
Unsupervised Phenotype Scoring

Abstract

Unsupervised phenotyping is about clustering patients into homogeneous groups
(“phenotypes”) based on observed clinical features. An open challenge is to provide
a principled way to define those patient phenotypes in a simple and clinically mean-
ingful manner. In this work, we tackle this challenge by proposing a nonnegative
matrix factorization approach extracting phenotypes as a set of integer-weighted
features, where the weights are constrained to take values from a small integer set.
We employ a block alternating update scheme to solve the problem and formulate
the problem of extracting the phenotype weights as an integer programming one.
As compared to a commonly used scale-and-round heuristic, our approach achieves
consistently higher fit in 2 real electronic health record (EHR) datasets. Our
proposed interpretation as well as representative scoring-based phenotypes were
validated by a medical expert.

1 Problem Motivation

Phenotyping refers to the process of identifying sets of measurable disease markers, enabling to
perform cohort identification, i.e., separate between cases and control patients for several diseases
or disease sub-types of interest [32, 27]. Unsupervised phenotyping is the process of discovering
the underlying patient groups or phenotypes directly based on their EHR data. Matrix and ten-
sor factorization has been a very successful machinery for unsupervised EHR-based phenotyping
(e.g., [11, 12, 31, 25, 15, 26, 10]). Consider for example the problem setup of Nonnegative Matrix
Factorization (NMF) [21] when minimizing the squared Frobenius norm of the error:

min
U≥0,V≥0

||X−UVT ||2F (1)

In the context of unsupervised phenotyping, X ∈ RM×N is a non-negative input matrix, whose
X(i, j) cell reflects the activity recorded (e.g., event counts) for the i-th (out ofM ) patient with respect
to the j-th (out of N ) medical features. Given an input number R of desired phenotypes, the matrix
U ∈ RM×R corresponds to a membership matrix of the patients with respect to the R phenotypes.
Finally, the matrix V ∈ RN×R provides the phenotypes’ definition: the non-zero elements of the r-th
column V(:, r) reveal the relevant medical features to the r-th phenotype. However, one challenge is
to clinically interpret those phenotypes as the values in V can be large and hard to interpret. This
paper tackles this challenge of improving the interpretability of factorization-based unsupervised
phenotyping approaches.

There do exist several domains where an application of Problem 1 is largely focusing on achieving a
low approximation error; for example, in recommender systems, good prediction power is usually the
top priority [18]. On the contrary, in the context of Unsupervised phenotyping, model intepretability
is equally (or even more) crucial. More specifically, it is imperative to provide the medical expert
with a straightforward protocol of translating the phenotypes’ definition factor V. We argue that this
task is quite challenging if V contains (nonnegative) real values, to the point that those values are
hidden altogether by the expert and only the feature ranking produced is preserved (e.g., as happens
in [12, 31]). A primary reason for the above is that medical experts are used to deal with simple and
concise scoring-based descriptions of clinical status (e.g., risk scores 1) [30]. The main intuition
behind the development of such scores is simple: the range of the possible values revealing the
contribution of each clinical aspect is restricted to a small integer set of consecutive values (e.g.,
{0, 1, 2, 3}). A value of zero indicates no contribution of the feature and higher scores indicate
distinct levels of severity or importance.

1In MDCalc, one can find a vast amount of such scores used in medicine.
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2 Proposed Approach

Methodology The problem under consideration can be formally defined as follows:

min
U≥0,V∈Zτ

||X−UVT ||2F (2)

where Zτ = {0, 1, . . . , τ} and τ is a positive integer. We employ a block alternating update scheme
to tackle the above non-convex optimization problem. This is based on a variable partitioning into
several disjoint subgroups and iteratively minimizing the objective function w.r.t. one subgroup at a
time. 2 There are several ways of choosing this partitioning that lead to different NMF algorithms [16].
We choose to employ one that has shown to provide state-of-the-art performance [6] and at the same
time, can lead to an optimal update of the discrete factor’s columns (V(:, j), 1 ≤ j ≤ R) in an
efficient manner.

The framework employed is known as the Hierarchical Alternating Least Squares (HALS) [4, 8]
(aka rank-one residue iteration [13]). The main idea behind this framework is the partitioning of
the unknown matrices into 2R blocks, corresponding to the columns of matrices U and V. We first
review how NMF-HALS decomposes Problem (2) when solving for each k-th nonnegative column
of U (and V is fixed):

min
U(:,k)≥0

||X−
R∑
r=1

U(:, r)V(:, r)T ||2F = min
U(:,k)≥0

||X−
R∑

r=1,r 6=k

U(:, r)V(:, r)T

︸ ︷︷ ︸
Rk

−U(:, k)V(:, k)T ||2F

where Rk corresponds to the “residual matrix” and is fixed for the k-th iteration. It is easy to
show [16] that an optimal solution to the above problem is given by:

U(:, k) =
max(0,RkV(:, k))

||V(:, k)||22
(3)

In symmetry, we solve the following problem to find the optimal V(:, k):

min
V(:,k)∈Zτ

||Rk −U(:, k)V(:, k)T ||2F (4)

Note that due to the discrete nature of the domain of V, a brute-force solution would have to evaluate
(τ + 1)N feasible vectors, which would result in a prohibitively expensive algorithm. A useful
remark we exploit is that Problem (4) can be equivalently formulated as a sum of minimizers of N
independent sub-problems, corresponding to theN coordinates of V(:, k) and the associated columns
of Rk [16]:

N∑
j=1

min
V(j,k)∈Zτ

||Rk(:, j)−V(j, k)U(:, k)||22

=

N∑
j=1

min
V(j,k)∈Zτ

(
||Rk(:, j)||22 − 2V(j, k)U(:, k)TRk(:, j) +V(j, k)2||U(:, k)||22

)
The term ||Rk(:, j)||22 is fixed, thus minimizing the above for each V(j, k) is equivalent to:

min
V(j,k)∈Zτ

(
−2V(j, k)U(:, k)TRk(:, j) +V(j, k)2||U(:, k)||22

)
(5)

It is clear that for V(j, k) = 0, the value of the above objective is equal to zero. Thus, Problem (4)
can be optimally solved by plugging in the values V(j, k) = {1, 2, . . . , τ} for each j-th coordinate
of V(:, k) and choose the solution dictated by Problem (5). Note that the size of the search space of
feasible solutions is asymptotically linear to the column size we are solving for (τN = O(N)) and
those evaluations are fully-parallelizable w.r.t. each of theN coordinates since they are associated with
independent sub-problems. Algorithm 1 lists a pseudocode for the proposed approach. Note that in
practice one should not explicitly compute the residual matrix Rk; its size isM×N and it is expected
to be a dense matrix, even if the input X is sparse. Instead, it is more efficient to compute the necessary
products involving Rk as [7, 16]: RkV(:, k) = XV(:, k) −

∑R
r 6=kU(:, r)

(
V(:, r)TV(:, k)

)
and

U(:, k)TRk = U(:, k)TX−
∑R
r 6=k

(
U(:, k)TU(:, r)

)
V(:, r)T .

2Similar to Block Coordinate Descent (BCD) [3], but the domain is not a closed convex set, due to the integer
constraint.
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Algorithm 1 Unsupervised Phenotype Scoring

Require: X ∈ RM×N , target rank R and upper bound τ
Ensure: U ∈ RM×R,V ∈ ZN×Rτ

1: Initialize U,V
2: while convergence criterion is not met do
3: for k = 1, . . . , R do
4: Update U(:, k) via Equation (3)
5: end for
6: for k = 1, . . . , R do
7: for j = 1, . . . , N do
8: Update V (j, k) by solving (5) // independent sub-problems in parallel ∀j = 1, . . . , N
9: end for

10: end for
11: end while

Given the fact that each one of the sub-problems of Algorithm 1 is optimally solved, it is guaranteed
that the objective function (2) will be non-increasing for successive iterates [3].

Interpretation of discrete phenotypes Extensive prior art [28, 14, 2, 9, 34] reports the existence
of bias in the recording of EHRs towards more severe patient conditions. In short, patients are not
measured evenly, but are measured according to a clinician’s judgment, usually more frequently when
the patient is sicker [14]. Thus, higher input prevalence of records (e.g., higher occurrence counts)
can be interpreted as increased severity of the corresponding condition for the associated patient. The
above translates to interpreting the discrete values within each phenotype factor V(:, j) as distinct
levels of severity of each medical feature w.r.t. the j-th phenotype, where a value of 0 indicates
absence and a value of τ indicates the highest possible severity.

3 Experiments

Data and Task Description We used the diagnostic, medication and procedure information from
2 real clinical datasets for our experiments: a) MIMIC3 is a publicly available dataset3 which
contains data from patients admitted to critical care units, and b) a pediatric dataset from a private
source 4 In both datasets, the diagnostic and procedure codes available were transformed to Clinical
Classifications Software (CCS) categories [1], a standard step to improve interpretability. Regarding
the MIMIC dataset, we also transformed the medications available to USP categories 5. We considered
that a cell X(i, j) is a count of the times that the j-th medical feature (diagnosis, medication or
procedure) has occurred during the history of the i-th patient. The resulting data sizes are: a) MIMIC:
M = 46517, N = 1063 and the number of non-zeros is nnz(X) = 1429492; b) Private dataset:
M = 1045, N = 862, nnz(X) = 91222.

Implementation details We used MatlabR2015b for our implementations. We set τ = 3, so that
based on our interpretation protocol defined in Section 2, we can interpret the possible non-zero
values of the discrete factor as low (1), medium (2) and high (3) severity accordingly. We performed
a fixed number (5) of inner iterations, thus lines 3-5 and 6-10 of Algorithm 1 are executed for 5
times each. The convergence criterion of the outer iteration is whether successive differences of
the objective in Problem 2 drop below 1e − 6. We set the same number of inner iterations and
convergence criteria for the baselines as well, so that the methods are comparable.

Methods under comparison 1) Nonnegative matrix factorization with the HALS approach [4, 8]; 2)
Scaled-and-rounded version of NMF: Similar to [30], we use a heuristic where the solution of NMF
is post-processed so that Ṽ ∈ Zτ . Let γ(j) = τ

max(V(:,j)) . Then, Ṽ(:, j) = round (γ(j)V(:, j)),
where round() rounds to the nearest integer. Then, the scaling introduced by γ is absorbed into
the nonnegative factor U so that we would have an equivalent model if rounding was not present:
Ũ(:, j) = 1

γ(j)U(:, j); 3) Our approach introduced in Section 2, where the result of the scaled-and-
rounded NMF heuristic is used as initialization; 4) Our approach introduced in Section 2, where we
randomly initialize the input factors.

3https://mimic.physionet.org
4We do not reveal the source of our data, in order to preserve the submission’s anonymity.
5https://www.nlm.nih.gov/research/umls/rxnorm/docs/rxnormfiles.html
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Figure 1: Fit measured as a function of the target rank in the range {2, . . . , 20}.

Table 1: Contents of two representative phenotypes as produced by our approach (τ = 3) for our private dataset.

Leukemia Phenotype Chronic Kidney Disease Phenotype

Medical Feature Severity Medical Feature Severity

DIAG_Leukemias 3 DIAG_Chronic kidney disease 3
DIAG_Maintenance chemotherapy; radiotherapy 2 PROC_Microscopic examination (bacterial smear; culture; toxicology) 2

MED_Heparin and related preparations 2 DIAG_Immunity disorders 1
PROC_Cancer chemotherapy 2 DIAG_Hypertension with complications and secondary hypertension 1
DIAG_Immunity disorders 1 DIAG_Other liver diseases 1

MED_Antiemetic/antivertigo agents 1 DIAG_Other diseases of kidney and ureters 1
MED_Analgesics narcotic anesthetic adjunct agents 1 MED_Immunosuppressives 1

MED_Topical local anesthetics 1 PROC_Other laboratory 1
MED_Antineoplastic - antimetabolites 1
MED_General anesthetics injectable 1

MED_Sodium/saline preparations 1

Results We define the fit as 1− ||X−UVT ||F /||X||F , which can be considered as the proportion
of the input explained by the model. For each target rank, we run each method 5 times and choose the
solution with the best fit. As shown in Figure 1, our approach using the scaled-and-rounded heuristic
as initialization consistently outperforms the baseline heuristic. The average gain for all the target
ranks is 1.5% for the MIMIC3 dataset and 2.6% for the private one. The maximum gain is 2.2% for
the MIMIC3 and 3.7% for the private dataset. The heuristic is also outperformed by our approach
with random initialization in the vast majority of cases considered. The fact that NMF achieves
the highest fit is expected and reasonable since both of its output factors are permitted to take real
numbers, thus provide more flexibility to produce an accurate solution. In Table 1, we provide the
highest-severity entries of a representative phenotype of our results. Our clinical expert confirmed
the simplicity and usefulness of our discrete phenotyping scheme. Due to lack of space, we plan to
provide extensive qualitative results in an extended version of this work.

4 Related Work

Computational Phenotyping There is extensive prior art in unsupervised EHR-based phenotyping
using factorization models (e.g., [11, 12, 31, 25, 15, 26, 10]). However, no work has considered
extracting scoring-based phenotypes to facilitate their interpretation by domain experts.

Discrete factorization-based approaches The line of work defined in [22, 5] considers the problem
of approximating discrete data by fully-discrete factors. Instead, our approach permits the input
matrix to contain real numbers and restricts one of the two factors (i.e., the phenotypes’ definition)
to be discrete. In [24, 17], the authors consider compressing real matrices into factors (scaled by
real numbers) restricted to take values from the set {−1, 0, 1}. A direct application of this approach
would introduce negative values into the phenotypes, which would hurt their interpretability. Finally,
there is another body of literature studying the problem of factorizing binary or real data into binary
factors (e.g., [19, 20, 33, 29, 23]).

5 Conclusions

A useful conclusion from this work would be that factorization models could benefit from a mathemati-
cally principled approach of incorporating discrete constraints, rather than solely using rounding-based
heuristics.
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