
FlexiFaCT: Scalable Flexible Factorization of Coupled Tensors on

Hadoop

Alex Beutel∗

abeutel@cs.cmu.edu
Abhimanu Kumar ∗

abhimank@cs.cmu.edu
Evangelos E. Papalexakis ∗

epapalex@cs.cmu.edu

Partha Pratim Talukdar ∗

ppt@cs.cmu.edu
Christos Faloutsos ∗

christos@cs.cmu.edu
Eric P. Xing∗

epxing@cs.cmu.edu

Abstract

Given multiple data sets of relational data that share a
number of dimensions, how can we efficiently decompose
our data into the latent factors? Factorization of a
single matrix or tensor has attracted much attention, as,
e.g., in the Netflix challenge, with users rating movies.
However, we often have additional, side, information,
like, e.g., demographic data about the users, in the
Netflix example above. Incorporating the additional
information leads to the coupled factorization problem.
So far, it has been solved for relatively small datasets.

We provide a distributed, scalable method for de-
composing matrices, tensors, and coupled data sets
through stochastic gradient descent on a variety of ob-
jective functions. We offer the following contributions:
(1) Versatility: Our algorithm can perform matrix,
tensor, and coupled factorization, with flexible objec-
tive functions including the Frobenius norm, Frobenius
norm with an `1 induced sparsity, and non-negative fac-
torization. (2) Scalability: FlexiFaCT scales to un-
precedented sizes in both the data and model, with up
to billions of parameters. FlexiFaCT runs on standard
Hadoop. (3) Convergence proofs showing that Flexi-
FaCT converges on the variety of objective functions,
even with projections.

1 Introduction

How can we efficiently mine data that capture relations
between different entities? Suppose, for instance, that
we are given a time-evolving social network, such as
Facebook, and we have information about who messages
whom, or who becomes friends with whom, and when.
This data may be formulated as a three mode tensor.
Suppose now that we also have some side information
pertaining to the users, e.g. demographic information.
This problem can be formulated as an instance of a
so-called coupled factorization, where the two pieces of

∗Carnegie Mellon University, School of Computer Science

data, a three-mode (user, user, time) tensor and a (user,
demographic) matrix share a common dimension. Even
without the presence of the (user, demographic) matrix,
efficient tensor decomposition of truly large datasets can
be challenging, attracting increasing interest.

Most prior work has either focused on a specific
type of factorization or a specific loss function (e.g.
Frobenius norm), thus having a limited range of po-
tential applications. Here we propose FlexiFaCT, a
flexible and highly scalable distributed factorization al-
gorithm which attacks a very broad spectrum of prob-
lems: FlexiFaCT can handle matrices, tensors, cou-
pled tensor-matrix settings, cross product a variety of
loss functions, including Frobenius norm, KL diver-
gence, `1 regularization, and non-negativity constraints.

Moreover, FlexiFaCT is very fast and scalable; we
show how to implement it on Hadoop, and we show how
to achieve high speeds, by distributing both the data
as well as the parameters. In Table 1 , we provide a
comprehensive overview of the state of the art. In short,
FlexiFaCT reigns, combining both scalability, as well
as versatility.

In summary, our main contributions are:

1. Versatility: FlexiFaCT can operate under a
wide spectrum of settings, including plain matrix
factorization, tensor factorization, as well as cou-
pled decompositions. Thus, FlexiFaCT includes
several recent methods [9], [11], as special cases.

2. Scalability: FlexiFaCT scales very well both
with the input size, as well as with the number
of model parameters.

3. Proof of convergence: We prove that Flexi-
FaCT converges, even with constraints like non-
negativity. Moreover, we demonstrate this empiri-
cally.

4. Usability and Reproducibility: Our implemen-
tation runs on stock Hadoop, as opposed to other
recent methods [9]. We also open-source our code.

FlexiFaCT DSGD [9] PSGD [21] Matlab GigaTensor [11]
Data/Model
Matrix X X ∼ X
Tensor X ∼ X[6] X
Coupled Tensor/Matrix X ∼ X[2]
Obj. Function
Frobenius norm X X X X X
Frobenius norm + `1 penalty X X X
Non-negativity constraints X X X
Handles missing data X X X X
Scalability

in number of non-zeros X ∼ X X
in data dimensions X ∼ X
in decomposition rank X ∼ X ∼
Proof of convergence

Matrix Factorization X X
Tensor/Coupled Factorization X ∼ X

Projections (`1 & non-negativity) X ∼

Table 1: Feature Comparison of proposed FlexiFaCT vs state of the art. (∼ represents unknown or not directly
applicable.) FlexiFaCT contains existing state of the art as special cases.

2 Related Work and Background

Matrix Factorization (MF): One of the most pop-
ular MF models is the Non-Negative Matrix Factoriza-
tion [14]. Solutions range from alternating least squares
(ALS) [20], to stochastic gradient descent (SGD) [7].
Gemulla et al. [9] made a breakthrough in scaling up
MF: they propose a distributed version of Stochastic
Gradient Descent (SGD) for MF which elegantly ex-
ploits the factorization structure of the problem, break
the matrix into blocks and process them in parallel.
Follow-up works [16, 19] have successfully extended this
idea to the matrix completion problem using parallel
stochastic updates. We build upon this insightful work,
expanding on both the theory and implementation.
Tensor Factorization. Tensors are multidimensional
generalizations of matrices, widely applied in a variety
of fields. See Kolda and Bader [12] for a comprehensive
overview. The most popular Tensor Factorization is
the so called Canonical Polyadic (CP) or PARAFAC
decomposition [10]. PARAFAC with `1 constraints,
which FlexiFaCT is able to handle, is introduced in
[15]. For in memory/single machine computations, the
state of the art is the Tensor Toolbox [6], which provides
an implementation of the ALS algorithm. Besides ALS
there exist first order optimization techniques, such
as [4]. In [18], the authors propose algorithms for
incremental computation of the tensor decomposition,
where the tensor is a stream. For large datasets residing
on HDFS (Hadoop Distributed File System), the state
of the art is GigaTensor [11] solves the PARAFAC
decomposition using Alternating Least Squares (ALS).
Coupled Factorizations. In this case, we have a
tensor and a matrix, or two tensors, or two matrices,

that share one dimension, as in the Facebook example of
the introduction. Singh et al. [17] jointly factorize two
related matrices for better decomposition and provide
stochastic updates for this coupled MF optimization.
For coupled matrix-tensor factorization, recent work [3]
used first order optimization techniques.

3 FlexiFaCT Approach

Symbol Description
X Data tensor
Y Data matrix
U,V,W Factor matrices of X
U,A Factor matrices of Y
I × J ×K Dimensions of data tensor X

I ×M Dimensions of data matrix Y
θ Any parameter in the objective
σ The parameter being updated
∇ Symbol for derivative
ηt Step size at iteration t
R Rank of decomposition
◦ Khatri Rao product

Table 2: Table of Symbols

As mentioned previously, we take on the problem
of matrix, tensor and coupled factorization. In this
section we will explain the variety of loss functions used
in these tasks, the Stochastic Gradient Descent (SGD)
update rules, and our partitioning scheme allowing for
distribution of the SGD work. Although much of our
description of the matrix factorization work is similar to
[9], we will explain it here for completeness and clarity.

Before we begin, it is important to clarify our
notiation. We will use capital boldface script characters

like X to denote a tensor, capital boldface non-script
characters e.g. Y to denote a matrix, and lowercase
boldface character, e.g. y, to denote a vector. Xi,j,k

denotes the scalar in the (i, j, k) position of the tensor
X, Yi,j denotes the scalar in the (i, j) position of matrix
Y, and yi denotes the scalar in the ith position of vector
y. We use Yi,∗ to denote the vector of scalars Yi,j for
all j. Additionally, with a slight overloading of notation
for simplicity and because our matrices and tensors may
only have a small percentage of observed values, we say
that (i, j, k) ∈ X if Xi,j,k is observed. A list of our
commonly used symbols can be seen in Table 2.

3.1 Optimization Objectives We begin by ex-
plaining how stochastic gradient descent works for our
variety of objective functions. We will briefly go over the
objective functions for simpler cases like the Frobenius
norm of matrices before expanding to more complex ob-
jectives.

Matrix Factorization For matrix factorization
we would like to approximate our I × J data matrix
X by UVT , where U is of size I × R and V is of size
J ×R. Therefore, we can have a loss function using the
Frobenius norm as follows:

L(U,V) = ‖X−UVT ‖2F =
∑
i,j∈X

LXi,j (U,V)(3.1)

where LXi,j
(U,V) = (Xi,j −

∑R
r=1 Ui,rVj,r)

2. As seen
above, we divide our loss function into its component
pieces LXi,j

based on each observed point Xi,j . This is
necessary to use stochastic gradient descent.

Tensor Factorization For tensor factorization we
would like to approximate our I × J ×K tensor X by a
Khatri-Rao product

∑R
r=1 U∗,r ◦V∗,r ◦W∗,r where U is

of size I ×R, V is of size J ×R and W is of size K ×R
and we are performing an Khatri Rao product between
these three matrices. We can analyze the loss in a few
different ways. Following the standard Frobenius norm,
as is common in PARAFAC, the loss is:

L(U,V,W) = ‖X−
R∑
r=1

U∗,r ◦V∗,r ◦W∗,r‖2F

=
∑

(i,j,k)∈X

(Xi,j,k −
R∑
r=1

Ui,rVj,rWk,r)
2

=
∑

(i,j,k)∈X

LXi,j,k
(U,V,W)

where

LXi,j,k
(U,V,W) = (Xi,j,k −

R∑
r=1

Ui,rVj,rWk,r)
2.

Similarly we can induce sparsity in our parameter space
with an `1 penalty:

L(U,V,W) = ‖X−
R∑
r=1

U∗,r ◦V∗,r ◦W∗,r‖2F

(3.2)

+ λ(‖U‖1 + ‖V‖1 + ‖W‖1)

= L(U,V,W) + λ(‖U‖1 + ‖V‖1 + ‖W‖1)

or add a constraint that U,V,W ≥ 0 as is common
in non-negative matrix factorization (NNMF). These
terms are not as clearly separable in the loss function,
but as we will see the update rules are still separable
as is necessary for SGD. We make a distinction here
between L and L: the objective L is obtained by adding
`1 or non-negativity constraints to the loss L.

Coupled Matrix-Tensor Factorization In this
case our data tensor X is approximated by

∑R
r=1 U∗,r ◦

V∗,r ◦W∗,r and our data matrix Y is simultaneously

approximated by UAT . Note here we use the same
component U in both approximations. As such, our
objective function is merely a sum of the losses on each
data set:

L(U,V,W,A)

=
∑

(i,j,k)∈X

LXi,j,k
(U,V,W) +

∑
(i,j)∈Y

LYi,j
(U,A)

Table 3 denotes the loss objectives for different coupled
cases. For each of these we use SGD to minimize our
loss and thus approximate our data.

3.2 SGD Updates For SGD we perform updates to
our parameters U,V,W,A, which we will collectively
refer to as Θ matrix whereas θ are the individual
components of the matrix. This definition of Θ and
θ will come in handy for parameter updates based on
the gradient at individual data points. E.g. the update
for tensor X are:

θ(t+1) = θ(t) − ηt∇LXi,j,k
(θ(t))(3.3)

For these update rules, we list below the differentials
for each component σ of θ where (∇LXi,j,k

(θ))σ =
∂LXi,j,k

∂σ :

(∇LXi,j,k
(θ))σ

=

{
−2(Xi,j,k−

∑
rUi,rVj,rWk,r)Vj,`Wk,` ifσ=Ui,`

0 ifσ=Ui′,`, i 6= i′

similarly for σ = Vj,l or σ = Wk,l. From this
we observe that SGD update for Ui,l at a particular
entry Xi,j,k (for a tensor X) depends only on previous

Objective (L) Formulation
Frobenius

∑
(i,j,k)∈X LXi,j,k

(U,V,W) +
∑

(i,j)∈Y LYi,j
(U,A)

Frobenius + `1
∑

(i,j,k)∈X LXi,j,k
(U,V,W) +

∑
(i,j)∈Y LYi,j

(U,A)

+ λ(||U ||1 + ||V ||1 + ||W ||1 + ||A||1)
Frobenius + `1 +
NN

∑
(i,j,k)∈X LXi,j,k

(U,V,W) +
∑

(i,j)∈Y LYi,j
(U,A)

+ λ(||U ||1 + ||V ||1 + ||W ||1 + ||A||1) s.t. Θi,r ≥ 0

Table 3: Table of Objective Functions. Θ denotes any of the factors U, V,W or A.

Z1

Z2

Z3

Z1

Z2

Z3

Figure 1: Dividing the paired matrix and tensor into
blocks such that no two of them share any row or a
column or a third dimension in case of tensor.

Ui,r,Vj,r,Wk,r where r ∈ 1, . . . , R and R is the rank
we chose. The updates for each component are similar
for the paired cases.

In the case of additional components such as an `1
penalty or a non-negativity constraint on our parame-
ters, we add a projection to our update rule. For exam-
ple, for an `1 penalty, the update rule is

θ(t+1) = Sλ(θ(t) − ηt∇LXi,j,k
(θ(t)))(3.4)

Sλ(x) =

 x− λ if x > λ
x+ λ if x < −λ
0 if − λ ≤ x ≤ λ

(3.5)

Here we see that Sλ is the soft thresholding operator.
We can similarly use the following projection for the
non-negativity constraint:

NN(x) =

{
x if x ≥ 0
0 if x < 0

(3.6)

3.3 Blocking for Parallelization Given this under-
standing of our optimization objective and SGD update
rules, we would like to segment our data in such a way
that certain blocks Zb can be run in parallel, where we
define Zb ⊆ X. Figure 1 is a pictorial representation
of the way we segment our simple matrix or a coupled
tensor/matrix to enable parallelization. In order to run
SGD on our blocks in parallel, we divide them such that
no two blocks share common rows or columns. To be
more precise, we say that a point x ∈ Zb is the coor-
dinates in the data, such as x = (xi, xj , xk) ∈ X. Two
blocks Zb and Zb′ are non-overlapping if for all x ∈ Zb

and x′ ∈ Zb′ , xi 6= x′i and xj 6= x′j and xk 6= x′k. (We
will prove later that this allows us to run the blocks in
parallel.) We see that in the division shown in Figure 1
no two blocks share common rows or columns. More
interestingly, we note that in Figure 1(c) blocks in the
tensor X and the matrix Y share coordinates in the i
dimension, and as a result, data points in the same i
range must be in the same block across both data sets.

Given this intuition, we provide a detailed descrip-
tion of our partition function. We call one set of inde-
pendent blocks a stratum, and we denote the number
of blocks in each stratum by d. In order to cover all
regions of X, we need multiple strata. For a matrix we
require d strata, and for tensors we require d2 strata.

For a stratum s we have blocks Z
(s)
i for i = 0 . . . d− 1.

Each block Z = (bi, bj , bk) where bi, bj , bk are ranges
in I, J , and K: bi = (idI/de, (i + 1)dI/de), bj =
(jdJ/de, (j + 1)dJ/de), bk = (kdK/de, (k + 1)dK/de).
With this we define the blocks for stratum s as

Z
(s)
i = (bi, bjs,i , bks,i)(3.7)

js,i = (j + s) mod d(3.8)

ks,i = b(j + s)/dc mod d(3.9)

for i = 0 . . . d− 1.
In our algorithm, we run the strata sequentially,

but for each stratum we run SGD on the blocks in
parallel. We consider running SGD on one stratum to be
a subepoch in our algorithm, and running it on all strata
an epoch. (Note, the order in which you run the strata
does not matter, as long as they are each run once per
epoch.) We can do this repeatedly, iteratively updating
our parameters θ, until the algorithm converges. A more
formal write up of the distributed stochastic gradient
algorithm for a tensor (which can easily be generalized
to matrices and coupled factorizations) is shown in
Algorithm 1. We next offer a proof that this converges
appropriately.

4 Proof of convergence with projections

The FlexiFaCT approach is described in Algorithm 1.
We first prove that two blocks in a stratum are inter-
changeable. We use this to prove that sequence of strata
are a regenerative process, defined later in this section.

Algorithm 1: FlexiFaCT for tensor factorization

Input : X,U0,V0,W0,sub-epoch size d
U← U0, V← V0, W←W0

Block X,U,V,W into corresponding d blocks
while not converged do

Pick step size η
for s = 0, ..., d2 − 1 do

Pick d blocks(Z
(s)
1 , ..., Z

(s)
d) to form stratum

Z(s)

for b = 0, . . . , d− 1 in parallel do

Run SGD on the training points Z
(s)
b

end

end

end

We use this to prove that our FlexiFaCT approach for
Tensor and coupled case converges.

Our generic constrained loss function for a tensor
case is

L = L(U, V,W) + λu‖U‖1 + λv‖V ‖1 + λw‖W‖1
s.t. Ui,r, Vj,r,Wk,r ≥ 0.(4.10)

In the above projected loss equation 4.10 the pa-
rameter is always in a set, P, constrained by the `1
and non-negativity constraints. The set P is a hyper-
rectangle defined as ∃ ai < bi, i = 1 . . . r, such that
P = {θ : ai ≤ θi ≤ bi} where ai, bi ∈ (−∞,∞). Here
θ is a parameter to be updated as defined in previous
section (equation 3.3). The gradient based on equa-
tion 4.10 is:

∇θL = ∇θL+ p(θ), p(θ) ∈ C(θ)(4.11)

where θ is defined in Table 2 and L and L are defined
in equation 3.2. Function p() is the projection or
constraint term of the gradient. The set C(θ) is the
union of the subgradients at θ. When θ ∈ interior of
P, C(θ) contains only the zero elements and contains
the convex cone generated by the subgradients at θ when
θ ∈ ∂P, boundary of P.

Definition 4.1. Two blocks Zi and Zi′ in a given

stratum are independent if for each x ∈ Zi and x
′ ∈ Zi′

we have

∇Lx(θ) = ∇Lx(θ − η∇Lx′ (θ))(4.12)

and ∇Lx′ (θ) = ∇Lx′ (θ − η∇Lx(θ))

where ∇Lx(θ) is the partial differential of Lx w.r.t. θ
and θ is the parameter we are updating.

Theorem 4.1. If blocks Zi and Zi′ in a given stratum
Sn are non-overlapping then they are independent (as
defined previously in Definition 4.1).

Proof. For any two points x ∈ Zi and x′ ∈ Zi′

their rows or columns or any other coordinate do not
overlap. From equation (3.4) we see that x does not
modify θ in positions for which i 6= xi, j 6= xj and
k 6= xk. Therefore, because x and x′ are not equal in any
dimension, an update from ∇Lx′ will update different
values than ∇Lx, where ∇Lx is the gradeint at point x

Additionally from equation (3.4) we see that any
updates on ∇Lx only use values from Uxi,∗, Axj ,∗ and
Bxk,∗, and thus do not use any values that would be
updated by ∇Lx′ . Because updates from x only effect
parameters in x’s coordinates, updates from x are only
based on parameters in x’s coordinates, and x and x′

have no overlapping coordinates, we know that

∇Lx(θ) = ∇Lx(θ − η∇Lx′ (θ))

and ∇Lx′ (θ) = ∇Lx′ (θ − η∇Lx(θ))

Therefore, Zi and Zi′ are independent. By a similar
argument

∇Lx(θ) = L
′

x(θ − η∇Lx′ (θ))

and ∇Lx′ (θ) = ∇Lx′ (θ − η∇Lx(θ))

�

Definition 4.2. a process P (t), t ≥ 0 is regenerative
if there exist time points 0 ≤ T0 < T1 < T2 <
. . . such that the the remainder of the process after
Tk P (Tk + t) : t ≥ 0, for k ≥ 1 : (a) has the same
distribution as the remainder of the process after T0,
and (b) process P (T0 + t) : t ≥ 0 is independent of the
process prior to Tk P (t) : 0 ≤ t < Tk.

In other words a stochastic process with certain
time points such that from a probabilistic view the pro-
cess restarts itself at these time points is called a regen-
erative process. Intuitively this means a regenerative
process can be split in to i.i.d. cycles [5].

Based on equation 4.10 the projected sgd updates
can be written as:

(4.13) θt+1 = ΠP(θ(t) + ηt∇Lx(θ(t)))

where ΠP() is the projection of the updated gradient
with respect to the original loss L(U, V,W). The
projection step can be further broken up into

θt+1 = θ(t) + ηt∇Lsix (θ(t)) + ηtp(θ
(t)) (using (4.11))

= θ(t) + ηt∇L0(θ(t)) + ηtδMt + ηtβt + ηtp(θ
(t))

(4.14)

where Lsix (θ(t)) is the loss function at stratum si
at a point x in iteration t given parameter value in

previous iteration θ(t) . ∇L0(θ(t)) is the exact gradient
in iteration t given previous parameter value θ(t). And

(4.15) δMt = ∇Lsix (θ(t))−∇L0(θ(t))− βt

where βt is the “error” before projection i.e. the error
by which the update is outside P.

To prove the convergence of the method we define
the following conditions, similar to the ones defined
in [13, 9]:

Condition 1. ∇L0(θ) is continuous.
Condition 2. ∇L0(θ(t)) is bounded in second

moment: E[(∇L0(θ(t)))2] <∞ for all θ.
Condition 3. The squared sum of the step sizes ηt

is bounded i.e.
∑
t η

2
t <∞.

Condition 4. The noise is martinagale difference:
E[δM(t+1)|δMi, i ≤ t] = δMt.

Condition 5. E[ηtβt] < ∞ with probability 1.
Note that this is a condition on step-size. It implicitly
says that the projection must not wander off infinitely
outside the set P over the iterations.

Theorem 4.2. The distributed SGD algorithm for ten-
sor decomposition with projections, as presented in al-
gorithm 1, converges.

Proof. The primary equations being updated each
time in our iterations is equation 4.14. Rewriting it here
we have:

θt+1 = θ(t) + ηt∇L0(θ(t)) + ηtδMt + ηtβt + ηtp(θ
(t))

(4.16)

From theorem 4.1 we can see that the individual
blocks in a given stratum are independent of each
other’s updates and are interchangeable. We can also
observe from Algorithm 1 that every stratum out of d
strata is picked exactly once in one cycle i.e. one epoch
(outer while loop). Moreover two different cycles of
strata i.e. iterations of the while loop are identical and
independent. In other words the while loop forms an
i.i.d cycle, and thus a regenerative process. The time-
period of cycles is finite and bounded consequently that
of the regenerative process too. Besides given all the
conditions 1 to 5 as defined above, we have

(4.17)

κ(t+t0)−1∑
i=0

(ηiδMi + ηiβi)

→ 0

for any arbitrary κ. The proof is similar to [13] and is
valid due to the fact that noise is a martingale difference
sequence and ηiδMi and ηiβi are an equicontinuous
sequence ([13] Theorem 2.1, part 1, chapter 5; [9] follows
a similar proof up to this point). We can now use this

Algorithm 2: FlexiFaCT Mapper (for tensor)

Input: I, J,K, d

1: for all (i, j, k,Xi,j,k) do
2: bi = b i

d Id e
c, bj = b j

d Jd e
c, bk = b k

dKd e
c {Get block

index}
3: subepoch =

d× ((bk − bi + d) mod d) + ((bj − bi + d) mod d)
4: emit 〈(bi, bj , bk, subepoch), (i, j, k,Xi,j,k)〉
5: end for

to analyze the updated with a projected loss. We find
that equation 4.14 has the same set of stable points as

(4.18) θt+1 = θ(t) + ηt∇L0(θ(t)) + ηtp(θ
(t))

Now we show that equation 4.18 converges.
Through few algebraic manipulations it can be veri-
fied that the projection functions p(·) we have, `1 soft
threshold and non-negativity constraint project, are lip-
schitz continuous. Following the arguments of [13] (the-
orem 2.1, part 2) and with the assumption that updates
θ(t) are bounded (follow from the conditions 1 to 5 as-
sumed earlier), equation 4.18 converges to a set of sta-
tionary points. �

5 MapReduce Implementation of FlexiFaCT

Along with our theoretical analysis, we implemented our
algorithm within the MapReduce framework [8]. To
do this we used the open source Hadoop [1] version
of MapReduce. The challenge is to turn the factoriza-
tion problem into map() and reduce() functions, that
Hadoop is designed to handle.

In our implementation we pass the data ma-
trix or tensor as input to the mappers in the form
(i, j, k,Xi,j,k). We also store our current parameters
θ(s), which could include U, V, W, and A on the
Hadoop File System (HDFS).

FlexiFaCT Mapper: Our Mapper function, is
shown in Algorithm 2. It splits the data into the
appropriate blocks and determines the order they should
be processed in within each reducer. We also overload
the default Hadoop partitioner, which typically just
partitions on unique Key values, and now partition only
on bi so that each reducer represents a unique set of i
in I or a unique set of rows in U. We additionally
override the default Comparator, allowing us to sort
our (Key,Value) pairs within each reducer by the
subepoch term calculated in the Mapper. We see here
while the Mapper is quite simple, the calculation of the
blocks and the order within each reducer captures our
partition function that allows us to perform SGD in this
distributed fashion.

Algorithm 3: FlexiFaCT Reducer (for tensor)

Given: U,V,W, I, J,K, d, η
Input: Values V
sold =Pointer to final parameters from last epoch
for (i, j, k,Xi,j,k) ∈ V do

bi = b i
d Id e
c, bj = b j

d Jd e
c, bk = b k

dKd e
c

t = d×((bk−bi+d) mod d)+((bj−bi+d) mod d)
if t 6= told then

Write V
(sold)
bjold

and W
(sold)
bkold

to HDFS

Wait for V
(sold)
bj

and W
(sold)
bk

to be available
on HDFS
Save U

(s)
bi

= U
(sold)
bi

Save V
(s)
bj

= V
(sold)
bj

and

W
(s)
bk

= W
(sold)
bk

from HDFS biold = bi,
bjold = bj , bkold = bk, t = told

end

θ(s) = θ(s) − η∇LXi,j,k
(θ(s)) (where θ(s) is the

concatenation of U
(s)
bi
,V

(s)
bj
,W

(s)
bk

)

end

Write U
(sold)
biold

, V
(sold)
bjold

, and W
(sold)
bkold

to HDFS

FlexiFaCT Reducer: Our Reducer function is
shown in Algorithm 3. As we explained before, each
reducer gets all points for a given range of values i
ordered by the subepochs. (As before we use s to denote
the subepochs.) The reducer iterates over the points
in V in order, each time updating θ(s). Each reducer
only stores the components of θ that correspond to its
current block in the current stratum. As such, when
a new subepoch is reached, it must write its updated
θ values to disk (for another reducer to retrieve) and
read the most current θ values for its next block in the
subsequent subepoch.

We run the MapReduce jobs iteratively. Each
MapReduce job is one epoch using all points in X to
update the full parameter space θ and ultimately to save
it to HDFS. We then use the updated parameters θ in
the subsequent epoch (another run of the MapReduce
algorithm). We do this for a constant number of steps
or until the algorithm converges.

Reproducibility and Usability: This is a high
level overview of our implementation, but captures
the general method we use to both distribute our
work and optimize our speed within the MapReduce
framework. While this is not the typical way Hadoop is
programmed, it requires no modification of the Hadoop
framework and can be run on any standard Hadoop
cluster. Our code is open-sourced, and available at
http://alexbeutel.com/l/flexifact. It can run for
all of the data types and loss functions described in this

paper.

6 Experiments

6.1 Performance Evaluation In order to assess
how scalable and fast FlexiFaCT is, we conducted a
series of experiments in order to measure the running
time of FlexiFaCT with respect to 1) increasing
number of data points, 2) increasing dimensions of the
data and thus model, and 3) increasing rank of the
factorization. The first aspect has to do with scalability
in terms of data size, whereas the two latter aspects
refer to scalability with respect to parameter space size;
FlexiFaCT is able, as we demonstrate in the following
experiments, to scale easily in all three aspects. As a
baseline for tensor decomposition, we use GigaTensor
[11]. We also compared against PSGD [21], however, the
solutions obtained achieved much worse RMSE, and the
algorithm was not able to scale for very large number
of parameters (either rank or dimensions).

FlexiFaCT was implemented in Java, with
Hadoop 0.20.1 [8, 1]. We ran the experiments on the
OCC-Y cluster1. For the sake of experimentation, we
created a series of synthetic datasets wherein we were
able to control the three aspects we were testing: data
size, data dimensions, and rank. Additionally, we vali-
date our method’s correctness by presenting experimen-
tal evidence (on top of our theoretical guarantees), for
monotone convergence. In all cases, number of reducers
was constant and equal to 24.
Synthetic Data Generation To generate data we
first generate randomly matrix factors U,V,W of the
specified dimension D (where I = J = K = D) and
rank R = 30. We then randomly select data points
(i, j, k) and add their value Ui,∗ ◦ Vj,∗ ◦Wk,∗ to the
dataset. We do this until we have the desired number
of data points for each dataset. Unless otherwise stated,
we set D = 1 million and the number of data points to
10 million.

6.2 Scalability We now test FlexiFaCT on all
three types of scalability to demonstrate that it scales
in all dimensions and to unprecedented sizes.
Rank Scalability In testing the scalability with re-
spect to rank, we ran FlexiFaCT, GigaTensor, and
PSGD on a tensor and varied the rank from 25 up to
1000. Figure 2(a) shows the running time for Flexi-
FaCT, both for tensor and coupled factorizations, as
the rank (i.e. one of the parameter dimensions) in-
creases. We can see that FlexiFaCT scales linearly
as the rank of the factorization increases, having simi-
lar timing behaviour both for plain tensor and coupled

1http://opencloudconsortium.org/tag/occ-y/

http://alexbeutel.com/l/flexifact
http://opencloudconsortium.org/tag/occ-y/

 0

 2000

 4000

 6000

 8000

 10000

 12000

 200 400 600 800 1000

T
im

e
 (

m
in

u
te

s
)

Rank of Factorization

PSGD runs out of memory
for R >= 100

FlexiFaCT
Gigatensor

PSGD
FlexiFaCT Coupled

(a) Time vs. rank

 0

 500

 1000

 1500

 2000

 2500

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

T
im

e
 (

m
in

u
te

s
)

Dimension of Tensor (in millions)

FlexiFaCT
Gigatensor

FlexiFaCT Coupled

(b) Time vs. dimensions

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

25M 50M 75M 100M

T
im

e
 (

m
in

u
te

s
)

Number of Observations (size of data)

FlexiFaCT
Gigatensor

FlexiFaCT Coupled

(c) Time vs. # observations

Figure 2: Scalability of FlexiFaCT in terms of: a) rank, b) data dimensions, and c) number of observations.
We observe that FlexiFaCT scales very well with respect to all aspects. PSGD can be seen in sub-figure (a)
before it runs out of memory. FlexiFaCT was applied to both a tensor, and a matrix-tensor couple, whereas
GigaTensor was only applied to a tensor.

factorizations. GigaTensor, on the other hand, due to
the fact that it is inverting an R×R matrix, locally, at
every iteration slows down significantly for large ranks.
We were unable to test GigaTensor on ranks larger than
100 due to the slow down. Although barely visible in
the plot, we also ran PSGD on the data. However, it too
couldn’t scale in rank due to the size of the parameter
space. For rank above 50 the factor matrices could no
longer fit in memory on each machine and thus PSGD
could not run. This demonstrates FlexiFaCT’s unique
scalability in the parameter size. Additionally, we note
that with R = 1000 and D = 1 million, the coupled
FlexiFaCT factorization scales to a total parameter
space of 4 billion parameters.
Data Dimensions Scalability To test more directly
the scalability as the dimension D of the data tensor
grows, we created a variety of tensors with varying di-
mension from 10,000 to 10 million. We decompose each
tensor with R = 50. When testing the coupled Flex-
iFaCT decomposition, we add an additional coupled
matrix with 100,000 data points and the same dimen-
sionality as the main tensor.

In Figure 2(b) we show how coupled factorization
using FlexiFaCT scales, as the dimensions of the data
increase. We observe that FlexiFaCT runs much faster
than the baseline, GigaTensor. A likely explanation
for the degree to which FlexiFaCT is faster than
GigaTensor is that FlexiFaCT only focuses on the
observed data points, where GigaTensor has to convert
unobserved data points to zeros, thus slowing down the
computation. We can see that FlexiFaCT has a very
smooth behaviour, scaling linearly with the dimension
size. Again, when we are performing the coupled
decomposition, we see that as the dimension scales our
total parameter space reaches 2 billion parameters.

Data Size Scalability Last, for data scalability, we
vary the number of observed data points from 1 million
to 10 million. Figure 2(c) shows FlexiFaCT’s running
time as a function of the data size, i.e. the number
of observations. We can see that FlexiFaCT has,
again, very smooth behaviour, and scales linearly with
the number of observed elements. Again, we are
significantly faster than GigaTensor, though the degree
of difference is likely because it is must make unobserved
points zeros for it to run.

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 400 800 1200 1600 2000

R
M

S
E

Time (seconds)

FlexiFaCT
PSGD

Figure 3: Convergence: RMSE vs. time, for tensor
factorization comparing FlexiFaCT and PSGD [21].
Note, Zinkevich et al. [21] do not claim to work on this
problem because it is not convex.

6.3 Correctness & Monotone Convergence Be-
sides speedup, we experimentally validate that Flex-
iFaCT indeed decreases monotonically the objective
function that it is minimizing. To test this we run on a
small synthetic data set with D = 10, 000 and 10 million
data points, making the dataset very dense. We run a
factorization with R = 50 using our implementation of
PSGD and FlexiFaCT with both `1 sparsity and non-

negativity constraints. We then monitor the root mean
squared error (RMSE).

Figure 3 shows that FlexiFaCT decreases the
RMSE as expected, and at a much quicker pace than
PSGD. It is important to note that the slow convergence
of PSGD is because the problem (tensor factorization)
is not convex, and thus Zinkevich et al. do not claim
that their method works on such problems. However,
we use PSGD as a comparison because it is not possible
to track the RMSE with GigaTensor and thus PSGD is
the closest competitor.

7 Conclusion

In this work we have introduced FlexiFaCT, a highly
flexible, efficient, and scalable factorization tool. Our
main contributions are

1. Versatility: FlexiFaCT, can operate under nu-
merous factorization scenarios, including matrix,
tensor, and coupled factorization as well as with
non-negativity and sparsity constraints.

2. Scalability: FlexiFaCT scales very well with
the input size, as well as with the number of
parameters.

3. Proof of convergence: We provide theoretical
guarantees for the convergence of FlexiFaCT,
even in the presence of constraints.

4. Reproducibility and Usability: Our implemen-
tation works on stock Hadoop; furthermore, we
ensure the reproducibility and outreach of Flex-
iFaCT by making our implementation publicly
available.

Acknowledgements
Research was funded by grants NSF IIS-1247489, NSF IIS/HCC
Grant #1302522, NSF Graduate Research Fellowship (Grant No.
DGE-1252522), Defense Threat Reduction Agency under contract
No. HDTRA1-10-1-0120, ARL under Cooperative Agreement Number
W911NF-09-2-0053, and DARPA FA87501320005. We also would like
to thank the CMU Parallel Data Laboratory OpenCloud for providing
infrastructure for experiments; this research was funded, in part, by
the NSF under award CCF-1019104, and the Gordon and Betty Moore
Foundation, in the eScience project. Last, we would like to thank the
Open Cloud Consortium (OCC) and the Open Science Data Cloud
(OSDC) for the use of resources on the OCC-Y Hadoop cluster,
which was donated to the OCC by Yahoo! Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the
funding parties. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes not withstanding any
copyright notation here on.

References

[1] Apache Hadoop. http://hadoop.apache.org/, 2012.
[2] The matlab cmtf toolbox. http://www.models.life.

ku.dk/joda/CMTF_Toolbox, 2013.
[3] E. Acar, T. G. Kolda, and D. M. Dunlavy. All-

at-once Optimization for Coupled Matrix and Tensor
Factorizations. ArXiv e-prints, May 2011.

[4] Evrim Acar, Daniel M. Dunlavy, Tamara G. Kolda,

and Morten Mørup. Scalable tensor factorizations with
missing data. In SDM, pages 701–712, 2010.

[5] S. Asmussen. Applied Probability and Queues. Wiley,
1987.

[6] B.W. Bader and T.G. Kolda. Matlab tensor toolbox
version 2.2. Albuquerque, NM, USA: Sandia National
Laboratories, 2007.

[7] Léon Bottou. Stochastic learning. In Olivier Bousquet
and Ulrike von Luxburg, editors, Advanced Lectures
on Machine Learning, Lecture Notes in Artificial In-
telligence, LNAI 3176, pages 146–168. Springer Verlag,
Berlin, 2004.

[8] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
Simplified data processing on large clusters. OSDI,
December 2004.

[9] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and
Yannis Sismanis. Large-scale matrix factorization
with distributed stochastic gradient descent. In ACM
SIGKDD, pages 69–77, New York, NY, USA, 2011.
ACM.

[10] R.A. Harshman. Foundations of the parafac proce-
dure: Models and conditions for an” explanatory” mul-
timodal factor analysis. 1970.

[11] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos.
Gigatensor: scaling tensor analysis up by 100 times-
algorithms and discoveries. In ACM SIGKDD, pages
316–324. ACM, 2012.

[12] T.G. Kolda and B.W. Bader. Tensor decompositions
and applications. SIAM review, 51(3), 2009.

[13] H. Kushner and G. Yin. Stochastic Approximation
and Recursive Algorithms and Applications. Springer,
2003.

[14] Daniel D Lee and H Sebastian Seung. Learning the
parts of objects by non-negative matrix factorization.
Nature, 401(6755):788–791, 1999.

[15] E.E. Papalexakis, N.D. Sidiropoulos, and R. Bro.
From k- means to higher-way co-clustering: Multilinear
decomposition with sparse latent factors. IEEE TSP,
61(2):493–506, 2013.

[16] Benjamin Recht and Christopher Ré. Parallel Stochas-
tic Gradient Algorithms for Large-Scale Matrix Com-
pletion. submitted, 2011.

[17] Ajit P. Singh and Geoffrey J. Gordon. Relational
learning via collective matrix factorization. In ACM
SIGKDD, pages 650–658, New York, NY, USA, 2008.
ACM.

[18] Jimeng Sun, Dacheng Tao, and Christos Faloutsos.
Beyond streams and graphs: dynamic tensor analysis.
In ACM SIGKDD, pages 374–383. ACM, 2006.

[19] C. Teflioudi, F. Makari, and R. Gemulla. Distributed
matrix completion. In ICDM, 2012.

[20] D. Zachariah, M. Sundin, M. Jansson, and S. Chat-
terjee. Alternating Least-Squares for Low-Rank Ma-
trix Reconstruction. IEEE Signal Processing Letters,
19:231–234, April 2012.

[21] Martin Zinkevich, Markus Weimer, Lihong Li, and
Alex J Smola. Parallelized stochastic gradient descent.
In NIPS, pages 2595–2603, 2010.

http://hadoop.apache.org/
http://www.models.life.ku.dk/joda/CMTF_Toolbox
http://www.models.life.ku.dk/joda/CMTF_Toolbox

	Introduction
	Related Work and Background
	FlexiFaCT Approach
	Optimization Objectives
	SGD Updates
	Blocking for Parallelization

	Proof of convergence with projections
	MapReduce Implementation of FlexiFaCT
	Experiments
	Performance Evaluation
	Scalability
	Correctness & Monotone Convergence

	Conclusion

