellon University
†University of Minnesota
‡Queen’s University of Belfast

Tensor Factorization (CMTF), where a data tensor and
matrices that hold additional information are jointly
decomposed into a set of low-rank factors.

Applications that fall within the CMTF formula-
tion usually span many gigabytes of data. Additionally,
current state of the art approaches operate very slowly,
even on moderately large datasets. In this work, we
introduce Turbo-SMT, a fast, scalable, and sparsity
promoting CMTF meta-algorithm. Our main contribu-
tions are the following:
• Fast, parallel & triple-sparse algorithm: We pro-

vide an approximate, novel, scalable, and triple-
sparse (see Sec. 3) meta-method, Turbo-SMT,
that is able to accelerate any CMTF core algorithm.

• Effectiveness & Knowledge Discovery: We analyze
BrainQ, a brain scan dataset which is coupled to
a semantic matrix (see Sec. 4 for details).

• Reproducibility: Our code is publicly available 1 ;
the BrainQ dataset we use (see Section 4) is also
publicly available.
Figure 1 shows the accuracy of Turbo-SMT (com-

pared to the baseline), as a function of portion of the
wall-clock time that our algorithm took, again compared
to the traditional one. The result indicates a speedup
of up to 200 times, while maintaining very good accu-
racy.2 In the supplementary material [2], we show how
Turbo-SMT can handle missing values.

In the knowledge discovery part, the brain scan part
of the dataset consists of fMRI scans first used in [11], a
work that first demonstrated that brain activity can be
predictably analyzed into component semantic features.
Here, we demonstrate a disciplined way to combine both
datasets and carry out a variety of data mining/machine
learning tasks, through this joint analysis. In the
supplementary material [2], we apply Turbo-SMT to

1www.cs.cmu.edu/~epapalex/src/turbo_smt.zip
2Accuracy or relative cost is defined in Section 5 as the ratio

of the squared approximation error of Turbo-SMT, divided by
that of the baseline CMTF solver.

a time-evolving social network with side information,
discovering anomalies.

0 0.2 0.4 0.6 0.8 1
01

5

10

15

20

25

30

40

50

60

70

Relative run time

R
e

la
ti
v
e

 c
o

s
t

Parameter s taking values in [2 5 10 20]

CMTF−OPT, F=10, 8 cores
CMTF−OPT, F=10, 4 cores
ALS, F=2, 8 cores
ALS, F=10, 1 core

~200x speedup

Ideal

Baseline

Figure 1: Turbo-SMT is up to 200x faster, for com-
parable accuracy. Relative execution time vs relative
cost (lower is better), for various settings (see Sec. 3.
Turbo-SMT boosting either ALS or CMTF-OPT [5])
(i.e. the baselines) vs. plain execution of the baselines
(on a single core), on the BrainQ dataset (see Section
4.). For more details, see Section 5.

Disclaimer: An earlier version of this work was up-
loaded on Arxiv.org [16] for quick dissemination thereof
and early feedback. However, the Arxiv.org version has
not been officially published in any conference proceed-
ings or journal, and has evolved into this present work.

2 Preliminaries

Symbol Description
CMTF Coupled Matrix-Tensor Factorization
ALS Alternating Least Squares
CMTF-OPT Algorithm introduced in [5]
x,x,X,X scalar, vector, matrix, tensor (respectively)
‖A‖F Frobenius norm of A.
(i) as superscript Indicates the i-th iteration

Ai
1, ai

1 series of matrices or vectors, indexed by i.
I Set of indices.
x(I) Spanning indices I of x.
nucleus a biased random sample of the data tensor.

Table 1: Table of symbols

2.1 Introduction to Tensors Matrices record
dyadic properties, like “people recommending prod-
ucts”. Tensors are the n-mode generalizations, cap-
turing 3- and higher-way relationships. For example
“subject-verb-object” relationships, such as the ones
recorded by the Read the Web - NELL project [1] (and

X

≈

voxels

words

persons

a1

b1
c1

+

Concept1

a2

b2
c2

+

Concept2

aR

bR
cR

Concept R

. . . +

Figure 2: PARAFAC decomposition of a three-way tensor
of a brain activity tensor as sum of F outer products
(rank-one tensors), reminiscent of the rank-F singular value
decomposition of a matrix. Each component corresponds to
a latent concept of, e.g. ”insects”, ”tools” and so on, a set
of brain regions that are most active for that particular set
of words, as well as groups of persons.

have been recently used in this context [9] [15]) naturally
lead to a 3-mode tensor. In this work, our working ex-
ample of a tensor has three modes. The first mode con-
tains a number of nouns; the second mode corresponds
to the brain activity, as recorded by an fMRI machine;
and the third mode identifies the human subject corre-
sponding to a particular brain activity measurement.

In [15], the authors introduced a scalable and
parallelizable tensor decomposition which uses mode
sampling. In this work, we focus on a more general and
expressive framework, that of Coupled Matrix-Tensor
Factorizations.

2.2 Coupled Matrix-Tensor Factorization Of-
tentimes, two tensors, or a matrix and a tensor, may
have one mode in common; consider the example that
we mentioned earlier, where we have a word by brain
activity by human subject tensor, we also have a se-
mantic matrix that provides additional information for
the same set of words. In this case, we say that the
matrix and the tensor are coupled in the ’word’ mode.

X

voxels

words

persons

Y1

questions

words

Figure 3: Coupled Matrix - Tensor example: Tensors often
share one or more modes (with thick, wavy line): X is the
brain activity tensor and Y is the semantic matrix. As the
wavy line indicates, these two datasets are coupled in the
’word’ dimension.

In this work we focus on three mode tensors,

however, everything we mention extends directly to
higher modes. In the general case, a three mode
tensor X may be coupled with at most three matrices
Yi, i = 1 · · · 3, in the manner illustrated in Figure 3 for
one mode. The optimization function that encodes this
decomposition is:

min
A,B,C,D,E,G

‖X−
∑
k

ak ◦ bk ◦ ck‖2F +(2.1)

‖Y1 −ADT ‖2F + ‖Y2 −BET ‖2F + ‖Y3 −CGT ‖2F

where ak is the k-th column of A. The idea behind the
coupled matrix-tensor decomposition is that we seek to
jointly analyze X and Yi, decomposing them to latent
factors who are coupled in the shared dimension. For
instance, the first mode of X shares the same low rank
column subspace as Y1; this is expressed through the
latent factor matrix A which jointly provides a basis for
that subspace.

2.3 Solving CMTF One of the most popular algo-
rithms to solve CMTF (as introduced in Figure 3) is
the so-called Alternating Least Squares (ALS), a block-
coordinate descent method; we present an outline of the
ALS algorithm in the supplementary material [2]. Be-
sides ALS, there exist other algorithms for CMTF. For
example, [5] uses a first order optimization algorithm
for the same objective. In their paper [5], the authors
demonstrate that their algorithm, which we henceforth
refer to as CMTF-OPT, often converges to a better so-
lution than ALS; Throughout this work, we use both al-
gorithms as core CMTF solvers for Turbo-SMT. The
strength of Turbo-SMT, however, is that it can be
used as-is with any underlying core CMTF implemen-
tation. Hence, Turbo-SMT is CMTF solver indepen-
dent.

3 Proposed Method

3.1 Algorithm description There are three main
concepts behind Turbo-SMT (outlined in Algorithm
1):

Phase 1 Obtain a nucleus of our data by using
biased sampling.
Phase 2 Fit CMTF to the reduced data (possibly
on more than one nuclei)
Phase 3 stitch the partial results

Phase1: Sampling An efficient way to reduce the size
of the dataset, yet operate on a representative subset
thereof is to use biased sampling. In particular, given a
three-mode tensor X we sample as follows. We calculate
three vectors as shown in equation (3.2), one for each
mode of X. These vectors, which we henceforth refer
to as density vectors are the marginal absolute sums
with respect to all but one of the modes of the tensor,

and in essence represent the importance of each index
of the respective mode. We then sample indices of each
mode according to the respective density vector. For
instance, assume an I × J ×K tensor; suppose that we
need a sample of size I

s of the indices of the first mode.

Then, we just define pI(i) = xA(i)/

I∑
i=1

xA(i) as the

probability of sampling the i-th index of the first mode,
and we simply sample without replacement from the set
{1 · · · I}, using pI as bias. The very same idea is used
for matrices Yi. Doing so is preferable over sampling
uniformly, since our bias makes it more probable that
high density indices of the data will be retained on the
sample, and hence, it will be more representative of the
entire set.

Suppose that we call I,J ,K the index samples
for the three modes of X. Then, we may take Xs =
X(I,J ,K) (and similarly for matrices Yi); essentially,
what we are left with is a small, yet representative,
sample of our original dataset, where the high density
blocks are more likely to appear on the sample. It is
important to note that the indices of the coupled modes
are the same for the matrix and the tensor, e.g. I
randomly selects the same set of indices for X and Y1.
This way, we make sure that the coupling is preserved
after sampling.

Finally, Phase 1 can be executed very efficiently,
since both the calculation of sample biases, as well as
the sampling of indices require only 2 passes on the non-
zero elements of the (usually, highly sparse) data.
Phase 2: Fit CMTF to nuclei The next step of
Turbo-SMT is to fit a CMTF model to each nucleus,
and then, based on the sampled indices, redistribute the
result to the original index space. As we have already
discussed, Turbo-SMT is not restricted in any way to
a specific CMTF solver; in fact, we provide experiments
using both an ALS and a Gradient Descent approach..
In more detail, suppose that As is the factor matrix
obtained by the aforementioned procedure, and that
jointly describes the first mode of Xs and Y1,s. The

dimensions of As are going to be |I| × F (where ||̇
denotes cardinality and F is the number of factors).
Let us further assume matrix A of size I × F which
expresses the first mode of the tensor and the matrix,
before sampling; due to sampling, it holds that I � |I|.
If we initially set all entries of A to zero and we further
set A(I, :) = As we obtain a highly sparse factor matrix
whose non-zero values are a ’best effort’ approximation
of the true ones, i.e. the values of the factor matrix that
we would obtain by decomposing the full data.

So far, we have provided a description of the
algorithm where only one repetition of sampling is used.

xA(i) =

J∑
j=1

K∑
k=1

|X(i, j, k)| +

I1∑
j=1

|Y1(i, j)|, xB(j) =

I∑
i=1

K∑
k=1

|X(i, j, k)| +

I2∑
i=1

|Y2(j, i)|, xC(k) =

I∑
i=1

J∑
j=1

|X(i, j, k)| +

I3∑
j=1

|Y3(k, j)|,

(3.2)

y1,A(i) =

I1∑
j=1

|Y1(i, j)| y2,B(j) =

I2∑
i=1

|Y2(j, i)|, y3,C(k) =

I3∑
j=1

|Y3(k, j)|

(3.3)

y1,D(j) =

I∑
i=1

|Y1(i, j)|, y2,G(i) =
J∑

j=1

|Y2(j, i)|, y3,E(i) =
K∑

k=1

|Y3(k, i)|

(3.4)

However, the approximation quality of Turbo-SMT
improves as we increase the number of nuclei . To that
end, we allow for multiple sampling repetitions in our
algorithm, i.e. extracting multiple sample tensors Xs

and side matrices Yi,s, fitting a CMTF model to all of
them and combining the results in a way that the true
latent patterns are retained. We are going to provide
a detailed outline of how to carry the multi-repetition
version of Turbo-SMT in the following.

While doing multiple repetitions, we keep a com-
mon. subset of indices for all different samples. In
particular, let p be the percentage of common values
across all repetitions and Ip denote the common indices
along the first mode (same notation applies to the rest
of the indices); then, all sample tensors Xs will defi-
nitely contain the indices Ip on the first mode, as well
as (1− p) I

s indices sampled independently (across repe-
titions) at random. This common index sample is key in
order to ensure that our results are not rank deficient,
and all partial results are merged correctly.

We do not provide an exact method for choosing
p, however, as a rule of thumb, we observed that, de-
pending on how sparse and noisy the data is, a range
of p between 0.2 and 0.5 works well. This introduces a
trade-off between redundancy of indices that we sam-
ple, versus the accuracy of the decomposition; since we
are not dealing solely with tensors, which are known
to be relatively more well behaved in terms of decom-
position uniqueness (in contrast to matrices), it pays
off to introduce some data redundancy (especially when
Turbo-SMT runs in a parallel system) so that we avoid
rank-deficiency in our data.

Let r be the number of different sampling repeti-
tions, resulting in r different sets of sampled matrix-

tensor couples X(i)
s and Y

(i)
j,s (i = 1 · · · r, j = 1 · · · 3).

For that set of coupled data, we fit a CMTF model, us-
ing a CMTF solver, obtaining a set of factor matrices
A(i) (and likewise for the rest).
Phase 3: Stitching partial results After having
obtained these r different sets of partial results, as a final
step, we have to merge them together into a set of factor

matrices that we would ideally get had we operated on
the full dataset.

In order to make the merging work, we first intro-
duce the following scaling on each column of each factor
matrix: Let’s take A(i) for example; we normalize each
column of A by the `2 norm of the common part, as
described in line 8 of Algorithm 1. By doing so, the
common part of each factor matrix (for all repetitions)
will be unit norm. This scaling is absorbed in a set of
scaling vectors λA (and accordingly for the rest of the
factors). The new objective function is shown in Equa-
tion 3.5

min
A,B,C,D,E,G

‖X−
∑
k

λA(k)λB(k)λC(k)ak ◦ bk ◦ ck‖2F
(3.5)

+ ‖Y1 −A diag(λA ∗ λD) DT ‖2F
+ ‖Y2 −B diag(λB ∗ λE) ET ‖2F
+ ‖Y3 −C diag(λC ∗ λG) GT ‖2F

A problem that is introduced by carrying out mul-
tiple sampling repetitions is that the correspondence of
the output factors of each repetition is very likely to be
distorted. In other words, say we have matrices A(1)

and A(2) and we wish to merge their columns (i.e. the
latent components) into a single matrix A, by stitching
together columns that correspond to the same compo-
nent. It might very well be the case that the order in
which the latent components appear in A(1) is not the
same as in A(2).

The sole purpose of the aforementioned normaliza-
tion is to resolve the correspondence problem. In Algo-
rithm 2, we merge the partial results while establishing
the correct correspondence of the columns.

Lemma 3.1. Algorithm 2 is able to find the correct
correspondence of columns.

Proof Sketch Following the example of r = 2 of
the previous paragraph, according to Algorithm 2, we
compute the inner product of the common parts of each
column of A(1) and A(2). Since the common parts of

each column are normalized to unit norm, then the inner
product of the common part of the column of A(1) with
that of A(2) will be maximized (and exactly equal to 1)
for the matching columns, and by the Cauchy-Schwartz
inequality, for all other combinations, it will be less than
1. Additionally, elimination of the already used columns
operates as a tie-breaker.

Finally, Phase 3, due to its low complexity, can be
executed very efficiently. In particular, the StitchFac-
tors algorithm requires O(rF 2) steps, where, both r
and F are, for most practical cases, very small, com-
pared to the data dimensionality.

3.2 Sparsity through Sampling Besides data size
reduction, one merit of sampling is sparsity on the
latent factors. Every time Turbo-SMT does one
repetition, it operates on a sub-sampled version of the
data. Consequently, in the third phase of the algorithm,
where the results are re-distributed to their indices in
the original, high dimensional space, most of the indices
of the latent factors are going to be exactly zero, thus
resulting in latent factor sparsity. In this way, Turbo-
SMT always operates on a sparse set of data, through
the entire lifetime of the algorithm, a thing which is not
true for the majority of the algorithms both for tensor
and coupled decompositions, which usually operate on
dense factors (even when the final output is sparse), and
have very high and unnecessary storage needs.

Definition 3.1. (Triple-sparse) An algorithm is
triple-sparse when 1) the input of the algorithm is
sparse, 2) the intermediate data during the lifetime of
the algorithm is sparse, and 3) the final output of the
algorithm is sparse.

In the above definition, the input of the algorithm need
not necessarily be sparse; however, a triple-sparse algo-
rithm still satisfies the second and third requirement, by
operating on a sparse, representative subset of the data.
We, thus, call Turbo-SMT, a triple-sparse algorithm.

3.3 Parallelization Turbo-SMT is, by its nature,
parallelizable; in essence, we generate multiple samples
of the coupled data, we fit a CMTF model to each
sample and then we merge the results. By carefully
observing Algorithm 1, we can see that lines 3 to 9
may be carried out entirely in parallel, provided that
we have a good enough random number generator
that does not generate the very same sample across
all r repetitions. In particular, the r repetitions are
independent from one another, since computing the set
of common indices (line 2), which is the common factor
across all repetitions, is done before line 3.

Algorithm 1: Turbo-SMT: Fast, sparse, and
parallel CMTF

Input: Tensor X of size I × J ×K, matrices
Yi, i = 1 · · · 3, of size I × I2, J × J2, and K ×K2

respectively, number of factors F , sampling factor s,
number of repetitions r.

Output: A of size I × F , b of size J × F , c of size K × F ,
D of size I2 × F , G of size J2 × F , E of size K2 × F .
λA, λB , λC , λD, λE , λG of size F × 1.

1: Initialize A,B,C,D,E,G to all-zeros.
2: Randomly, using mode densities as bias, select a set of

100p% (p ∈ [0, 1]) indices Ip,Jp,Kp to be common
across all repetitions. For example, Ip is sampled with

probabilities with pI(i) = xA(i)/

I∑
i=1

xA(i).

Probabilities for the rest of the modes are calculated
similarly.

3: for i = 1 · · · r do
{Phase 1: Obtain nuclei through biased
sampling}

4: Compute densities as in equations 3.2, 3.3, 3.4.
Compute set of indices I(i) as random sample
without replacement of {1 · · · I} of size I/ (s (1− p))

with probability pI(i) = xA(i)/

I∑
i=1

xa(i). Likewise

for J ,K,, I1, I2, and I3. Set I(i) = I ∪ Ip. Likewise
for the rest.

5: Get nucleus X(i)
s = X(I(i),J (i),K(i)),

Y
(i)
1s = Y1(I(i), I(i)1) and likewise for Y

(i)
2s and Y

(i)
3s .

Note that the same index sample is used for coupled
modes.
{Phase 2: Fit the model on each nucleus}

6: Run a CMTF solver for X(i)
s and Y

(i)
js , j = 1 · · · 3

and obtain As,Bs,Cs,Ds,Gs,Es.
7: A(i)(I(i), :) = As. Likewise for the rest.
8: Calculate the `2 norm of the columns of the common

part: λ
(i)
A (f) = ‖A(i)(Ip, f)‖2, for f = 1 · · ·F .

Normalize columns of A(i) using λ
(i)
A (likewise for

the rest). Note that the common part of each factor
will now be normalized to unit norm.

9: end for
{Phase 3: Stitch partial results}

10: A =StitchFactors (Ai
1). Likewise for the rest.

11: λA = average of λA
i
1. Likewise for the rest.

4 Knowledge Discovery

Turbo-SMT on Brain Image Data With Addi-
tional Semantic Information

As part of a larger study of neural representations
of word meanings in the human brain [11], we applied
Turbo-SMT to a combination of datasets which we
henceforth jointly refer to as BrainQ. This dataset
consists of two parts. The first is a tensor that
contains measurements of the fMRI brain activity of 9

Algorithm 2: StitchFactors: Given partial
results of factor matrices, merge them correctly

Input: Factor matrices Ai
1 of size I × F each, and r is the

number of repetitions, Ip: set of common indices.
Output: Factor matrix A of size I × F .

1: Set A = A(1)

2: Set ` = {1 · · ·F}, a list that keeps track of which
columns have not been assigned yet.

3: for i = 2 · · · r do
4: for f1 = 1 · · ·F do
5: for f2 in ` do
6: Compute similarity

v(f2) = (A(Ip, f2))T
(
A(i)(Ip, f1))

)
7: end for
8: c∗ = arg maxc v(c) (Ideally, for the matching

columns, the inner product should be close to 1;
conversely, for the rest of the columns, it should
be considerably smaller)

9: A(:, c∗) = A(i)(:, f1)
∣∣∣
A(:,c∗)=0

, i.e. update the

zero entries of the column.
10: Remove c∗ from list `.
11: end for
12: end for

human subjects, when shown each of 60 concrete nouns
(5 in each of 12 categories, e.g. dog, hand, house,
door, shirt, dresser, butterfly, knife, telephone, saw,
lettuce, train). fMRI measures slow changes in blood
oxygenation levels, reflecting localized changes in brain
activity. Here our data is made up of 3×3×6mm voxels
(3D pixels) corresponding to fixed spatial locations
across participants. Recorded fMRI values are the
mean activity over 4 contiguous seconds, averaged over
multiple presentations of each stimulus word (each word
is presented 6 times as a stimulus). Further acquisition
and preprocessing details are given in [11]. This dataset
is publicly available3. The second part of the data is a
matrix containing answers to 218 questions pertaining
to the semantics of these 60 nouns. A sample of these
questions is shown in Fig. 4. This dataset has been
used before in works such as [13], [14].

BrainQ’s size is 60×77775×9 with over 11 million
non-zeros (tensor), and 60×218 with about 11.000 non-
zeros (matrix). The dimensions might not be extremely
high, however, the data is very dense and it is therefore
difficult to handle efficiently. For instance, decomposing
the dataset using the simple ALS algorithm took more
than 24 hours, whereas Turbo-SMT yielded a speedup
of 50-100× over this (cf. Figure 1).
Simultaneous Clustering of Words, Questions

3http://www.cs.cmu.edu/afs/cs/project/theo-73/www/

science2008/data.html

and Regions of the Brain
One of the strengths of CMTF is its expressive-

ness in terms of simultaneously soft-clustering all in-
volved entities of the problem. By taking a low rank
decomposition of the BrainQ data (using r = 5 and
sI = 3, sJ = 86, sK = 1 for the tensor and sI for the
questions dimension of the matrix)4, we are able to find
groups that jointly express words, questions and brain
voxels (we can also derive groups of human subjects;
however, it is an active research subject in neuroscience,
whether brain-scans should differ significantly between
people, and is out of the scope of the present work).

In Figure 4, we display 4 such groups of brain
regions that are activated given a stimulus of a group
of similar words; we also display the most prominent
words, along with groups of similar questions that
were highly correlated with the words of each group.
Moreover, we were able to successfully identify high
activation of the premotor cortex in Group 3, which
is associated with concepts such as holding or picking
items up.
Predicting Brain Activity from Questions

In addition to soft-clustering, the low rank joint de-
composition of the BrainQ data offers another signifi-
cant result. This low dimensional embedding of the data
into a common semantic space, enables the prediction
of, say, the brain activity of a subject, for a given word,
given the corresponding vector of question answers for
that word. In particular, by projecting the question
answer vector to the latent semantic space and then ex-
panding it to the brain voxel space, we obtain a fairly
good prediction of the brain activity.

To evaluate the accuracy of these predictions of
brain activity, we follow a leave-two-out scheme, where
we remove two words entirely from the brain tensor and
the question matrix; we carry out the joint decompo-
sition, in some very low dimension, for the remaining
set of words and we obtain the usual set of matrices
A,B,C,D. Due to the randomized nature of Turbo-
SMT, we did 100 repetitions of the procedure described
below.

Let qi be the question vector for some word i, and vi

be the brain activity of one human subject, pertaining
to the same word. By left-multiplying qi with DT ,
we project qi to the latent space of the decomposition;
then, by left-multiplying the result with B, we project
the result to the brain voxel space. Thus, our estimated
(predicted) brain activity is obtained as v̂i = BDTqi

Given the predicted brain activities v̂1 and v̂2 for
the two left out words, and the two actual brain images

4We may use imbalanced sampling factors, especially when the
data is far from being ’rectangular’.

50 100 150 200 250

50

100

150

200

250

300
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

50 100 150 200 250

50

100

150

200

250

300
0

0.01

0.02

0.03

0.04

0.05

50 100 150 200 250

50

100

150

200

250

300
0

0.01

0.02

0.03

0.04

0.05

Premotor Cortex

50 100 150 200 250

50

100

150

200

250

300

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Group1 Group 2 Group 4Group 3

beetle can it cause you pain?
pants do you see it daily?
bee is it conscious?

beetle can it cause you pain?
pants do you see it daily?
bee is it conscious?

Nouns Questions Nouns Questions

Nouns Questions
beetle can it cause you pain?

Nouns Questions Nouns Questions

Nouns Questions
beetle can it cause you pain?

Nouns Questions Nouns Questions

Nouns Questions
beetle can it cause you pain?

Nouns Questions Nouns Questions

Nouns Questions
beetle can it cause you pain?bear does it grow?

cow is it alive?
coat was it ever alive?

bear does it grow?
cow is it alive?
coat was it ever alive?

glass can you pick it up?
tomato can you hold it in one hand?
bell is it smaller than a golfball?’

glass can you pick it up?
tomato can you hold it in one hand?
bell is it smaller than a golfball?’

bed does it use electricity?
house can you sit on it?
car does it cast a shadow?

bed does it use electricity?
house can you sit on it?
car does it cast a shadow?

Figure 4: Turbo-SMT finds meaningful groups of words, questions, and brain regions that are (both negatively
and positively) correlated, as obtained using Turbo-SMT. For instance, Group 3 refers to small items that can
be held in one hand,such as a tomato or a glass, and the activation pattern is very different from the one of
Group 1, which mostly refers to insects, such as bee or beetle. Additionally, Group 3 shows high activation in the
premotor cortex which is associated with the concepts of that group.

v1 and v2 which were withheld from the training data,
the leave-two-out scheme measures prediction accuracy
by the ability to choose which of the observed brain
images corresponds to which of the two words. After
mean-centering the vectors, this classification decision
is made according to the following rule:

‖v1 − v̂1‖2 + ‖v2 − v̂2‖2 < ‖v1 − v̂2‖2 + ‖v2 − v̂1‖2

Although our approach is not designed to make predic-
tions, preliminary results are very encouraging: Using
only F=2 components, for the noun pair closet/watch
we obtained mean accuracy of about 0.82 for 5 out of the
9 human subjects. Similarly, for the pair knife/beetle,
we achieved accuracy of about 0.8 for a somewhat dif-
ferent group of 5 subjects. For the rest of the human
subjects, the accuracy is considerably lower, however, it
may be the case that brain activity predictability varies
between subjects, a fact that requires further investiga-
tion.

5 Experiments

We implemented Turbo-SMT in Matlab. Our imple-
mentation of the code is publicly available.5 For the par-
allelization of the algorithm, we used Matlab’s Parallel
Computing Toolbox. For tensor manipulation, we used

5http://www.cs.cmu.edu/~epapalex/src/turbo_smt.zip

the Tensor Toolbox for Matlab [7] which is optimized
especially for sparse tensors (but works very well for
dense ones too). We use the ALS and the CMTF-OPT
[5] algorithms as baselines, i.e. we compare Turbo-
SMT when using one of those algorithms as their core
CMTF implementation, against the plain execution of
those algorithms. We implemented our version of the
ALS algorithm, and we used the CMTF Toobox6 im-
plementation of CMTF-OPT. We use CMTF-OPT for
higher ranks, since that particular algorithm is more
accurate than ALS, and is the state of the art. All ex-
periments were carried out on a machine with 4 Intel
Xeon E74850 2.00GHz, and 512Gb of RAM. Whenever
we conducted multiple iterations of an experiment (due
to the randomized nature of Turbo-SMT), we report
error-bars along the plots. For all the following experi-
ments we used either portions of the BrainQ dataset,
or the whole dataset.

5.1 Speedup As we have already discussed in the In-
troduction and shown in Fig. 1, Turbo-SMT achieves
a speedup of 50-200 on the BrainQ dataset; For all
cases, the approximation cost is either same as the base-
lines, or is larger by a small factor, indicating that
Turbo-SMT is both fast and accurate. Key facts that

6http://www.models.life.ku.dk/joda/CMTF_Toolbox

contribute to this observed speedup are: 1) dimensional-
ity reduction through sampling, 2) the fact that Turbo-
SMT operates on sparse data throughout its lifetime,
and 3) that Turbo-SMT is highly parallelizable. Fig-
ure 1 illustrates this behaviour. It is crucial to note that
the speedup achieved is very significant: The ALS al-
gorithm required more than 24 hours to be computed,
and the CMTF-OPT algorithm took about 12 hours;
Turbo-SMT was able to successfully boost both algo-
rithms, while being almost as accurate.

Finally, we compare method to a technique which,
to the best of our knowledge, has not been applied in
CMTF. In short, in Section 5.3 of [10], it is implied
that one can use the so-called Tucker3 model, in order to
compress the tensor, and consequently the side matrices,
and do the decomposition on the compressed data. Our
experiments indicate that Turbo-SMT is at about 20
times faster on the BrainQ dataset, since the main
bottleneck of this technique is compression. Moreover,
such a compression-based technique is not triple-sparse,
therefore, its resulting factors are dense, giving rise
to storage and interpretability issues. We refer the
interested reader to the supplementary material [2] for
a detailed discussion of the compression technique and
our comparison.

5.2 Accuracy In Figure 5 we demonstrate that the
algorithm operates correctly, in the sense that it reduces
the model cost (Equation 2.1) when doing more repeti-
tions. In particular, the vertical axis displays the rela-
tive cost, i.e. Turbo-SMT cost

ALS cost (with ideal being equal to
1) and the horizontal axis is the number of repetitions
in the sampling. We observed that for a few execu-
tions of the algorithm, the cost was not monotonically
decreasing; however, we ran the algorithm 1000 times,
keeping the executions that decreased the relative cost
monotonically and plotted them in Fig. 5.

5.3 Sparsity One of the main advantages of Turbo-
SMT is that, it is triple-sparse, i.e. starting from
(possibly) sparse data, every intermediate result of
Turbo-SMT is sparse, as well as the final output. In
Fig. 6 we demonstrate the sparsity of Turbo-SMT’s
results by introducing the relative sparsity metric; this
intuitive metric is simply the ratio of the output size
of the baseline algorithm, divided by the output size
of Turbo-SMT. The output size is simply calculated
by adding up the number of non-zero entries for all
factor matrices output by the algorithm. We use a
portion of the BrainQ dataset in order to execute this
experiment. We can see that for the relatively dense
BrainQ dataset, we obtained significantly more sparse
results;, e.g. up to 65 times more sparse with almost

0 1 2 3 4 5 6
10

20

30

40

50

60

70

80

Number of repetitions

R
e

la
ti
v
e

 c
o

s
t

F = 1

F = 2

F = 3

F = 4

F = 5

Figure 5: The relative cost of the model, as a function
of the number of repetitions r is decreasing, which
empirically shows that Turbo-SMT actually reduces
the approximation error of the CMTF model.

same approximation error, for the case of CMTF-OPT.
We observe a large difference of result sparsity when
using CMTF-OPT, as opposed to ALS; most likely,
this difference is due to the fact that, according to [5],
CMTF-OPT converges to a better local minimum than
ALS. The results of Fig. 6 indicate that our triple-sparse
algorithm is able to capture the most useful variation of
the data, successfully suppressing noise.

0 10 20 30 40 50 60 70

0

5

10

15

relative sparsity

re
la

ti
v
e
 c

o
s
t

ALS
CMTF−OPT

s = 200

s = 100

s = 20

s = 5

s = 10

s = 5

s = 10
s = 100

s = 500

65 times sparser;

same approx. cost

Figure 6: The relative output size vs. the relative
cost indicates that, even for very dense datasets such as
BrainQ, we are able to get d up to 65 fold (for CMTF-
OPT) decrease in the output size, while maintaining
almost same approximation error as the baseline.

6 Related Work

Coupled, Multi-block, Multi-set Models Most
related to the present work is the work of Acar et

al. in [5], where a first order optimization approach
is proposed, in order to solve the CMTF problem. In
[6], Acar et. al apply the CMTF model, using the
aforementioned first-order approach in a bioinformatics
setting. In [4], Acar et. al introduce a coupled matrix
decomposition, where two matrices match on one of
the two dimensions, and are decomposed in the same
spirit as in CMTF, while imposing explicit sparsity
constraints (via `1 norm penalties); although Turbo-
SMT also produces sparse factors, this so happens as
a fortuitous byproduct of sampling, whereas in [4] an
explicit sparsity penalty is considered.

To the best of our knowledge, Turbo-SMT is the
first algorithm that is able to speed up, parallelize, and
sparsify any (possibly highly fine tuned) core algorithm
for CMTF.
Fast & Scalable Tensor Decompositions In [15] the
authors introduced a parallel algorithm for the regular
PARAFAC decomposition, where a sampling scheme of
similar nature as here is exploited; in [9], a scalable
MapReduce implementation of PARAFAC is presented.
Additionally, the mechanics behind the Tensor Toolbox
for Matlab [7] are very powerful when it comes to
memory-resident tensors.
Tensor applications to brain data There has been
substantial related work, which utilizes tensors for this
purpose, e.g. [3], [12], and [8].

7 Conclusions

Our main contributions are the following:
• Fast, parallel & triple-sparse algorithm: Turbo-
SMT is able to speed any CMTF solver up to 200
times, producing up to 65 times sparser results,
with very good accuracy.

• Effectiveness and Knowledge Discovery : Turbo-
SMT, applied to the BrainQ dataset, discovers
meaningful triple-mode clusters: clusters of words,
of questions, and of brain regions have similar
behavior; as a by-product, Turbo-SMT predicts
brain activity, with performance that matches state
of the art predictors.

• Reproducibility : We make our code public, enabling
reproducibility and re-usability of our work.

Acknowledgements
Research was funded by grants NSF IIS-1247489, NSF IIS-1247632,
NSF CDI 0835797, and NIH/NICHD 12165321. Any opinions, find-
ings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of
the funding parties. The authors would also like to thank Leila Wehbe
and Alona Fyshe for their initial help with the BrainQ data.

References

[1] Read the web. http://rtw.ml.cmu.edu/rtw/.

[2] Supplementary material. http://www.cs.cmu.edu/

~epapalex/papers/sdm14_turbo_smt_supp.pdf.
[3] E. Acar, C. Aykut-Bingol, H. Bingol, R. Bro, and

B. Yener. Multiway analysis of epilepsy tensors. Bioin-
formatics, 23(13):i10–i18, 2007.

[4] E. Acar, G. Gurdeniz, M.A. Rasmussen, D. Rago, L.O.
Dragsted, and R. Bro. Coupled matrix factorization
with sparse factors to identify potential biomarkers in
metabolomics. In IEEE ICDM Workshops, pages 1–8.
IEEE, 2012.

[5] E. Acar, T.G. Kolda, and D.M. Dunlavy. All-at-once
optimization for coupled matrix and tensor factoriza-
tions. arXiv preprint arXiv:1105.3422, 2011.

[6] E. Acar, G.E. Plopper, and B. Yener. Coupled analysis
of in vitro and histology tissue samples to quantify
structure-function relationship. PloS one, 7(3):e32227,
2012.

[7] B.W. Bader and T.G. Kolda. Matlab tensor toolbox
version 2.2. Albuquerque, NM, USA: Sandia National
Laboratories, 2007.

[8] Ian Davidson, Sean Gilpin, Owen Carmichael, and
Peter Walker. Network discovery via constrained
tensor analysis of fmri data. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 194–202. ACM, 2013.

[9] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos.
Gigatensor: scaling tensor analysis up by 100 times-
algorithms and discoveries. In SIGKDD, pages 316–
324. ACM, 2012.

[10] T.G. Kolda and B.W. Bader. Tensor decompositions
and applications. SIAM review, 51(3), 2009.

[11] T.M. Mitchell, S.V. Shinkareva, A. Carlson, K.M.
Chang, V.L. Malave, R.A. Mason, and M.A. Just.
Predicting human brain activity associated with the
meanings of nouns. Science, 320(5880):1191–1195,
2008.

[12] Morten Mørup, Lars Kai Hansen, Sidse Marie Arn-
fred, Lek-Heng Lim, and Kristoffer Hougaard Mad-
sen. Shift-invariant multilinear decomposition of neu-
roimaging data. NeuroImage, 42(4):1439–1450, 2008.

[13] Brian Murphy, Partha Talukdar, and Tom Mitchell.
Selecting corpus-semantic models for neurolinguistic
decoding. In First Joint Conference on Lexical and
Computational Semantics (* SEM), pages 114–123,
2012.

[14] Mark Palatucci, Dean Pomerleau, Geoffrey Hinton,
and Tom Mitchell. Zero-shot learning with semantic
output codes. Advances in neural information process-
ing systems, 22:1410–1418, 2009.

[15] E. Papalexakis, C. Faloutsos, and N. Sidiropoulos. Par-
cube: Sparse parallelizable tensor decompositions. Ma-
chine Learning and Knowledge Discovery in Databases,
pages 521–536, 2012.

[16] Evangelos E Papalexakis, Tom M Mitchell, Nicholas D
Sidiropoulos, Christos Faloutsos, Partha Pratim Taluk-
dar, and Brian Murphy. Scoup-smt: Scalable cou-
pled sparse matrix-tensor factorization. arXiv preprint
arXiv:1302.7043, 2013.

