
NetSpot: Spotting Significant Anomalous Regions on Dynamic Networks

Misael Mongiov̀ı∗ Petko Bogdanov∗ Razvan Ranca∗ Evangelos E. Papalexakis†

Christos Faloutsos† Ambuj K. Singh∗

Abstract
How to spot and summarize anomalies in dynamic networks
such as road networks, communication networks and social
networks? An anomalous event, such as a traffic accident, a
denial of service attack or a chemical spill, can affect several
near-by edges and make them behave abnormally, over
several consecutive time-ticks. We focus on spotting and
summarizing such significant anomalous regions, spanning
space (i.e. nearby edges), as well as time.

Our first contribution is the problem formulation,
namely finding all such Significant Anomalous Regions
(SAR). The next contribution is the design of novel algo-
rithms: an expensive, exhaustive algorithm, as well as an
efficient approximation, called NetSpot. Compared to the
exhaustive algorithm, NetSpot is up to one order of mag-
nitude faster in real data, while achieving less than 4% aver-
age relative error rate. In synthetic datasets, it is more than
30 times faster and solves large problem instances that are
otherwise infeasible. The final contribution is the validation
on real data: we demonstrate the utility of NetSpot for
inferring accidents on road networks and detecting patterns
of anomalous access to subnetworks of Wikipedia. We also
study NetSpot’s scalability in large social, transportation
and synthetic evolving networks, spanning in total up to 50
million edges.

1 Introduction

Given a road network with segments associated with
their traffic at every time-tick, how can we identify
the main unexpected congestions to report, say, to
the highway patrol authorities? Given the Wikipedia
pages/links network, annotated with the rate of page
accesses, how can we spot subnetworks and time inter-
vals with an unexpectedly high number of requests? We
want to report the areas (i.e. set of adjacent, connected
segments or links) as well as the time-intervals, that best
summarize the extent of “anomaly” in our input.

Consider road networks (Fig. 1). A dynamic road
network has a fixed graph structure with edges corre-
sponding to road segments and nodes corresponding
to road intersections. Edges are associated with val-
ues that model their state (average speed) over time.
The network can be viewed as a sequence of isomor-
phic graphs (slices) for discrete time stamps (Fig. 1(a)).
Within the above setting, anomalies due to unexpected
events (e.g. traffic accidents, music festivals, road work)
manifest as a localized abnormal behavior in both time
and network structure (Fig. 1(b)). For example, an ac-

∗Dept. of Computer Science. UC Santa Barbara
†Dept. of Computer Science. Carnegie Mellon University

Figure 1: (a) A time-evolving road network. (b) Tem-
poral anomalous regions with time and network extent.
The combinatorial nature of subgraph anomalies ren-
ders employing exhaustive techniques inefficient even in
small networks, while our approach NetSpot achieves
high quality fast (c).

(a) Iran Elections (b) Afghanistan

Figure 2: Anomalous patterns of increased Wikipedia
page views at the time of 2009 presidential elections in
Iran 2(a), and clashes of Taliban militants and police in
Afghanistan in late 2009 2(b).

cident on a highway may induce lower average speeds
along the same highway as well as intersecting roads,
and this effect can persist through several time slices un-
til the cause of abnormal behavior is removed. Within
this scenario we set out to answer the following ques-
tion: how can we compute a comprehensive summary of
all unusual traffic congestions and their time of occur-
rence, and report it to the police or to urban planners,
by mining the full history of a large road network?

In Wikipedia, an instance of a dynamic information
network, we set out to detect abnormal levels of access
to a subnetwork, hinting at external events which trigger
significantly elevated information need. Figure 2 shows
two of the anomalous network regions (patterns) which
we identify in the daily views of interlinked Wikipedia

pages. The first pattern (Fig. 2(a)) corresponds to the
page of Iran and related pages about its history and
language. The temporal span of this pattern is shortly
after the controversial presidential elections of 2009,
when the government cracked down on protesters using
force. A possible explanation for this anomaly is that
once the news from Iran are reflected in major media,
more than expected Internet users access Wikipedia’s
subnetwork related to Iran in search of more information
on the issue and its background. We identify another
pattern in late 2009 (Fig. 2(b)) shortly after the start
of the second term of president Karzai in Afghanistan,
and coinciding with reports of “23 Taliban militants”
being killed by foreign and Afghan forces in “southern
and eastern Afghanistan” [1].

Besides traffic and information networks, anoma-
lies that extend in time and network are abundant in
other application domains. Significant increase in the
rate of communication among a group of people in a
company may correspond to a project delivery deadline.
In computer networks, an anomalous region may cor-
respond to nodes’ coordination within a virus-infected
botnet [31]. Similarly, abnormally low concentration of
chlorine within a region of a water distribution network
may indicate a contamination [19]. All these example
domains fall within the same setting of (relatively) sta-
ble topology and dynamic attributes associated with
network elements.

Most of the existing anomaly detection approaches
focus on link and node behavior anomalies. Our
goal is related, but complementary. We observe that
unusual behavior often propagates along the network
and persists in time. Such anomalies can be caused
by diffusion-like phenomena, such as accident-induced
congestions in transportation networks, contaminations
in water networks or increased information exchanged
among computer nodes within a botnet infected with
a virus. An anomaly detection algorithm will assign
‘anomaly-scores’ to each edge on a graph (road network,
in our example). This is exactly the input to our
algorithm, that will summarize and report anomalous
regions.

In the space and spatio-temporal domains, methods
based on spatio-temporal scan statistics (STSS) have
been proposed to detect anomalies [21, 22, 23, 30].
These methods aim to spot regions of the space that are
anomalous, or may correspond to outbreaks. A simple
adaptation of these methods to dynamic networks would
require searching in the combined exponential space
of possible subgraphs and quadratic space of time
intervals, which would be prohibitive on most real-
world network instances. Naive adaptations of existing
methods for dynamic networks are also inefficient on
large problem instances (see Exhaustive in Fig. 1(c)). In
our experimental analysis, one such approach required
almost four hours of evaluation on a traffic network with

6, 000 road segments evolving over one month.
Our contributions include:

• Novelty: We propose a novel problem formulation
for detecting all Significant Anomalous network
Regions (SAR) in time.

• Scalability: Our proposed algorithm NetSpot for
SAR scales linearly to large network instances and
outperforms the exhaustive counterpart by more
than 10 times.

• Quality: NetSpot produces high quality results,
often matching the results of an exhaustive (but
very slow) solution.

• Real world relevance: We run NetSpot on a large
traffic network and demonstrate its ability to spot
unreported traffic accidents. We also show the
ability of NetSpot to discover interesting events
by analyzing the access rate to Wikipedia pages.

2 Preliminaries

In this section, we provide a formal definition of anoma-
lous regions in weighted time-evolving networks. We
also introduce some problems and properties that are
relevant to our method.

Problem 1. An edge-weighted dynamic network G =
(V,E,W) (hereinafter simply dynamic network) is an
undirected connected graph where V is the set of ver-
tices, E is the set of edges, and W = {w1, w2, . . . , wT }
is a family of weight functions of the kind wt : E → R
that associate each edge e ∈ E with an anomaly score.
Each function wt corresponds to a discrete timestamp
t.1

The weights of edges quantify their time-dependent
level of anomaly. Our approach can be applied on
the output of any existing anomaly detection method
for general time series data. In this work, we use a
statistical measure based on p-value (details in Sec. 4).
A high positive weight means high anomaly level, while
a negative weight corresponds to normal behavior. Our
goal is to find contiguous regions, and hence we allow
adjacent anomalous edges (in either time or network
neighborhood) to combine and form larger regions of
higher score. We aggregate the participating edges’
weights to quantify the level of anomaly for a region.

Definition 2.1. A temporal network region (here-
inafter simply region) in a dynamic network G =
(V,E,W) is defined as a pair R = (G′, [i, j]), where
G′ = (V ′, E′) is a connected subgraph of G and [i, j]
is a sub-interval of [1, T] (i.e. 1 ≤ i ≤ j ≤ T). The
score (strength of anomaly) of a region is given by the

1A similar definition is possible for dynamic networks with
node weights. It can be shown that the two settings are equivalent
(see also [10]).

aggregated anomaly score of its edges: scoreG(R) =∑
e∈E′

∑j
t=i w

t(e)

Our goal is to construct a comprehensive set of
anomalous regions occurring in possibly different net-
work locations and time periods. A special case of this
problem is the problem of finding the single highest
score region. This is an NP-hard problem known as
Heaviest Dynamic Subgraph (HDS) [7]. Some special
cases of HDS are discussed in the Supplemental mate-
rial [33]. Here we bring attention to two special cases:
(i) the Maximum Score Subsequence (MSS), which calls
for finding the contiguous subsequence that maximizes
its score, and (ii) the Heaviest Subgraph (HS) [7], which
calls for finding the connected subgraph such that the
sum of its edge weights is the highest.

3 Problem definition

Our goal is to construct a comprehensive summary of all
significant anomalous regions within a dynamic network
for consumption by domain experts such as the police,
spam protection analysts or water distribution network
planners. To discover anomalous regions, we need to
(i) characterize the average behavior of network edges,
(ii) score edges in time according to how unusual their
behavior is with respect to the average and (iii) define
an algorithm that can compute extended regions of
anomalous edges.

3.1 Anomalous score of a single edge The orig-
inal edge weight reflects a quantity of interest in the
specific domain, for example, the average speed in road
networks, the number of transmitted packets in com-
puter networks or the number of exchanged emails in
social networks. Given an edge and its weight at a
given time, we measure the significance of observing this
weight as its statistical p-value, according to the empir-
ical distribution of weights on the edge. The p-value
is computed as the fraction of timestamps in which an
equal or higher weight is observed on the same edge.
The set of considered observations can be extended to
the whole time horizon or limited to time periods that
are expected to have similar characteristics (e.g. the
same day of the week, the same month of the year).
The lower the p-value of an observed score, the more
anomalous the observation.

We denote the p-value of an edge e at time-stamp
t with pt(e). Edges are weighted by comparing their p-
value to a significance level threshold µ (typically 0.01).
We compute the negative logarithm of the fraction of
the p-value and the significance threshold. Extracting
the logarithm allows us to sum up the weights when
computing the significance of a region. Specifically
wt(e) = − log(pt(e)/µ). In this log-odds scoring scheme,
a positive score corresponds to a p-value lower than µ
and hence highly unexpected behavior, and vice versa.

3.2 Significant Anomalous Regions (SAR)
Next, we define the problem of detecting all Signifi-
cant Anomalous Regions (SAR) in a dynamic network.
Our problem formulation considers a single-region score
threshold T . This parameter can be determined by
dataset-specific score significance analysis, as we dis-
cuss in the Supplemental material [33]. An equivalent
alternative is to fix k and report the top-k patterns.

Definition 3.1. Significant Anomalous Regions
(SAR): given a dynamic network G = (V,E,W)
and a threshold T , find an ordered set of regions
R1, R2, . . . Rk, in decreasing order by score, such that
the score of region Ri (defined as in Def. 2.1), computed
without considering the contribute of positive edges
overlapping with higher score regions, is not below T .

Our definition establishes an order of regions, spec-
ified by the index i. Higher index regions have lower
scores than their predecessors and their score does not
include contribution from edges in regions with lower in-
dex. This reduces the overlap in the resulting set. Fur-
ther details are given in the Supplemental material [33].

SAR is NP-hard since it generalizes HDS (finding
R1 is equivalent to HDS). SAR can be solved naively by
iteratively computing HDS and erasing the scores of the
newly found region. More precisely, after a region R1 is
discovered from a graph G = (V,E,W), a new graph G1

is generated from G as follows: G1 = (V,E,W1) has the
same structure as G and its edge weights are obtained
from those in G by erasing all positive edge weights
contained in region R1. More precisely, wt

1(e) = 0 if
wt(e) > 0 and e ∈ R1, and wt

1(e) = wt(e) otherwise.
The procedure is repeated iteratively. We call this
approach Exhaustive. The attractiveness of such a naive
extension is diminished by its inherent inefficiency. The
main reason is that it requires scanning the network
multiple times. Instead, we resort to a scalable and
accurate solution for SAR based on a very large-scale
neighborhood search approach.

4 Proposed Method

Our solution for SAR is based on an efficient very large-
scale neighborhood search approach for approximating
HDS in a dynamic network. Like other local search
approaches, the quality of the final solution is highly
dependent on its initial solution, because of the possi-
bility to get stuck in a local maximum. However, our
approach considers a large set of neighboring solutions
at each step, and hence it is more likely to overcome
local maxima compared to standard local search ap-
proaches [3]. Moreover, instead of starting the search
from a random point, we propose an effective heuris-
tic for generating initial solutions (seeds) which tend to
converge to global optima.

The core of our algorithm is the procedure NetA-
moeba (Alg. 4.1) which approximates HDS. It alter-

nates between optimizing in the graph space and opti-
mizing in the time domain via the following two steps:

1. compute max score subsequence, which considers
a fixed subgraph and optimizes the time interval
that produces the highest score.

2. compute heaviest subgraph, which considers a
fixed time interval and finds the best subgraph in
this interval by using the TopDown heuristic (see
Sect. 2) for HS.

Algorithm 4.1. NetAmoeba: starting from a seed,
find a near optimal single region
Require: Dynamic network G = (V,E,W)
Require: Seed (Gseed, [t, t])
Output: Temporal network region R = (G′, [i, j])
Rprev ← (Gseed, [t, t])
[i, j]← compute max score subsequence(Gseed)
G′ ← compute heaviest subgraph([i, j])
while s(Rprev) ≤ s((G′, [i, j])) do
Rprev ← (G′, [i, j])
[i, j]← compute max score subsequence(G′)
G′ ← compute heaviest subgraph([i, j])

end while
return Rprev

Our overall algorithm (Alg. 4.2) takes as input
a score threshold T and a parameter h (number of
failures before stopping, typically 10), and returns a
set of anomalous regions whose score exceeds T . The
algorithm executes NetAmoeba (Alg. 4.1) iteratively
and uses a seed generation procedure to initialize the
search. Next, it erases from the network the positive
weights of edges that are within the newly found region.
The algorithm stops when the last h discovered regions
have score lower than T . The idea is that if a region
with score higher than T is not found after h consecutive
times, then it is unlikely that such a region can be found
later on. Higher values of h produce better quality,
while lower values exhibit higher efficiency.

Algorithm 4.2. NetSpot: iteratively find all re-
gions with anomaly score above a given threshold
T .
Require: Dynamic network G0 = (V,E,W)
Require: Score threshold T
Require: Stopping condition h (# failures, normally 10)
Output: Set of regions R = {R1, R2, . . . Rk}
R = φ
i← 0
repeat
S ← generate seed(Gi)
Ri ← NetAmoeba(Gi, S)
R = R∪ {Ri} if scoreGi(Ri) ≥ T
Gi+1 ← erase(Gi, Ri)
i← i+ 1

until scoreGi(Ri) ≤ T for h consecutive times
return R

The parameter h in Alg. 4.2 is needed as the score
of consecutively found regions is not guaranteed to
decrease monotonically (as for Exhaustive). If, however,
the scores of found patterns is close to monotonic (i.e.
high score patterns are found first) the accuracy of
NetSpot will be significantly higher. In order to
maintain the order close to monotonic, we develop an
effective seed generation strategy.

4.1 Seed generation Although there are a num-
ber of candidate seed generation strategies (random,
maximum edge, matrix factorization), none of them
lead to high quality results (see Supplemental mate-
rial [33] and Sect. 5). Instead we resort to a novel
approach, namely Heaviest Subgraph, Maximum
Subsequence (HSMS), which captures locality both
in time and in the graph. At each step, HSMS selects the
edge/timestamp e/t that maximizes the product of the
heaviest subgraph score that contains e in slice t and
the maximum subsequence score that contains times-
tamp t in the sequence of weights of edge e. The seed is
then generated by considering the approximated heavi-
est subgraph that contains edge e in slice t. Compared
to the previous strategies, HSMS is more likely to dis-
cover a seed contained in a large anomalous region as it
analyzes both time and network dimensions. As we will
see in the experimental section, the HSMS strategy is
robust in selecting a good seed and hence improves the
overall performance of NetSpot by reducing the num-
ber of steps. However, it introduces a computational
challenge as it requires computing (i) the heaviest sub-
graph and (ii) the maximum subsequence for every edge
in time. If approached naively, this method introduces
significant performance overhead and possibly worsen
the overall running time. In what follows, we present a
novel linear time algorithm for computing HSMS.

HSMS requires solving the following two subprob-
lems:

• All rooted HS : for every edge e of a graph, find the
Heaviest Subgraph that contains e. We refer to e
as the root edge.

• All rooted MSS : given a sequence of real values, for
every element t, find the Maximum Score Subse-
quence that contains t.

All rooted MSS is a special case of All rooted HS,
where the graph is a simple path. Therefore we will
discuss only All rooted HS. The results can be update
incrementally, as discussed in the Supplemental mate-
rial [33], thus avoiding re-running the whole process at
every iteraction.

4.2 All rooted HS Given an edge e, the rooted
Heaviest Subgraph calls for finding the heaviest sub-
graph that contains e. This variant of HS can be ap-
proximated in linear time by the same algorithm for HS

discussed in [7]. Unfortunately, this approach is inef-
ficient since Rooted HS needs to be computed for ev-
ery edge in the graph, and hence the overall complexity
would be quadratic.

We propose a novel algorithm for computing All
rooted HS for every edge in a tree in linear time.
We extend it on graphs by computing the maximum
spanning tree and computing All rooted HS on the
resulting tree. To reduce the error, the weight of positive
edges that do not belong to the spanning tree is added to
adjacent positive edges that belong to the spanning tree
(we can show that this is always a feasible operation).
Given a tree G and an edge (u, v) ∈ G, we introduce
the following quantities:

• bidirectional score s↔(u, v): the score of the HS
rooted on edge (u, v);

• directional right score s→(u, v): the score of the HS
rooted on node v after removing all edges incident
to v except (u, v);

• directional left score s←(u, v): the score of the HS
rooted on node u after removing all edges incident
to u except (u, v).

Informally, s→(u, v) is the part of score that can
be propagated from edge (u, v) to node v. If s→(u, v) is
negative, edge (u, v) does not participate in the solution
rooted in v. Note that s→(u, v) = s←(v, u). We denote
the weight of (u, v) as w(u, v).

The relationship among the above scores is stated
by the following lemma (proof skipped for brevity):

Lemma 4.1. Given a tree G = (V,E,W), the following
relation holds:

s↔(u, v) = s→(u, v) + s→(v, u)− w(u, v)(4.1)

The following lemma (proof skipped for brevity)
gives a recurrence for s→(u, v) that allows us to compute
this quantity for every edges in a tree. Combined with
Lemma 4.1, it suggests a linear time algorithm for All
rooted HS.

Lemma 4.2. Let G be a tree and (v, u) be an edge in
G. The following relation holds:

s→(u, v) =
∑

x∈N(u)\{v}

max(0, s→(x, u)) + w(u, v)(4.2)

The complete algorithm proceeds as follows: first
the maximum spanning tree is computed and a root
is picked arbitrarily. In order to preserve the score,
the weight of positive edges that do not belong to
the spanning tree is assigned to one of the adjacent
positive edges. Next, the algorithm computes the
quantities above by performing aggregations in bottom-
up and then top-down direction on the tree. During

Figure 3: An example of computing All rooted HS
on a tree. The score of the HS rooted at each edge
is reported as the bidirectional score. The quantity
s↔(u, v) is computed as a function of the directional
scores by Eq. 4.1. The directional scores are propa-
gated from the leaves to the root and then vice-versa.
For example, if d is chosen as a root, s→(c, d) =
max(0, s→(a, c))+max(0, s→(b, c))+w(c, d) = 0+2−1 =
1. Scores are computed in the following order: s←(c, a),
s←(c, b), s←(d, c), s←(e, g), s←(e, h), s←(d, e), s←(d, f),
s→(d, c), s→(c, a), s→(c, b), s→(d, e), s→(e, g), s→(e, h),
s→(d, f)

the bottom-up aggregation, scores s← are propagated
from the leaves to the root by using Eq. 4.2. Next, the
opposite directional scores s→ are propagated from the
root to the leaves and the final score s↔ is computed by
using Eq. 4.1. An example is given in Fig. 3. One can
show that this procedure computes the scores correctly
on trees, and explores each edge exactly twice. Its
running time is linear in the number of edges.

Theorem 4.1. Given a tree G, the described algorithm
computes the exact scores of the HSs rooted in every
edge (bidirectional scores) with time complexity O(|E|).

5 Experiments

5.1 Implementation We implement all discussed
algorithms and perform the evaluation on a Linux server
with processor Intel Xeon 2.0 GHz 4MB cache (only one
processor used) and 98 GB RAM. To assess accuracy
and scalability, we compare our method NetSpot
described in Sect. 4 with the Exhaustive approach
described in Sect. 3.2.

Our two variations of Exhaustive use the MEDEN
filter-and-verify framework [7] for reducing HDS to mul-
tiple application of HS. The first version uses the Top-
Down heuristic (defined in [7], see Supplemental mate-
rial [33]) for solving HS, while the second version uses
ILP, and hence achieves the optimal. We also imple-
ment our very large-scale neighborhood search approach
(Sect. 4) with two alternative seed generation strate-
gies, namely VLNS-Rand (pick an edge at random) and
VLNS-Max (pick the edge with maximum weight). Fur-
ther details on these alternative strategies are given in
the Supplemental material [33]. Our NetSpot imple-
mentation uses the very large-scale neighborhood search

Table 1: Sizes of the experimental networks

Dataset Nodes Edges Slices Slice
length

Traffic
small

100 128 8640 5 min

Traffic 1923 6208 8640 5 min

Wikipedia 5000 1944 731 1 day

Enron 1598 6244 925 1 day

Synthetic 500 1000 8000

approach (Sect. 4) and the Heaviest Subgraph Max-
imum Subsequence (HSMS) seed generation strategy
(Sect. 4.1). Unless differently specified, the parameter
h (number of failures) used in the following experiments
is 10.

5.2 Datasets We evaluate NetSpot on three real-
world dynamic networks: (i) a small and large highway
transportation networks from Los Angeles, California
evolving during the month of April 20112, (ii) the Enron
email dataset3 and (iii) a sample of Wikipedia. We
also use synthetic networks to evaluate both scalability
and accuracy of our method. Table 1 lists the sizes of
all datasets used for evaluation. Note that considering
all slices, the largest network (Traffic) contains in total
53 million of edges. Further details on the employed
datasets are given in the Supplemental material [33].

5.3 Results Our experimental analysis aims to an-
swer the following questions:

• Scalability: How fast is NetSpot compared to
Exhaustive? how does it perform when the data
size increases?
• Quality: What is the accuracy of NetSpot with

respect to the slow Exhaustive approach?
• Real world relevance: Is NetSpot able to spot in-

teresting regions? Is it able to infer unreported
accidents in road networks better than naive ap-
proaches? Can it discover interesting events by an-
alyzing accesses to Wikipedia?

Scalability. Table 2 reports the running time
of NetSpot in comparison with Exhaustive, VLNS-
Max and VLNS-Rand on various datasets. NetSpot
outperforms Exhaustive by more than one order of
magnitude in all datasets except Wikipedia. Since the
number of slices of Wikipedia is small, this dataset is
“easy” to analyze for Exhaustive, therefore the gain of
our method is less pronounced. VLNS-Max and VLNS-
Rand are faster than NetSpot since they spend little
effort in seed generation. However they perform poorly,
as we discuss below (Fig. 5).

2http://pems.dot.ca.gov/
3http://www.cs.cmu.edu/~enron/

Table 2: NetSpot is more than one order of magnitude
faster than Exhaustive on long datasets. Running times
in seconds.

Dataset NetSpot Exhaustive VLNS-
Max

VLNS-
Rand

Traffic
small

14.6 196.1 7.9 0.2

Traffic 706.5 11271.4 443.8 11.8

Enron 122.8 1778.1 179.0 5.9

Wikipedia 386.0 931.0 134.0 10.7

0 2000 4000 6000 8000 10000
No. of slices

0

200

400

600

800

1000

S
e
co

n
d
s

NetSpot

Exhaustive

(a) Scalab. in #slices (b) Scalab. in #nodes

Figure 4: NetSpot scales linearly in the number of (a)
time slices and (b) edges. In contrast Exhaustive was
not able to complete in 10 hours on size 3,000 slices.
The parameter h of NetSpot is set to 10.

Next, we assess the scalability of our approach in
both size of the underlying graph and length of the time
interval on synthetic datasets. For scalability in time
length, we increase the number of slices from 1, 000 to
10, 000, while keeping the size of the graph fixed to 500
nodes, and report the running time. Fig. 4(a) shows a
comparison of the running time of NetSpot and Ex-
haustive. Our algorithm’s running time increases lin-
early with the size of the problem instance in time, while
Exhaustive increases super linearly. Indeed Exhaustive
was not able to complete in 10 hours on a dataset of
3,000 slices. The reason is that Exhaustive performs an
expensive bounding at every iteration to get to the best
next pattern, while we rely on our effective HSMS seed
generation, combined with our large-scale neighborhood
search approach.

In the scalability experiments for graph size we vary
the number of nodes from 500 to 2, 000 in a synthetically
generated dataset with 1, 000 slices. Results of this
comparison are presented in Fig. 4(b). NetSpot scales
much better than Exhaustive, and performs 30 times
faster in the largest dataset.

Quality We evaluate the accuracy of NetSpot
at varying the stop condition parameter h (number of
failures) in comparison to Exhaustive, VLNS-Max and
VLNS-Rand. Results on Traffic are presented in Fig. 5
(on Enron and Wikipedia we obtain similar results, see
Suppl. material [33]). NetSpot consistently produces
high quality regions, achieving more than 96% relative

(a) Traffic small, T =10,
µ=0.002

(b) Traffic, T =30, µ=0.002

Figure 5: Quality of our algorithm, compared to
Exhaustive on Traffic. The HSMS seed generation
(NetSpot), combined with our NetAmoeba proce-
dure, produces good quality regions

quality with respect to Exhaustive on real networks.
At the same time, NetSpot is one order of magnitude
faster than Exhaustive, as we discussed above.

The other seed generation strategies are more effi-
cient (see Table 2), but they perform poorly in obtain-
ing a high score solution. For example, in the traffic
dataset, the random seed generation (VLNS–Rand) is
able to find only a few regions before it terminates. This
can be explained by the relatively small number of posi-
tive edges in this dataset, and hence the smaller chance
that a randomly chosen edge is contained in a good re-
gion. The maximal-edge seed generation (VLNS–Max)
is more consistent in the quality of obtained regions.
However, NetSpot significantly outperforms it, reach-
ing a good quality even for small values of h. For exam-
ple, although VLNS–Max converges to a quality close
to NetSpot on Traffic small, it reaches its peak qual-
ity at h = 9, while NetSpot is close to its peak score at
h = 1. This difference is an evidence of higher stability
of the NetSpot’s seed generation procedure in gener-
ating good seeds at the beginning of the evaluation.

We also performed an evaluation using an optimal
algorithm that uses an exact ILP solution for the HS
problem on Traffic small, as opposed to approximating
it using a heuristic (not reported). The optimal solution
has a similar score, but it takes twice as much time as
Exhaustive. The solution found by NetSpot on this
dataset is within 0.1% error from Exhaustive. A similar
evaluation of the bigger datasets did not terminate in
reasonable time.

Real world relevance Apart from score-based
quality of the patterns, we are also interested in the
ability of the proposed framework to infer the existence
of unexpected events. To this end, we report anomalous
patterns in Wikipedia and also measure the ability of
NetSpot to infer accidents in transportation traffic
using accident reports as ground truth.

We apply NetSpot on the Wikipedia daily num-
ber of views network and discover patterns of varying
size and shapes that all reflect real world events. Such

patterns give insight into the factual information seek-
ing process as a result of major news on a given subject.
Table 3 lists some of the top patterns in the Wikipedia
network. The pattern of highest score involves 37 ar-
ticles on airplane models, airlines and accidents involv-
ing commercial airlines. This pattern coincides with
the tragic event of an Air France flight crash. Pattern
2, 3, 5, 7, 9 are all related to football with the highest
score one coinciding with the day of the draw of groups
in the 2009 UEFA Champions league. The fourth pat-
tern involves articles on various counties in the US and
occurs a day after the US presidential elections. Pattern
6 is on the Iran elections (Fig. 2(a)), while pattern 8 is
the Afghanistan pattern from Fig. 2(b). Finally pattern
10 is related to a region in the Philippines that attracted
media attention in 2009 for pre-election violence.

Note that some of the patterns found in
Wikipedia are short-lived and have big-network-span
(1, 2, 3, 4, 6, 7, 9), while others affect smaller portion
of the network, but extend in a longer time period
(5, 8, 10). If we use anomaly detection methods based
on single edge/node analysis, we will not discover the
full range of patterns and many of the events reported in
Table 3 will be missed. Instead, NetSpot successfully
discovers patterns of different shapes and elucidates the
information foraging process of Internet users as an out-
come of major news events. In the specific example
of Wikipedia, one can use the output of NetSpot to
identify articles that are vulnerable to false-information
attacks (these are the articles that participate in the re-
ported anomalous regions). In a more general setting,
applying NetSpot on other information and social net-
works will allow for real-time detection of anomalous
subnetworks that may correspond to bursty informa-
tion spread, abnormal information demand on specific
topics and unexpected communication patterns among
users of an online social network.

Next, we compare precision and recall of NetSpot
for inferring car accidents in the Traffic Dataset. Every
reported accident falling within 4 hops and 30 minutes
before a discovered pattern is considered as detected,
while accidents falling outside of any region are consid-
ered as “false negatives”. We execute our method for
different values of the score threshold T and report a
precision-recall curve. For this experiment, up to 10, 000
regions are considered. Results are shown in Fig. 6(a)
in comparison with a naive approach that chooses the
top-k edges (with k up to 10, 000) with lowest p-value
(namely Max-edge). As forNetSpot, an accident is
considered detected if it is within 4 hops and 30 min-
utes backwards from one of the top-k edges.

On real traffic data, NetSpot achieves almost al-
ways better precision than Max-edge in correspondence
to the same level of recall, with up to 4 times increase in
precision. At very low recall, the precision of Max-edge
is higher than NetSpot (0.34 vs. 0.14). This indi-

Table 3: Top patterns discovered in the Wikipedia network, based on unexpected number of daily views

Duration Size Articles Coinciding events

1 2-3 Jun 2009 37 Boeing 777, Lufthansa, AirFrance, Aeroflot, AirIndia, ... Air France Flight 447 crashes.4

2 28 Aug 2009 42 FC Bayern Munchen, Juventus FC, 2009-10 UEFA Champions
League, PFC Levski Sofia, FC Basel, ...

One day after the draw for group stage of UEFA
Champ. League (08/27/2009)

4 5 Nov 2008 19 Race and Ethnicity in the United States Census, Blount
County Alabama, Hardin County Kentucky, ...

One day after the US Presidential Elections on
11/4/2008

10 14-16 Nov
2009

4 Autonomous Region in Muslim Mindanao, Lakas–Christian
Muslim Democrats, Lanao del Sur, Maguindanao

A Philippines region in which elections tension
leads to the Maguindanao massacre.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Recall

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

P
re
ci
si
o
n

NetSpot
Max-edge

(a) Traffic

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

NetSpot
Max-edge

(b) Synthetic

Figure 6: NetSpot outperforms significantly a single-
edge-based method in spotting accidents. A precision-
recall curve is shown for both Traffic and Synthetic.
On real data (a), since congestions can be caused by
many factors beside accidents, and only a few percent
of accidents cause congestions, the absolute precision
and recall values are limited. However NetSpot clearly
outperforms a single-edge-based approach.

cates that edges with very low p-value are good mark-
ers in detecting major events. However, as soon as the
p-value threshold increases, the precision of Max-edge
drops drastically, while NetSpot maintains a signifi-
cantly higher precision. We do not report the results
for Exhaustive, since they are very similar to the ones
reported by NetSpot.

The absolute values of precision and recall are rela-
tively low since not all accidents reported by the high-
way patrol cause significant average speed reduction,
and unexpected congestions can be caused by other
events such as big concerts, sport events and road con-
structions. However, the significant increase in perfor-
mance of NetSpot with respect to a single-edge-based
approach, demonstrates the effectiveness of NetSpot
in spotting interesting anomalous regions.

In addition, we evaluate our algorithm for its ability
in spotting anomalous regions on the synthetic dataset.
Fig. 6(b) shows the precision-recall curve for NetSpot
and Max-edge on this dataset. NetSpot performs
optimal precision at 60% recall. At higher recall,
the precisimilsion reduces slightly due to the noise.
In contrast, Max-edge is very sensitive to noise and
performs less than 40% of precision at 10% recall and
less then 10% precision at 20% recall.

6 Related Work

Most anomaly detection algorithms are complementary
to our work, in the sense that their output (list of abnor-
mal edges/nodes) can be used as input for NetSpot.
This includes algorithms to detect unusual behavior in
social, email and phone call networks [8, 12, 13], com-
puter network traffic [14, 17, 32], smart grid sensor
data [6] and water distribution networks [19]. Most
of these approaches focus on link and node behavior
anomalies [2, 5, 18, 27, 28, 9].

In the realm of static networks, Noble and Cook [24]
introduce the concept of structural anomaly detec-
tion. Within this framework, a subgraph is considered
anomalous if it is infrequent or parts of it are rarely re-
peated in the analyzed network. Jia et al. [16] introduce
a framework for mining interesting or anomalous pat-
terns and subgraphs out of noisy and distorted graphs.
Eberle et al. [11] consider a substructure as anomalous if
it deviates from a “normative” substructure, discovered
by compression, based on the MDL principle. Later,
Wang et al. [29] focus on the problem of finding the
top-k most dissimilar subgraphs of fixed-size within a
network. Besides being based on static networks, the
above methods consider the degree of “coherence” of
a subgraph structure with the rest of the network. In
contrast, our definition renders a region anomalous if its
dynamic behavior deviates from a norm.

In dynamic networks, the focus is to spot anoma-
lous nodes or edges [2, 5], or to monitor global network
parameters [15, 4]. While detecting anomalous nodes
and edges is complementary to our method, global ap-
proaches are often non sensitive enough in detecting
anomalies that involve small parts of the network. Re-
cently, Chen et al. [8] proposed a method for anoma-
lous community evolution discovery, which considers
six possible types of community-dynamics anomalies:
grown, shrunk, merged, split, born and vanished. In
contrast, we aim to find regions in which the anoma-
lous behavior persists in space (connected subnetworks)
and time. In [26], Rossi et al. introduce a fully auto-
mated, parameter-free tool for identifying, representing
and tracking the dynamics of roles within a network, as
they evolve over time. Instead, we focus our search at
the level of significant connected subnetworks.

Spatial scan statistics (SSS) and spatio-temporal
scan statistics (STSS) methods [21, 22, 23, 30] are also

conceptually related to our formulation. They aim
to spot and summarize anomalies in spatio-temporal
domains. Extensions to dynamic networks [25, 20] are
limited to detecting regions of predefined shapes such as
disks and paths. Priebe et al. [25] compute anomalous
regions by aggregating edge values in Enron, while
restricting the region shapes to “disks” (neighborhood
of order k). Although time is explicitly considered,
slices of the network are evaluated independently. Neil
et al. [20] restrict their patterns to paths and stars.
In contrast to the methods above, our focus is to
find arbitrary-shape anomalies that can possibly span
multiple time slices.

7 Conclusions

We propose a novel and intuitive formulation for the
problem of detecting all significant anomalous regions
in a time-evolving network. Our proposed algorithm is:

• Scalable: NetSpot scales linearly to large real and
synthetic network instances. It outperforms the
Exhaustive counterpart by more than 10 times on
real networks and 30 times on synthetic networks;

• Accurate: NetSpot produces high quality results,
often matching the results of an exhaustive (but
very slow) solution.

• Effective: NetSpot was able to spot unreported
traffic accidents from real highway speed data,
with precision and recall significantly higher than
a single-edge approach. It was also able to dis-
cover interesting events by monitoring the rate of
Wikipedia page views.

References

[1] Afgh. News Cntr. http: // www. afghanistannewscenter.

com/ news/ 2009/ november/ nov212009. html .
[2] J. Abello, T. Eliassi-rad, and N. Devanur, Detecting

Novel Discrepancies in Communication Networks, ICDM,
(2010).

[3] R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen,
A survey of very large-scale neighborhood search techniques,
Discr. Appl. Math., 123 (2002), pp. 75–102.

[4] L. Akoglu and C. Faloutsos, Event detection in time
series of mobile communication graphs, in Army Sc. Conf.,
2010.

[5] L. Akoglu, M. McGlohon, and C. Faloutsos, OddBall:
Spotting Anomalies in Weighted Graphs, in PAKDD, 2010.

[6] Z. Baig, On the use of pattern matching for rapid anomaly
detection in smart grid infrastructures, in SmartGrid-
Comm, oct. 2011, pp. 214 –219.

[7] P. Bogdanov, M. Mongiovi, and A. K. Singh, Mining
heavy subgraphs in time-evolving networks, in ICDM, 2011.

[8] Y. Chen, S. Nyemba, W. Zhang, and B. Malin, Leverag-
ing social networks to detect anomalous insider actions in
collaborative environments, in ISI, 2011.

[9] M. Davis, W. Liu, P. Miller, and G. Redpath, Detecting
anomalies in graphs with numeric labels, in CIKM, 2011.

[10] M. T. Dittrich, G. W. Klau, A. Rosenwald, T. Dan-
dekar, and T. Mller, Identifying functional modules in
protein-protein interaction networks: an integrated exact
approach, J. of Bioinformatics, (2008).

[11] W. Eberle and L. Holder, Discovering structural anoma-
lies in graph-based data, in ICDMW, 2007.

[12] W. Eberle and L. Holder, Graph-based approaches to
insider threat detection, in CSIIRW, 2009.

[13] W. Eberle, L. Holder, and D. Cook, Identifying threats
using graph-based anomaly detection, in Mach. Learn. in
Cyber Trust, 2009.

[14] W. He, G. Hu, and Y. Zhou, Large-scale IP network behav-
ior anomaly detection and identification using substructure-
based approach and multivariate time series mining, Tele-
com. Syst., (2012).

[15] K. Henderson, T. Eliassi-Rad, S. Papadimitriou, and
C. Faloutsos, HCDF: A hybrid community discovery al-
gorithm, in SDM,2010.

[16] Y. Jia, J. Zhang, and J. Huan, An efficient graph-
mining method for complicated and noisy data with real-
world applications, Knowledge and Information Systems, 28
(2011), pp. 423–447.

[17] D. Q. Le, T. Jeong, H. E. Roman, and J. W.K. Hong,
Traffic dispersion graph based anomaly detection, in SoICT,
2011.

[18] S. Lin and H. Chalupsky, Unsupervised link discovery in
multi-relational data via rarity analysis, in ICDM, 2003.

[19] X. Ma, H. Xiao, S. Xie, Q. Li, Q. Luo, and C. Tian,
Continuous, online monitoring and analysis in large water
distribution networks, in ICDE, 2011.

[20] J. Neil, Scan Statistics for the Online Detection of Locally
Anomalous Subgraphs, PhD thesis, U. of New Mexico, 2011.

[21] D. Neill and G. Cooper, A multivariate bayesian scan
statistic for early event detection and characterization,
Machine Learning, 79 (2010), pp. 261–282. 10.1007/s10994-
009-5144-4.

[22] D. B. Neill and A. W. Moore, Rapid detection of signif-
icant spatial clusters, in KDD, 2004.

[23] D. B. Neill, A. W. Moore, M. Sabhnani, and K. Daniel,
Detection of emerging space-time clusters, in KDD, 2005.

[24] C. C. Noble and D. J. Cook, Graph-based anomaly
detection, in KDD, 2003.

[25] C. E. Priebe, J. M. Conroy, D. J. Marchette, and
Y. Park, Scan statistics on enron graphs, Comput. Math.
Organ. Theory, 11 (2005).

[26] R. Rossi, B. Gallagher, J. Neville, and K. Henderson,
Role-dynamics: fast mining of large dynamic networks, in
Proceedings of the 21st international conference companion
on World Wide Web, ACM, 2012, pp. 997–1006.

[27] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos,
Relevance search and anomaly detection in bipartite graphs,
KDD Explor. Newsl., (2005).

[28] X. Wan, E. Milios, N. Kalyaniwalla, and J. Janssen,
Link-based event detection in email communication net-
works, in SAC, 2009.

[29] J. Wang, B.-H. Chou, and E. Suzuki, Finding the k-Most
Abnormal Subgraphs from a Single Graph, in Discovery
Science, LNCS, 2009.

[30] M. Wu, C. Jermaine, S. Ranka, X. Song, and J. Gums,
A model-agnostic framework for fast spatial anomaly detec-
tion, ACM Trans. Knowl. Discov. Data, 4 (2010), pp. 20:1–
20:30.

[31] H. R. Zeidanloo and A. B. A. Manaf, Botnet detec-
tion by monitoring similar communication patterns, CoRR,
abs/1004.1232 (2010).

[32] Y. Zhou, G. Hu, and W. He, Using graph to detect network
traffic anomaly, in ICCCAS, 2009.

[33] Supplemental material. http: // www. cs. ucsb. edu/ ~ dbl/

papers/ mongiovi_ sdm_ 2013_ supplement. pdf .

