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Abstract— In this paper, we study the real-world data streams
from hundreds of digital passive infrared (PIR) occupancy
sensors that are integrated into LED lighting fixtures in a recent
Internet-of-Things (IoT) Building Energy Management System
(BEMS) deployment in a large building in California. We first
develop a data-driven method to detect anomalies in these data
streams. We then use the results to enhance energy efficiency
in the building and also open up opportunities to offer demand
response services. In addition, we provide load forecasting for
the lighting load in this building using a deep neural network
architecture with high accuracy. We show that our approach can
result in about 30% load reduction across lighting fixtures.

Keywords: Internet-of-things, building energy efficiency, anomaly
detection, load forecasting, demand response, deep learning.

I. INTRODUCTION

ENERGY demand in buildings currently accounts for 40%
of the total U.S. energy consumption [1]. This calls for

efforts to make buildings more energy-efficient. In this regard,
smart buildings are receiving growing attention with the inte-
gration of building energy management systems (BEMS) and
the proliferation of Internet-of-Things (IoT) [2]–[4].

An IoT-based BEMS may include hundreds of IoT devices,
such as sensors, actuators, and communications nodes. These
IoT devices monitor and control various load components,
such as lighting, heating, ventilating, and air conditioning
(HVAC), and plug-in loads. The IoT sensors produce a huge
amount of data streams, which can provide new opportunities
to enhance energy efficiency in buildings.

In this paper, we analyze the real-world data streams
that come from a recent IoT-based BEMS deployment in a
large-sacle 101,670 sqft academic building at California State
University, Long Beach with over 1000 IoT devices, which
provide high granular monitoring and control capabilities for
lighting, plug-in loads, and HVAC loads. Specifically, we look
into the data from hundreds of digital passive infrared (PIR)
occupancy sensors that are integrated into each lighting fixture
in this building [5]. All lighting fixtures have LED lights
as well as integrated wireless communications capabilities.
Note that, each room is equipped with tens of such IoT-based
PIR occupancy sensors, which provide us with the occupancy
status of each covered area within the room.
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Our goal in this paper is to detect anomalies in such real-
world data streams from PIR sensors and to subsequently use
the results to enhance energy efficiency in the building and
open up opportunities to offer demand response services.

A. Literature Review

There are few studies that have addressed the challenges
related to anomaly detection in data streams from IoT de-
vices in smart buildings. In [6] a new pattern-based anomaly
classifier, the collective contextual anomaly detection using
sliding window (CCAD-SW) is proposed to identify anoma-
lous consumption patterns. In [7], [8], anomaly detection based
on methods such as fuzzy linguistic description and nearest
neighbor clustering is used to improve state-awareness and the
understandability of BEMS data. In [9], a rule-based method
is presented to detect energy inefficiencies in smart buildings.
In [10], the design and implementation of a presence sensor
platform is discussed that can be used for accurate occupancy
detection at the level of individual rooms. There are also
some papers, such as [11]–[13] that address the broad topic
of energy efficiency issues in smart buildings, and some other
papers, such as in [14]–[16], that address energy consumption
prediction in smart buildings. All of the above papers are
one way or another related to this study; however, none of
the previous papers have addressed anomaly detection in IoT-
based lighting-fixture-integrated PIR occupancy sensors; and
application to energy saving and demand response. Moreover,
most prior studies are not based on real-world data, as opposed
to this paper that is fundamentally a data-driven study built
upon large volume of real-world data points.

B. Summary of Contributions

The contributions in this paper are summarized as follows:
1) A two-step algorithm is proposed to find anomalies in

occupancy data. In the first step, a factor showing the
reliability level of each IoT lighting sensor is defined by
using historical data. In the second step, real-time data
is analyzed to find possible anomalies, which result in
energy loss due to incorrect lighting system operation.

2) The application of the proposed two-step anomaly de-
tection is presented for energy saving in smart buildings.
Based on the forecasted amount of such energy saving



Fig. 1. The layout of the fourth floor at the test site and the locations of the lighting fixtures and their integrated PIR occupancy sensors [17].
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Fig. 2. An example daily output for three PIR sensors in room 408.

under the proposed method, the under-study building can
efficiently participate in demand response programs.

3) The forecasting component is built upon a deep neural
network architecture based on long short-term memory
(LSTM). We show that this deep learning algorithm can
forecast the power consumption with high accuracy.

4) The analysis in this paper is based on real-world data
from hundreds of PIR sensors at the test site. A total
of 2,088,170 data points are analyzed in this paper. Our
estimated energy saving in the lighting system is 30%.

II. PROBLEM STATEMENT

The focus in this section is on explaining the problem we
are facing in a real-world R&D project. The test site for this
project is a large six-story academic building with hundreds of
LED lighting fixtures. Each lighting fixture is equipped with
a PIR occupancy sensor. As an example, the layout of the 4th
floor and the location of the lighting fixtures are shown in Fig.
1. It should be noted that this building is equipped with three
types of IoT devices, lighting, HVAC and plug-in load control;
however, only the lighting system is the focus of this paper.

As an example regarding the type of data that is available for
this study, Fig. 2 shows the daily output for one day for three
PIR occupancy sensors in room 408. Note that, this room has
12 lighting fixtures, which provides 12 separate data streams,
one for each PIR occupancy sensor. The reporting interval
of each sensor is 5 minutes. Therefore, each sensor provides

288 data points per day. Each reading is either 1, indicating
“Occupied”, or 0, indicating “Not Occupied”.

Currently, the lighting control system is set to work as
follows: In each room, if any of the PIR sensors at any
lighting fixture within that room detects occupancy, lights
automatically turn on. Also, lights automatically turn off if
none of the PIR sensors at any lighting fixture within that
room detect occupancy for a duration of 5 minutes.

Given the above setup and the availability of the real-world
data streams, we seek to answer the following questions: 1) Is
the data coming from each PIR sensor at each lighting fixture
reliable? For example, could it be that there is no one in a
room, yet one or more of the PIR sensors incorrectly detect
occupancy? 2) If the answer to the first question is Yes, then
how can we detect such anomaly? 3) How should we take
action on such finding, i.e., how should we incorporate such
indication into the existing lighting control system? 4) How
can we enhance the demand response capability of the lighting
loads in this process? Note that, in general, anomalies may
have different causes, such as sensor failure, improper setting
of sensors, communications issues, or even cyber-attacks.

III. PROPOSED METHODOLOGY

A. Anomaly Detection

For each room, let m denote the number of PIR sensors.
At each reading interval t, let δ[t, i] denote the reading of
PIR sensor i, where i = 1, . . . ,m. The number of triggered
sensors, i.e., those that return 1 as their output, is obtained as

N [t] =

m∑
i=1

δ[t, i]. (1)

First, we consider the output of the PIR sensors as suspicious
if N [t] is smaller than a certain threshold Nth. In particular,
based on our experience in manually investigating the data
streams in this project, we set the threshold to be Nth = 2, i.e.,
when only one or at most two PIR sensors detect occupancy.
Other values could also be considered for this threshold.



Next, we define a reliability index for each PIR sensor i, as

S[i, t] =

T∑
τ=0

b[i, t− τ ], (2)

where
b[i, t] = I (δ[i, t] = 1 |N ≤ Nth) . (3)

Note that, b[i, t] indicates whether the PIR sensor i was a
cause of the suspicious observation in the readings of the PIR
sensors in this room at time interval t. As for the reliability
index S[i, t], it indicates whether the behavior observed from
PIR sensor i under such suspicious condition was persistent
or momentary. Note that, T is a parameter with respect to how
far back in time we would like to check the operation of the
sensor in order to obtain its reliability index. This parameter
is set based on the knowledge of the expert operator of the
building and also the available history record of sensors, such
as the information on whether there was any maintenance or
if the sensor was replaced or calibrated recently.

By keeping track of S[i, t], it shows the reliability of each
sensor, and whether the suspicious observation N ≤ Nth
should indeed be declared as anomaly. In this regard, next, we
define two thresholds with respect to S[i, t], namely Sth,min

and Sth,max. Specifically, on one hand, if S[i, t] > Sth,max,
then the suspicious observation N ≤ Nth was persistent to
be caused by sensor i, suggesting that it is likely an anomaly
and the room is likely not occupied. On the other hand, if
S[i, t] < Sth,min, then the suspicious observation N ≤ Nth
was momentary, suggesting that it is likely an unusual but
valid occupancy pattern and the room is indeed occupied.
As for the third case, where the following inequalities hold:
Sth,min ≤ S[i, t] ≤ Sth,max, then we must check time interval
t before we make a final conclusion, as we explain next.

Suppose E denotes the time slots during which the room is
empty in normal circumstances. For example, for a classroom,
we can check the class schedule, and set E to include the time
slots from mid-night till 4:00 AM; or any other time frame(s).
If t ∈ E , when we know that the building is normally empty,
thus, the observation is likely to be an anomaly; otherwise, it is
treated as an unusual but valid occupancy. Parameters Sth,min

and Sth,max can be set based on experiments and historical
data. We set Sth,min = 1000 and Sth,max = 2000.

The outline of the proposed anomaly detection method is
shown in Fig. 3. It takes in real-time data and detects possible
anomalies, going through the steps that we explained above.

B. Potential for Energy Saving

Recall from Section II that the lighting control system is set
in a way that triggering even one of the PIR occupancy sensors
in a room results in turning on the lights in that room. In
this regard, the proposed anomaly detection method can detect
faulty or highly sensitive sensors which cause an anomaly for
the lighting system in the room, i.e., unnecessarily turning on
the lights. Therefore, having accurate occupancy data can help
in saving energy in different parts of the building. Note that,
since the purpose of this paper is to enhance energy saving,
we only address faults that cause unneeded energy usage.

Anomaly detection

Real-time data

N > Nth

Set N as in (1)

Valid Data

N ≤ Nth

Set S as in (2)
S < Sth,minS > Sth,max

Invalid Data t ∈ E

Sth,min ≤ S ≤ Sth,max

Yes No

Fig. 3. Outline of the proposed anomaly detection method.

Since there is major overlap in the coverage areas among the
PIR sensors in each room, there is redundancy in detecting
occupancy. In fact, in our experiments, it has never happened
that someone enters the room and none of the sensors pick
it up. Therefore, a potential fault to miss occupancy is not a
practical concern in this study and we do not address it.

Specifically, in the real-time operation of the BEMS, if
an occupancy data is considered as anomaly based on the
proposed method, the lights in the room should not be turned
on. This can result in a major amount of energy saving.
Consider a faulty or highly sensitive sensor in a room. This
single faulty sensor can turn on the lights in a room all day and
night, regardless of the operation of the rest of the occupancy
sensors in that room. In fact, without considering the proposed
method, certain components of smart buildings, such as certain
rooms, may even result in more energy loss than conventional
buildings. The difference in energy consumption between
utilizing our proposed method and operating the system as
is, i.e., ignoring the possible anomalies, is the amount of the
energy that can saved when our method is implemented.

C. Demand Response and Energy Forecasting
The proposed anomaly detection method can be used also

to create new capacities for the lighting control system to par-
ticipate in demand response programs. The key is to adjust the
parameters of the algorithm, i.e., Nth, Sth,min, Sth,max, T , and
E , under demand response operating conditions. That is, while
the parameters can be set conservatively for energy saving
during normal operating conditions; they can be set rather
aggressively during demand response events. For example,
we may set Nth = 2 during normal operating conditions, so
that we check for anomaly if fewer than two PIR sensors are
triggered. During a demand response event, we may change
this to Nth = 3, so that we turn off the lights more aggressively
when we observe potential faulty sensors. This opens up
addition load reduction capacities that can we used during the
demand response events. Such adjustments can be done also
based on the location of the sensor, such as whether it is close
to a door or a window, again based on the knowledge and
experience of an expert operator for the understudy building.

Consider a “Basic Plan”, which does not use the proposed
anomaly detection method. Based on the actual historical data
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Fig. 4. Architecture of an LSTM cell that is used for load forecasting.

from the lighting fixtures, we train an LSTM model, which
is a Recurrent Neural Network (RNN) [18], see Fig. 4. The
trained LSTM model can predict the day-ahead energy usage
of the lighting fixtures based on historical data. Next, consider
a “Demand Response Plan” which uses the proposed anomaly
detection method for any given choice of parameters. This
time, we apply the anomaly detection method to historical
data and train a second LSTM model to predict the day-ahead
energy usage when the anomaly detection method is utilized.

Given the two prediction models, the difference between the
Basic Plan and the Demand Response Plan is calculated to
obtain the overall predicted demand response capacity. Such
prediction is then reported to the demand response aggregator,
as the amount of load reduction that we expect to be able to
provide, in case a demand response event occurs.

Once the demand response mode is activated, the building
operation is set such that the lights in each room do not turn on
when both of the following conditions happens: 1) an anomaly
is detected for the PIR occupancy sensors in that room; and
2) a demand response event occurs. In other words, we utilize
the potential for energy reduction only during the demand
response events. Again, the two prediction models are used
in order to estimate the amount of available energy reduction,
i.e., the demand response capacity, which is needed in order to
participate in most practical demand response programs [19].

IV. CASE STUDIES

In this section, we evaluate the performance of the proposed
anomaly detection method using real-world data. It should be
noted that while the data is real, the calculation of the energy
saving is done numerically. The data contains the motion
detection output of each sensor and the energy usage of its
fixture. The analyzed historical data is for 45 days. We focus
on the 4th floor of this building and it should be mentioned
that corridors are excluded in this analysis due to safety.

A. Anomaly Detection

Based on the proposed anomaly detection method, in the
first step, we determine the reliability level for each sensor in
each room. As an example, Fig. 5 and Fig. 6 depict the number
of single and double detections, respectively, in room 408.
As we can see, sensor 72A902 with 1313 single detections
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Fig. 5. Number of single detections for each sensor in room 408.
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Fig. 6. Number of double detections for each sensor in room 408.

and 6169 double detections and also, sensor 72A972 with 138
single detections and 5845 double detections over 12970 time
slots are two unreliable sensors in this room. Any suspicious
detection with N ≤ 2 corresponding to these two sensors will
be considered as anomaly and the reported data is invalid.
Note that, these two sensors are not close to each other.

B. Energy Usage Forecasting

Based on what explained in the previous section, valid and
invalid occupancy detections will be separated in the historical
data. For the invalid occupancy data, as we determined that
room as unoccupied, the energy consumption of that room at
that time will be considered as zero. Accordingly, there are two
time series for energy consumption. One with modifying the
data based on the proposed anomaly detection method and the
other one without utilizing our proposed method. The amount
of energy usage with and without employing the proposed
method in the under-study period is 1.4626 MWh and 2.0633
MWh, respectively. Therefore, by utilizing this method energy
usage reduces by about 30%, which is a significant amount.

In the forecasting part, we utilize LSTM to train a model
for the power consumption time series. As mentioned before,
this is a day-ahead forecasting and in order to forecast the
power consumption of each time step, the model utilize the
data for the days in the previous week. Note that as we are
working on an academic building, only weekdays are taken
into consideration. In order to train the model, the historical
data is split into training and testing data sets. The first 80%
of the data is used for training and the last 20% for testing
the model. Fig. 7 shows the forecasted and the actual power
consumption in the test data by utilizing the proposed method.
The accuracy of this prediction model for the training and
testing datasets is 85% and 84%, respectively.

Fig. 8 shows the forecasted and actual power consumption
in the test data for the unmodified data. The accuracy of
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Fig. 7. Actual and forecasted load with utilizing our proposed method.
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Fig. 8. Actual and forecasted load without utilizing our proposed method.

this model for the training and testing datasets is 73% and
72%, respectively. By comparing Fig. 7 and Fig. 8 , we
can identify a biased power consumption in Fig. 8. This
constant consumption is because of malfunction occupancy
sensors, which result in unnecessary power consumption even
at nights. Utilizing the proposed day-ahead forecasting model,
we can forecast next day’s power consumption and see how
much it can save energy. Based on the day-ahead forecasted
amount of energy saving, buildings can efficiently participate
in demand response programs by having different override
plans. Each plan will be constructed based on the proposed
anomaly detection method by changing different parameters.

V. CONCLUSIONS

This paper established an anomaly detection method for oc-
cupancy data from PIR sensors in IoT-based lighting systems,
with application to building energy efficiency. First, based
on historical data, suspicious sensors were identified at each
room or zone. This identification was based on occupancy
detections which were out of normal expectation. Next, real-
time occupancy data were analyzed to distinguish between
valid and invalid data. We analyzed the lighting system in
a large academic building in California, which is equipped
with such IoT-based network of PIR sensors. Our analysis
shows that utilizing our proposed method can reduce energy
consumption by about 30% in this building. By utilizing
LSTM as a deep neural network architecture, the day-ahead

energy consumption was forecasted so that the identified
energy consumption reduction can be used to offer demand
response. The study in this paper can be extended in various
directions. In particular, our analysis can be done also on the
HVAC and plug-in load controllers and the effect of anomalies
in occupancy data on these systems can be investigated.
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