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ABSTRACT
We have recently seen an increasing number of attacks that are
distributed, and span an entire wide area network (WAN). Today,
typically, intrusion detection systems (IDSs) are deployed at enter-
prise scale and cannot handle attacks that cover a WAN. Moreover,
such IDSs are implemented at a single entity that expects to look
at all packets to determine an intrusion. Transferring copies of raw
packets to centralized engines for analysis in a WAN can signifi-
cantly impact both network performance and detection accuracy. In
this paper, we propose Jaal, a framework for achieving accurate net-
work intrusion detection at scale. The key idea in Jaal is to monitor
traffic and construct in-network packet summaries. The summaries
are then processed centrally to detect attacks with high accuracy.
The main challenges that we address are (a) creating summaries
that are concise, but sufficient to draw highly accurate inferences
and (b) transforming traditional IDS rules to handle summaries
instead of raw packets. We implement Jaal on a large scale SDN
testbed. We show that on average Jaal yields a detection accuracy
of about 98%, which is the highest reported for ISP scale network
intrusion detection. At the same time, the overhead associated with
transferring summaries to the central inference engine is only about
35% of what is consumed if raw packets are transferred.
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1 INTRODUCTION
Incorporating cybersecurity capabilities has become integral to
networked system design today. However, there are continuing
challenges having to deal with very large scale and complex attacks,
and the ever-changing nature of attacks. In the recent past, we have
seen an alarming increase in network based high-profile security
breaches [4, 8, 33].

Today, ISPs predominantly focus on volumetric (e.g., DDoS) at-
tacks by gathering traffic at ingress gateways and analyzing it at
centralized scrubbers [3]. These services are delivered to an enter-
prise by an ISP on demand, i.e., a customer requests the services
when it determines that its network is under attack or suspects an
attack. The process is to copy packets to and from the enterprise
at gateways, and forwarding these to a central Network Intrusion
Detection System (NIDS). Unfortunately, the approach of transfer-
ring copies of raw packets continuously towards detecting attacks
suffers from scalability problems.

In this paper, our goal is to design an efficient ISP-scale NIDS,
that has the following properties: (a) it should detect a wide variety
of attacks as with smaller scale IDSs such as Snort or Bro and, (b) it
should not require the copy and transfer of raw packets to a central
inference engine.

The key design principle that we follow is to "extract" the requi-
site information from a packet stream at monitoring points spread
through out the network. Specifically, the monitors, (could be co-
located with routers/gateways or placed at IXPs) process packets
and create lightweight in-network packet summaries of drastically
smaller volume compared to raw packets. These summaries can
be used to draw inferences using rules similar to those used in
smaller scale NIDS (e.g., Snort). They are sent by monitors to a cen-
tral inference engine which processes them and issues alerts when
attacks are detected. In rare cases when a highly accurate inference
cannot be made with the summaries, the inference engine queries
appropriate monitors (which store packets for short periods) for
either finer grained summaries or associated raw packet traces for
a time window of interest.

In designing an ISP-scale NIDS based on the above principle,
we will need to address the following challenges. (a) How do we
construct lightweight packet summaries while still achieving high
detection accuracy? (b) How do we transform typical NIDS rules
(e.g., that of a system like Snort) to find attack patterns/signatures
using these summaries in lieu of raw packets? and, (c) Under what
conditions should the system retrieve finer-grained summaries or
raw packet traces to ensure a high accuracy of detection while
keeping the overhead low? In this paper we design and implement
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an ISP-scale NIDS, Jaal, that addresses these challenges. Specifically,
in designing Jaal, we make the following contributions:
• We design a novel algorithm that uses dimensionality re-
duction techniques to construct concise packet summaries
that lend themselves to highly accurate network intrusion
detection.
• We design an approach to transform a large set of IDS rules
(specifically from Snort) to a new equivalent representation
that can be applied to the generated summaries in lieu of the
actual packets. We propose simple new, equivalent rules for
those that cannot be automatically transformed.
• We implement Jaal, on a large scale SDN testbed that allows
us to create complicated ISP-scale topologies, with approx-
imately 370 routers, using network function virtualization
(NFV).
• We evaluate the performance of Jaal using realistic ISP traces
[15] and with a wide range of popular attacks. Our results
show that with about 65% reduction in communication over-
head, Jaal can achieve a detection accuracy of ≈98% with
respect to these attacks which, we believe is the highest
reported at these scales.

2 SYNOPSIS
There are many recent alarming reports of large-scale distributed
attacks targeting multiple data centers or enterprise networks si-
multaneously [5, 7, 12]. Unfortunately, today such attacks are only
detected much after the fact, and the targeted entities report them
individually.

The Mirai botnet example: To exemplify the problem, con-
sider the example of the DDoS attack caused by the Mirai botnet1,
which targeted Dyn’s DNS infrastructure [5]. The attackers used
compromised IoT devices (e.g., printers, cameras and home routers)
spread across the Internet to launch one of the largest known DDoS
attacks crippling various services across the Internet including
Twitter, Airbnb, Github and Amazon, among others. In brief, a post-
attack analysis revealed that the IoT devices were infected using a
simple two-step process [10, 11]. First, such devices were discov-
ered by continuously scanning IP addresses across the Internet for
open ports. Second, once an open port was found the associated
device was compromised, if it was vulnerable, using a short list of
hard coded passwords (most devices were still using default user-
name/password combinations), to gain root access. We analyzed
the source code for Mirai (available publicly at [6]) and found that
the scanning was primarily directed at destination ports 23 and
2323 (File: mirai/bot/scanner.c Lines: 117, 219, 223 [6]). A device,
once subsumed into the Mirai botnet repeated the exact scanning
activity mentioned above [10]. Note here that this scanning was
only discovered after the attack had been launched and researchers
had analyzed the source code publicly dumped by the attackers.

Need for ISP Scale detection. Such scanning, while simple to
carry out, is inherently difficult to detect using current detection
capabilities for two reasons. First, most IoT devices are used in
homes where consumers typically do not use IDS systems. So both
the incoming scan that is looking for open ports and the outgoing

1Our characterization of Mirai is consistent with the initial dominant strain of the
attack. For a detailed look at the nuances and the latter Mirai inspired attacks see [25].

scan launched by the device once it is infected, are missed. Sec-
ond, and perhaps more importantly, even if we consider networks
with some intrusion detection capability, the global scope of this
scanning activity is only observable via a holistic view of a wide
area (ISP-scale) network. This is because, from the perspective of a
smaller scale (e.g., enterprise) network with detection capabilities
such as those of Snort, a simple scan directed at two TCP ports for
a small range of IP addresses (that are observed) is not a serious
concern and would not likely trigger port scan alerts. Port scan
alerts are only issued if a large volume of packets with a large set
of different incoming ports are seen [22]; this was not the case
with the Mirai scan which only scanned for two ports but across
a large set of devices that were spread across a large number of
administrative domains.

One could argue that a scan that targets the same two port num-
bers across an extremely large gamut of IP addresses (almost the
entire IPv4 address range [10]) is concerning and should trigger
alerts; however, this characteristic is only evident if the ISP-level
traffic is analyzed at a detection engine. With such holistic visibil-
ity, a detection system could have identified infected devices long
before the DDoS attack was launched (such scanning activity can
be potentially detected in seconds as we show later in § 8).

The need for holistic ISP-scale detection capabilities have re-
cently been widely advocated. For example, in response to the
attack on Dyn, the security expert Bruce Schneier says that "DDoS
prevention works best deep in the network, where the pipes are
the largest and the capability to identify and block the attacks is
the most evident" [9]. The fact that current detection frameworks
and techniques lack the capabilities to detect coordinated attacks
distributed across multiple organizations (such as the Mirai attack)
has also been highlighted by DARPA [14], which exemplifies the
urgent need for NIDS that address this shortcoming.

While ISP networks have the global visibility required to detect
such attacks, the technical challenges in realizing WAN-scale detec-
tion are yet to be overcome. The popularity of open source IDS’s
like Snort and Bro has proven how effective pattern matching is
in detecting network-based attacks. However, using such methods
directly in WANs is hard (as discussed later). While enterprises
typically have a single entry point where an IDS such as Snort or
Bro can be employed, WANs usually have multiple points of entry
and egress. This means that no single location in the network can
view (monitor) all the traffic. Given that multiple vantage points (or
monitors) are needed to completely cover all traffic, the information
collected (or generated) by these monitors needs to be “aggregated”
to create a global view for analysis.

Challenges: There are various approaches that one could take
to create such a global view. The first and possibly the most obvious
approach would be for each monitor2 in the network to forward
copies of traversing packets to a central analysis engine. We tested
the feasibility of this approach (details in § 8; see Fig. 7) and found
that it causes a 70% loss in throughput (average rate at which pack-
ets that belong to normal traffic are proceesed at each router) and a
75% loss in detection accuracy (the fraction of correctly classified
attacks out of all attacks).
2The monitors can be realized in several ways. They could be implemented using a core
router functionality (like Cisco’s NetFlow [37]). The monitors can also be dedicated
machines deployed at IXPs.
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We point out here that it is well known that modern open source
DPI-based IDSs cannot cope well with high traffic volumes [32, 42].
In fact, they do not fail gracefully and with traffic rates greater than
20 Gbps, packet losses of over 50% are experienced regularly; this
can seriously affect the accuracy in detecting attacks (can result
in approximately a 50% loss in detection accuracy). The only way
around the loss in accuracy is to provision IDS clusters for peak
load which can result very high costs and even with that, a large
wastage of computation resources at off-peak times.

Current methods such as sampling/sketching are inade-
quate. One may argue that the heavy workloads due to copying
raw packets, can be overcome by using state of the art packet sam-
pling techniques [30]. In fact, ISP’s typically employ rudimentary
sampling techniques like NetFlow [37] to obtain a coarse view of
network dynamics. However, while sampling can help in heavy-
hitter detection, it results in poor accuracy with respect to fine-
grained features needed for detecting a wide variety of attacks
[46, 49], especially in cases where a information with respect to
a large number of successive packets is required (e.g., DDoS). In
particular, sampling fails to capture correlations across packets.

An alternative technique to sampling is sketching [43]. While
sketching provides strong resource/accuracy guarantees, it is in-
herently a targeted measurement scheme in which one needs to
construct a sketch for every measurement task (e.g., counting the
number of unique IP addresses or measuring the entropy of IP ad-
dresses in a batch of packets). Unlike the summarization techniques
we develop in Jaal, modern sketching techniques are also restricted
to single dimensional measurements [44]. This lack of generality
implies that sketching does not scale. The sketching technique in
[44], which is arguably the most general sketch possible today, al-
lows a single sketch to be used for multiple measurement tasks.
However, it is still limited to a single dimension.

More concretely, consider the source IP address as the dimension
of interest. By using the technique in [44], one can create a sketch
that captures the number of unique addresses seen. This sketch can
be used to detect heavy hitters, membership testing and entropy es-
timation [44]. However, even this sketch will only be able to answer
queries about the source IP address. Intrusion detection signatures
require correlations across packet dimensions. A simple example
is a distributed SYN flood attack. To keep track of the source IP
and the SYN flag, one would need a sketch that tracks these two
fields. However, such a sketch can now no longer be used to answer
queries about the IP or SYN flag alone. There is no way to decouple
those two header fields in the sketch. Thus, to create sketches to
detect attacks based on any combination of TCP/IP headers (18
header fields), a need a total of 218 individual count-min sketches at
every monitor. Assuming each count-min sketch to be 500KB [44],
this would translate to 128GB of information being transferred by
each monitor to a central location per measurement epoch, leading
to a prohibitively large communication cost. In addition, such a
brute-force combinatorial sketching method would not leverage
correlations between header fields which may not be known to us
a-priori and would only emerge through the actual traffic gener-
ated. Our proposed summarization scheme is able to identify and
leverage those correlations automatically, by virtue of low-rank
approximation.
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Inference

NIDS

Summaries

Assignments

Decision

Load

Monitor
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Info.
Load
Info.

Rules
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Figure 1: Jaal architecture.

Key idea:We envision that by extracting lightweight in-network
“packet summaries” that retain the information needed by a NIDS,
from traffic that flows through monitors, we can solve the challenge
of scale while retaining performance and accuracy. This is in essence
the key idea in building our framework Jaal.

Threat Model: While Jaal can handle all attacks that a NIDS
like Snort can handle, we limit the scope of our evaluations to only
transport layer attacks. This is because, together they constitute the
most widely seen attacks in the wild [4]. We omit attacks that will
require us to examine the payload given that these days payloads
are often encrypted.

An IDS such as Snort also handles signatures relating to lower-
layer attacks such as ARP scans. Since such attacks are local (link
level and thus do not require global knowledge), we argue that they
can be detected using a local "lower layer attack detector" in each
local area network (LAN) independently. Thus, we do not try to
detect these with Jaal.

We assume that monitors have already been placed in the net-
work and their locations are static. Flexible monitor placement and
management is beyond the scope of this work.

3 SYSTEM OVERVIEW
Our goal is to build a NIDS at ISP scale, with capabilities similar to
that of today’s modern NIDS (e.g., Snort [50] and Bro [48]) deployed
in enterprises, based on the key idea described in § 2. Evidence
collected in the network and transferred to a detection engine
must consist of concise yet informative summaries (instead of raw
packets), and the detection engine must be able to process these
summaries and provide inferences just as with Snort. One of the
driving principles behind designing Jaal was generality. We aim for
the techniques we develop to be equally amenable to detecting all
attacks. Therefore, we make no assumption on the utility of any
packet header field and treat all header fields as equally important.
We follow modern IDS systems design which provide pipelines for
querying any header field. We choose Snort as our baseline since it
is the most popular IDS used today [21].

We meet this goal by designing a modular ISP scale NIDS Jaal,
which comprises three modules viz., summarization, inference, and
flow assignment (see Fig. 1).

Summarization module: This module runs on monitors in the
network. Each monitor extracts headers of traversing packets and
constructs a “summary” of these headers using a lower dimensional
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representation. The summary is then forwarded to the analysis and
inference module.

Inference module: Jaal contains a centrally located inference
module which, given a set of Snort-like, signature-based rules, trans-
forms the rules into a format suitable for use with the summaries.
Equivalent rules are proposed (again applied on summaries) for
detecting attacks that cannot be detected via simple comparisons
with packet signatures. Packet summaries collected from monitors
are compared with these new rules to detect threats.

Flow assignment module: The flow assignment module seeks
to assign flows to monitors such that each flow is monitored only
once and the maximum load across the monitors is minimized.
This is important both for correct operation of the NIDS as well as
for saving bandwidth. The problem is mapped onto a constrained
load balancing problem and solved using a simple yet effective
approximation algorithm.

A detailed description of each module in Jaal follows in each of
the next three sections.

4 PACKET SUMMARIZATION
The goal of packet summarization is to produce a representative
summary of a batch of packets that: (a) enables the analysis and
detection of a wide class of attacks, and (b) allows Jaal to achieve
high detection accuracy with low communication overhead.

Henceforth, we refer to the packets and the packet fields as the
different modes of the data that we are summarizing. The number
of dimensions in those modes (i.e., the number of packets that have
passed through amonitor and the number of fields in each packet) is
large; thus our goal is to reduce the dimension of both modes while
preserving correlations between the dimensions of both modalities.

To support our goal, we employ dimensionality reduction, a fam-
ily of techniques that approximate a dataset with high-dimensional
modes, using a modified dataset with significantly reduced dimen-
sions, while minimizing the approximation error. This reduction
results in a more compact, yet high fidelity data representation
which respects correlations in both modes of the data. We propose
a practical two-step approach where each step focuses on efficiently
reducing the dimensionality of one of the two modes of the data. At
the end of the process, we create what we call in-network packet
summaries. Onemay envision a single-step approach to reduce both
modes simultaneously; however this objective is computationally
hard from an optimization point of view. Our approach can achieve
any desired accuracy, by trading off communication cost. Specif-
ically, the design parameters, determining the level of reduction,
control the tradeoffs between the costs (i.e., the size of summaries
sent to the inference module) and the detection accuracy.

4.1 Packet filtering and Normalization
We assume that there are monitors in the network to aid intrusion
detection. Each such monitor filters and processes packets from
flows (specified by a four tuple viz., source and destination IP ad-
dresses and port numbers) that are assigned to it (assignment of
flows to monitors is done by a central engine; this is discussed in
§ 6). Transport and network layer headers are then buffered until
the number of packets in the buffer, regardless of which flows they
belong to, is equal to some pre-determined threshold n. We call this

a batch of size n. Each batch of packet headers is organized in a
matrix X with dimensions n × p. Each row represents the p fields
in the (TCP and IP) headers of a given packet.

Before we construct packet-summaries, we create a normalized
version of X denoted by X̄. In Jaal, packet header fields are pro-
cessed as vectors, and each header field is mapped to an entry in the
vector. A measure of distance is used to decide whether two packets
are similar. Since the raw magnitudes of the header fields values
vary greatly, normalization of these values is needed to ensure that
there is no bias towards fields that vary over a larger range. For ex-
ample, consider a vector with only the TCP SYN flag and the source
IP address fields. Without normalization, the distance computations
will be heavily dominated by variations in the IP address field. Thus,
for any header field with value x ≥ 0, we apply the transformation
x̄ = x

max(x ) , where max(x ) is the maximum possible value for that
header field (x ). Thus, we have 0 ≤ x̄ ≤ 1,∀x .

4.2 Dimensionality reduction: fields mode
We first apply Singular Value Decomposition (SVD), a dimensional-
ity reduction technique, on the packet fields in X̄ to reduce its rank.
By reducing the rank, we form a smaller-size representation of X̄
which provably approximates the original matrix well [40]. First, X̄
is decomposed to

X̄ = UΣVT , (1)

where the columns of U are the left singular values of X̄, columns
of V are the principle axes (or directions) of data in X̄, and VT is the
transpose of V. Σ is a diagonal matrix with the singular values σi of
X in descending order. The number of non-zero singular values is
the rank of X̄, and the sum of squares of σi represents the amount
of data variation in X.

In practice, many data matrices exhibit a latent rank much lower
than the actual rank measured by the number of non-zero singular
values, or rather, by the number of linearly independent columns in
the matrix. Intuitively, the reason is that, in practice, many columns
(i.e., header fields of the packets we store in the matrix) are not
exactly linearly dependent but they may be highly correlated and
thus, approximately linearly dependent. When this happens, we
can reduce the size of the data by approximating the matrix using
its latent rank, which is smaller than the observed rank.

Thus, in order to reduce the size of data sent for analysis and
inference, while minimizing the approximation error (in the least
squares sense), a lower rank representation of X̄ is produced by
keeping only the largest r ≤ p singular values σi of X̄ and setting
the remaining ones to zero, to get

X̄p = UΣpVT . (2)

It is provable that X̄p is the optimal rank-r approximation of X̄,
in the sense of minimizing the Frobenius norm of (X̄ − X̄p ) [36].
Here, multiple σi s may have small values, indicating that the latent
rank of the matrix is smaller than the observed one. In that case,
the dimensionality of X̄ can be reduced, while still retaining a high
percentage of the information in the data by, for example, removing
the smallest σi s such that the sum of the squares of the retained
singular values is at least 90% of the sum of the squares of all
singular values.
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In (2), all matrices have similar dimensionality as their counter-
parts in (1). However, since the last p−r of singular values are set to
zero, the corresponding columns in U and V can now be removed.
This new representation is the truncated SVD representation of X̄
and is equivalent to X̄p . It can be written as follows:

X̄r = Ur ΣrVTr , (3)

where the dimensions of Ur , Σr ,Vr are now (n × r ), (r × r ) and
(p × r ), respectively. In our system, the design parameters help
decide which representation, i.e., X̄r or X̄p , is more efficient as
discussed at the end of § 4.3.

4.3 Dimensionality reduction: packets mode
Next, we seek to further reduce the size of the summary produced
by each monitor via an even more compact representation of the
packets in the reduced rank space. To do so, we seek to reduce the di-
mensionality across packets. We pose the problem to one similar to
signal quantization, where the goal is to identify a set of representa-
tive values of a digitized signal which minimizes the approximation
error. Thus, we seek to find a set of representative packets R that
can approximate X̄p (or X̄r ). Ideally, R is constructed such that
packets that are similar are mapped to the same representation. Let
the size of the set of representative packets be |R | = k . Formally,
our problem can be posed as:

min
R,B∈{0,1}n×k

⋂
RS
∥X̄Tr − RB

T ∥2F , (4)

where the RS constraint requires each row of B to sum up to 1,
and the columns of matrix R are “centroids”, effectively containing
the packets R, and matrix B is an assignment of each packet to
a centroid. We use the Frobenius norm (i.e., Euclidean distance
between a packet and its centroid) because (i) we have no prior
knowledge about the distribution of packet vectors and, (ii) the
problem admits very efficient approximations under this norm.

The above problem is known as Vector Quantization or K-means
clustering and it is NP-hard in the above form [24]. However, there
exist very efficient approximations when using the Frobenius norm
as the loss function, with the most widely used being Lloyd’s al-
gorithm [45]. In Jaal, we employ the “k-means++ algorithm” [26],
an improvement upon Lloyd’s algorithm that seeks to find a good
initialization for the algorithm to converge faster on a good local
minimum. We use this clustering algorithm since it is guaranteed to
find a solution that isO (logk )-competitive to the optimal clustering
solution, and is known for fast convergence.

Note that R has k packet representatives; each represents a
group (i.e., cluster) of similar rows in X̄p . Increasing k increases
resolution (more representatives) but increases the communication
cost as well. We study how varying k affects detection accuracy for
different attacks in § 8.

We propose two methods for processing and sending summaries
to the inference engine. In the first, we build a combined summary,
by applying the clustering algorithm on X̄p . The output consists of
k centroids X̃p , one for each cluster, as well as clustering metadata.
The latter contains a membership counts vector c, and is appended
to X̃p to form Sm1 , which is then sent to the analysis and inference
module. It is easy to see that the number of elements of Sm1 is thus
k (p + 1), for each update from monitorm.
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Figure 2: Inference Module.

In the second method, we create what we call a split summary.
Here, we apply the clustering algorithm on Ur . The output consists
of the k centroids Ũr as well as the corresponding metadata c and
e. The summary in this case is the collection Sm2 = {Ũr , ΣrV

T
r , c}.

From (3), and since Σr is diagonal and can be sent as a vector of
size r , the number of elements in Sm2 is r (k + p + 1) + k .

Note that the information compiled in Sm1 is equivalent to that
in Sm2 , but is represented in a different format. More importantly,
as discussed above the communication cost is different with each
method depending on the design parameters r and k . In particular,
when r (k +p + 1) +k < k (p + 1), our system employs the split sum-
mary method and sends Sm2 to the analysis and inference engine;
otherwise, Sm1 is sent.

5 ANALYSIS AND INFERENCE
Jaal includes a centralized inference module. While this notion of
central inference is similar to that with Snort or Bro, the inferences
are based on summaries instead of raw packets. In brief, the in-
ference module contains a translator that converts traditional IDS
rules (specifically Snort rules) to a format that can be used with
summaries. The inputs to this translator are “aggregated summaries”
that are single consolidated representations of the summaries re-
ceived from all monitors; they characterize all flows traversing the
network in a given period of time. Then, the consolidated summary
is checked against each transformed rule to detect attacks. Fig. 2
shows the different blocks in the inference module.

5.1 Aggregating summaries
Summaries generated by the different monitors need to be aggre-
gated to get a global view. There are two ways to fetch summaries
frommonitors. In the first, monitors periodically send summaries to
the controller. In the second, when a monitor accumulates a batch
size (n) of packets, it constructs and ships the summary of this batch
to the controller. At this point, the controller requests every other
monitor to send its summary. In response, all monitors except those
with fewer than nmin packets, send their summaries. Summarizing
information using less than nmin packets incurs accuracy penalties
because clustering and SVD generally do not perform well when
data dimensionality is small. However, as shown in § 8, nmin is
very small and not of concern in high speed networks.

Let the number of available monitors in the network beM . The
aggregated summary, Sa =

[
X̃a | ca

]
, with centroids X̃a and mem-

bership counts ca , is composed by concatenating the summaries
collected from all monitors in a tall matrix format. In particular,
when monitorm sends its summary in the form Sm1 , it is appended
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directly to Sa . When Sm2 is sent, the previously removed p − r zero-
vectors in Ũr , Σr and Vr are first restored, and the matrices are
multiplied to reconstruct X̃p . Then, the corresponding vector c is
appended to X̃p to create the same form as Sm1 ; this is appended to
Sa .

The number of rows in Sa reflects the total number of represen-
tative packets collected from all the monitors, and is thus at most
Mk . Our results in § 8 show that this simple aggregation method is
enough to achieve high detection accuracy with respect to a wide
range of attacks.

5.2 Inference in Jaal
For ease of deployment, we seek to automatically translate Snort
rules (since it is the most popular NIDS in use) to handle packet
summaries. Snort has two main modules for detecting attacks. First,
it contains a signature matching module that matches every signa-
ture against every packet, using pattern matching algorithms [17].
In Jaal, we translate such rules automatically to handle summaries.
Second, Snort contains attack-specific preprocessors, to detect at-
tacks that cannot be handled using signatures (e.g., port scanning).
In Jaal, we design a module called the “postprocessor” that has a
functionality that is equivalent to that of Snort’s preprocessor.

Translator: This block takes as input a packet signature д (i.e.,
a Snort rule), and automatically translates it into what we call a
question vector q of length p as follows. The value of an entry in
q is the normalized value of the corresponding header field in д,
and −1 in the absence of a corresponding header field in д (i.e., the
field is irrelevant to д). Jaal measures the similarity of the rules
captured in a question vector q to packet representatives (X̃a ) in
the summaries Sa , using a simple distance measure as described
later.

As an example, consider the translation of a specific Snort rule
viz., a rule that relates to the SSH brute force attack [19]: "alert tcp
$EXTERNAL_NET any -> $HOME_NET 22 (msg: "INDICATORSCAN
SSH brute force login attempt"; flow: to_server, established; content:
"SSH-"; depth: 4; detection_filter: track by_src, count 5, seconds 60;
metadata: service ssh; classtype: misc-activity; sid: 19559; rev:5;)."

The rule postulates that an alert must be generated if 5 packets
destined for the home network were received within the last 60s,
with port number 22. To translate this rule into a question vector,
Jaal initializes a vector of size 18 with −1 set for every position.
Then, the position corresponding to the IP address is set to the
normalized home network IP address and the position correspond-
ing to port number is set to 22 (normalized version). This question
vector is then used to make inferences as discussed below.

Similarity Estimator:Upon being providedwith an aggregated
summary, Sa , this block measures the similarity between each ques-
tion q in the transformed rule set, and every x ∈ X̃a in the summary.
The distance function used is:

dq (x) =

∑
j :qj,−1 |qj − x j |∑

j :qj,−1 1
. (5)

The denominator in Eq. 5 normalizes the distance measure to ac-
count for questions with different lengths. If the distance is below
a threshold τd , a match is declared and hence an alert is raised for
the corresponding threat signature.

Algorithm 1 Similarity Estimation
Input: question vector: q, distance threshold: τd , centroids X̃a , counts ca , minimum count τc
Output: Binary Attack Classification
sum = 0, Q = { }
for xi in X̃a do

if dq (xi ) ≤ τd then
sum ← sum + ci
Q ← Q ∪ xi

end if
end for
if sum ≥ τc then

OUTPUT: Alert, Q
end if

Algorithm 2 Postprocessing
Input: Header field index h, variance threshold τv , centroids X̃a , counts ca
Output: Decentralized attack alert
Initialize Empty array Z
for xi in X̃a do

add xi (h) ci times to Z
end for
if var (A) ≥ τv then

OUTPUT: Alert
end if

For questions that require a minimum number of matches (e.g,
SYN floods), the similarity estimator sums all the counts ci ∈ ca
corresponding to xi with dq (xi ) ≤ τd , and only raises an alarm if
this sum is larger than τc . Here τd and τc are per attack parameters
to be configured by a system administrator (τc may be directly
carried over from Snort). In addition, the packet representatives in
X̃a matching q are collected in Q.

In some cases when more accurate analysis is required at the
expense of higher bandwidth cost, feedback is sent to monitors for
a raw batch of packets. We discuss this in § 5.3.

Postprocessor: As mentioned earlier, Snort employs preproces-
sors to handle distributed attacks that cannot be handled using
signature-matching. In Jaal, we craft rules equivalent to those in
the preprocessor, that can be used with summaries. Note here that
in typical Snort implementations, these correspond to a small subset
of the total attacks handled [22].

In crafting these rules, we observe that a common feature of such
attacks (handled by Snort’s preprocessor) is that the variance (i.e.,
the spread in the range of values) in a specific packet header field
is large. Consider, for example, port scans, which are characterized
by a large number of incoming packets, all with different port
numbers. A large variance in port numbers indicates that a large
number of distinct port numbers was seen and thus, warrants an
alert. Similarly, distributed attacks, such as DDoS, are characterized
by a large number of different source IP addresses.

Jaal uses a “postprocessor” to handle attacks exhibiting large
variance across a subset of header fields. This postprocessor first
processes packet representativesQ, provided by the distance estima-
tor block, that match a given signature q. Next it applies Algorithm
2, to measure the variance in a header field of interest h. It issues
an alert for an attack if the variance is larger than a predetermined
threshold τv . This threshold is to be configured as with Snort [22].

Example: To illustrate how the inference engine operates, con-
sider the example of a distributed SYN flood attack. The q corre-
sponding to this attack will have the SYN flag entry set and all other
fields set to −1. The similarity estimator, using Algorithm 1 will
declare a SYN flood attack if the number of packets matching this
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Figure 3: Feedback loop in Jaal.

signature is greater than the threshold required to issue an alert
with regards to this attack (τc ). It also outputs the list of packet
representatives Q that match the signature q. To classify whether
this attack is distributed, the postprocessor applies Algorithm 2 to
every element in Q, measuring the variance in the source IP header
field. The attack is classified as distributed if the variance is above
the predetermined threshold τv .

5.3 Trading cost for accuracy
Since Jaal uses packet summaries to infer patterns in packets, it
is expected that the detection performance will be lower than
that achieved if the raw packets were available. Despite this, Jaal
achieves reasonably high accuracy with low communication over-
head as shown in § 8. To improve the detection performance further
(with additional communication costs), we design a feedback loop
that enables Jaal to realize multiple operating points on the detec-
tion accuracy-communication overhead tradeoff. In brief, based on
the output of the inference engine, Jaal’s controller sends explicit
feedback to certain monitors (discussed below) requesting finer
granularity summaries or even raw packets for specific batches.

With the feedback loop, the inference in Jaal is logically per-
formed in two stages using two threshold values τd1 and τd2 as
shown in Fig. 3. To explain the rationale for this, recall from § 5.2
that τd is used to determine whether a specific centroid in the sum-
mary matches a given question vector. A large value for τd will
successfully catch most attacks (high true positive rate or TPR) but
may also result in a high false positive rate (FPR). On the flip side,
a small value of τd will result in low FPR, but also misses attacks
more often. Thus, we choose the first threshold τd1 such that the
FPR is small, and choose τd2 > τd1 such that the miss-detection rate
is even smaller than that with τd1 .

Let the binary result of the threshold-based analysis using τd1
and τd2 be t1 and t2, respectively. Thus, we have four different
output cases. When t1 is positive and t2 is positive (case 1), the
system has high confidence that there is an attack and an alert is
raised. This because using τd1 results in low FPR. If t1 is negative
and t2 is negative (case 2), no alert is raised. Here, the system relies
on the high confidence with regards to the TPR when τd2 is used. If
t1 is negative and t2 is positive (case 3), the controller asks the local
monitors with the associated (uncertain) centroids in Q to send
the actual packets corresponding to those centroids. The analysis
is then done by pattern matching using traditional Snort rules
and these raw packets. Requesting raw packets will decrease the
overall FPR of the system, but will naturally increase the overhead.
However, as we will show in § 8, this overhead is minimal and the
feedback results in much improved detection accuracy. Finally, we
note that the scenario where t1 is positive while t2 is negative (case
4) is unlikely (we never observed these in our experiments), since
both analyses are done using the same summary Sa and thus it is

expected that what is not missed in t1 will also not be missed in t2
(as t2 guarantees higher TPR).

6 FLOW ASSIGNMENT
The flow assignment module seeks to assign flows to active mon-
itors. In doing so, we have multiple goals. First, all flows passing
through at least one monitor must be covered. Second, we require
that a flow must be monitored by exactly one monitor. Duplicate
monitoring of flows incurs unnecessary processing and bandwidth
costs andmore importantly, might lead to incorrect detection results.
This is because Jaal uses summaries which do not retain informa-
tion that could allow accounting for duplicate packet counts (same
packet from multiple monitors) during inference. Third, in order
to ensure that no monitor gets overloaded, we seek to ensure that
the traffic monitored by the different monitors is balanced, to the
extent possible. Finally, flow assignment has to be very efficient
and scalable (algorithm must be of low complexity).

This problem is challenging due to multiple reasons. First, each
flow may only traverse a specific subset of monitors. Second, a
flow can last for an unknown amount of time before it terminates.
Moreover, flows can vary drastically in terms of “packet rate,” i.e.,
the rate at which packets belonging to that flow are seen at an
assigned monitor. This packet rate is used as a weight to represent
the relative workload generated by the flow, in the assignment
problem. Since a priori forecasts of flow arrival times, termination
times, or weights is not possible, the system has to make its flow
assignment decisions that satisfy the objectives above, in real time.

The flow assignment problem can be mapped to the online opti-
mization problem [23], where the flows are the jobs to be assigned to
M machines (monitors) upon their arrival, such that the maximum
load across all monitors is minimized (i.e., load balancing). Upon
the assignment of a flow to a monitor, the load on the monitor
is increased by an amount equal to the weight of the flow. This
increase is valid for the duration of the flow. The assignment will
have to be non-preemptive, since it is impractical to reassign the
other flows when a new flow arrives. We assume that monitors are
homogeneous.

The metric used to evaluate online algorithms is the competi-
tive ratio [29], the supremum, over all possible input sequences, of
the maximum (over time and over monitors) load achieved by the
on-line algorithm to the maximum load achieved by the optimal of-
fline algorithm. One online algorithm performs better than another
if it has a lower competitive ratio. For load balancing problems,
the performance here is measured in terms of the maximum load.
Robin-Hood algorithm [28] has been shown to be optimal in solving
online load-balancing of unknown duration tasks with assignment
restrictions. In particular, it achieves a competitive ratio of O (

√
M ),

which is the lower bound for this class of problems. However, ap-
plying the Robin-Hood algorithm in practice is challenging because
it requires the knowledge of incoming flow weights before an as-
signment decision is made. This is hard to do since the packet rates
of a flow are not known a priori; estimates could be made (e.g.,
using machine learning) but it adds to the complexity. We omit the
details of this algorithm in the interest of space (details are found
in [28]).
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Given the above challenges, we choose a simple greedy algo-
rithm, which has been shown to achieve a competitive ratio of
(3M )2/3

2 (1 + o(1)) [27]. The greedy flow assignment algorithm as-
signs an incoming flow f to the least loaded monitor within the
subset of monitors on its path. This simple algorithm has two ad-
vantages. First, it does not require the estimation of flow weights
to decide on the monitor to which the incoming flow is assigned.
Second, as shown later in § 8, the assignment update is processed
very quickly and thus, can potentially scale to WANs.

Since the number of flows traversing an ISP network is typically
very large, making assignment decisions on per-flow basis and as
new flows arrive and terminate, is not practical. Instead, we observe
that subsets of flows, based on routing, can be grouped together.
We call these constructs flow groups. In particular, a flow group is
a set of flows that traverse a given common set of monitors. For a
given flow group, we define the corresponding monitor group as
the subset of monitors on the path of the flow group. Note that a
monitor can belong to multiple monitor groups. In Jaal, a new flow
is greedily assigned to the least loaded monitor in its corresponding
monitor group. This setup allows us to implement a very efficient
assignment algorithm that collects monitor load updates period-
ically, and then compute the assignment. Since flow arrivals and
terminations events happen at arbitrary times, the performance of
our greedy algorithm will approach the above theoretical bound
of the greedy algorithm as the periodic update period P becomes
smaller. In practice, we show in § 8 that it is comparable to that of
Robin Hood algorithm.

7 IMPLEMENTATION
Central Components: The flow assignment, and the inference
modules, are implemented at the central SDN controller using the
open source Ryu SDN framework [18]. We employ shortest path
routing; thus, flow groups are just based on common source and
destination prefixes.

As discussed in § 6, each incoming flow is assigned (based on load
updates) to the least loaded monitor. This is done via an OpenFlow
forwarding rule installed in the switch attached to the monitor. The
entire module is written using Python’s event-driven framework
as a single threaded application. The module maintains a dedicated
long lived TCP connection with each monitor. The flow assignment
module polls monitors for load updates every P = 2 seconds (a
larger value resulted in poor load balancing and a smaller value did
not yield any significant improvements).

In the inference module, the new IDS rules are created offline and
stored. The module executes a single threaded process that waits
in an event loop for monitors to send summaries. It also maintains
a long-lived TCP connection with each monitor and periodically
asks monitors for summaries. Once the summaries are received,
they are checked against every locally stored question vector, and
processed using the postprocessor, as described in § 5 and alerts if
any, are logged.

Monitors: Monitors are implemented as network functions
(NFs) at the SDN switches in Python, along with popular math
and data mining libraries (NumPy, SciPy, pandas). They are instan-
tiated by activating pre-stored VM images and attaching them to
the chosen switches via a VLAN. The process is automated using

Reservoir Sampling Jaal

Distributed Syn Flood 54% 99%

Sock Stress 60% 98%

SSH Brute Force 42% 97%

Sockstress 56% 94%

Table 1: Comparing to reservoir sampling

an Ansible script. Each monitor executes two processes. The first
process tracks load and responds to load queries when prompted.
The second is responsible for the summarization tasks. Specifically,
each monitor stores packets in a local buffer (NumPy array) and
computes summaries. The centroids and their memberships are
stored for one epoch (the periodicity with which the inference en-
gine requests summaries) as a newly created hash table where the
key is the centroid and the value is a list of actual packets associ-
ated with those centroids. If the monitor receives a request for raw
packet dumps belonging to a specific centroid, it retrieves the list
of packets using that centroid as the key and sends these to the
inference engine. A hash table that is thus created, is deleted after
the relevant epoch (2 seconds).

8 EVALUATION
Next, we present our evaluation of Jaal. We use two ISP backbone
traces from the MAWI group [15], Trace 1(2016/01) and Trace 2
(2016/02). to represent background traffic. We inject attack traffic
in conjunction. Specifically, we consider five different kinds of
attacks: (i) SYN floods to represent DoS attacks, (ii) distributed SYN
floods to represent DDoS, (iii) distributed port scans, (iv) distributed
SSH brute forcing, and (v) Sockstress. DDoS, port scans, and brute
forcing attacks are among the most common types of network-level
attacks today [13]. Hence, we choose one of each type. We choose
the Sockstress attack [2, 20] because it is more complex than other
DoS attacks. It completes the TCP handshake and sets the TCP
window size to 0, forcing the server to keep the connection alive for
a long time. Finally, we also do a case study with the Mirai attack,
and show Jaal’s effectiveness in countering it.

We now describe how we construct the different attacks. We first
note that, while the MAWI traces might contain some malicious
packets, it is very difficult to analyze the traces to determine which
packets are anomalous and which are not as they are not labeled.
In addition, running these traces through Jaal does not provide any
intelligent information because the ground truth is not available.
Thus, we treat the traces as benign traffic and explicitly inject
malicious packets.

For each attack, we throttle the injected attack traffic to be at
most 10% of the overall traffic. We get the volume of benign traffic
by parsing the MAWI traces and pre-determining the total volume
of traffic that will be replayed at each time instant. The attack scripts
then enforces the cap by stopping attack packets if the 10% quota
has already been met. Note that socktress is a stealthy DoS attack
and as such, does not need a large number of packets to succeed.
Consequently, we did not have to enforce the 10% rule for it.

For distributed attacks we generate source IP addresses randomly
from different subnets. This ensures packets take different routes
and traverse different monitors. The total number of attacking IP
addresses for each attack is approximately 200. For port scans, we
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Figure 4: ROC curves for various attacks. Batch size = 1000, rank = 12, varying k, Trace 1.
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Figure 5: ROC curves for various attacks. Batch size = 2000, k = 500, varying rank, Trace 1.
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use the popular Nmap tool [16] to conduct scans. Nmap has a list
of ports that it scans and we simply use those defaults.

Testbed and configuration:We implement Jaal on an in house
SDN testbed that consists of 5 Dell PowerEdge 730 Servers (22 cores,
256GB memory, 12 ports) and two HP 3800 series switches (SDN
enabled each with 48 ports) and 2 Arista 7280E switches (each with
72 ports). Note that we use SDN for the purposes of evaluating Jaal;
it is not a necessary platform for the deployment of Jaal.

To represent the network, we use two realistic RocketFuel topolo-
gies [55] in our evaluations viz., Abovenet (which we call topology

1) and Exodus (which we call topology 2). Topology 1 has 367
routers and topology 2 has 338 routers. We create the topologies
by instantiating the desired number of open vSwitch instances and
connecting them using virtual links to match the configuration of
the chosen topology. Our virtual topology can handle Gigabit traffic
effectively, where the underlying SDN switches have 10GBE ports.

8.1 Detection Accuracy and Overhead
Overall results: In a nutshell, our experiments show that for all the
attacks considered, Jaal achieves an average true positive rate (TPR)
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of ≈98% at about 9% false positive rate (FPR) with a communication
cost of only 35% of that incurred by conventional IDS systems
(i.e., copying raw packet headers and sending to a central engine
for analysis). To achieve these, we need to select parameters that
dictate the granularity of summarization, so as to yield good trade-
offs between detection accuracy and cost. We use ROC (Receiver
Operating Characteristic) curves towards choosing the appropriate
configuration parameters (as discussed next).

ROC based analysis: Consider the case where τd1 = τd2 = τd ,
i.e., no feedback loop is implemented. Two parameters influence
Jaal’s tradeoffs between detection accuracy and communication
cost, viz., the rank r , and the number of centroids k . We examine
how accuracy changes for different values of r and k using ROC
curves. ROC curves show the TPR versus the FPR and are typically
used for understanding the tradeoff between the two metrics. Each
combination of threshold values (i.e., τd ,τc ,τv ) is a single point on
the graph, and the TPR/FPR values are computed relative to ground
truth. Each point is an average over 15 runs, each of which is 45
minutes long. Our experiments show that setting n to 20% of the
size of the batch provides good resource consumption-accuracy
tradeoffs. However, this might need to be re-evaluated by system
admins in a real deployment. The process would be the same as the
one we undertake above.

Varying number of centroids k : First, we fix r = 12, n = 1000,
nmin = 600 and vary k and consider topology 1. In Fig. 4 the detec-
tion accuracy is shown for Trace 1 (similar results are observed for
Trace 2 and are omitted in the interest of space). We observe that
a value of k = 200 (i.e., 20% of the reduced dimension packets are
sent for analysis and inference) yields very good detection accu-
racy for all attacks. Increasing k further yields diminishing returns
in accuracy while increasing the communication costs. However,
lowering k to 100 results in a significant detection penalty for all
attacks except for SYN flood attacks. This is because of the boolean
nature of flags. In other words, a packet is either as close as it can
possibly be to a representative packet (centroid) with the SYN flag
set, or is far away, depending on its SYN flag value.

Varying retained rank r : The rank of a matrix of raw packet
headers, X, is ≤ p = 18. We study the distribution of the singular
values of X and conclude that it is possible to retain 90% of the
information in X by retaining only the top 16 values. To reduce
the rank, we consider values for r < 16, as shown in Fig. 5 (with
Trace 1 and topology 1). As apparent in Figs. 5b and 5c, r = 12
yields approximately similar performance to r = 15. Dropping r to
10, however, results in a high accuracy penalty for all attacks, as
shown in Fig. 5a. We observe the similar results with Trace 2.

The Feedback Loop: From the ROC curves, we see that with-
out the feedback loop, with properly chosen values of k and r , Jaal
achieves an average TPR of ≈92% at about a 10% FPR, with a com-
munication cost of only 30% of that incurred with raw packets. At
the same time, if the TPR is chosen to be 98%, the FPR increases to
20%. We choose attack specific thresholds τd1 , τd2 , that yield these
TPR and FPRs.

In Fig. 6, we plot the communication overhead vs. the TPR with
the feedback loop. We also plot the average TPR for easy compar-
ison. We see that with a value of τd2 chosen such that the TPR
improves to 98%, the communication overhead (with the feedback

loop implemented) only increases to 35% (from 30%) of that incurred
with raw packets. Beyond this, the gain in TPR diminishes while
the communication overhead rises sharply. Finally, we point out
that with the feedback loop, the FPR is 9.1%, while the TPR is 98%.
The reason for not seeing a further increase in TPR (the FPR drops)
is that, since the traffic is already classified as attack traffic and
only the data relevant to reducing false positives is retrieved, an
increase in TPR is not observed.

Communication overhead: The communication overhead sav-
ings achieved by Jaal compared to sending raw packet headers as
in conventional NIDS, is roughly proportional to k/n (if we ignore
the raw packet overheads from feedback). After processing 2GB of
traffic (in terms of headers only) system wide, Jaal only transmitted
a total of ≈700MB. This corresponds to a 65% reduction compared
to a traditional NIDS that requires sending all the 2GB. This is com-
parable to other specialized count-based sketches [44] but provides
significantly richer information.

Feasibility of the vanilla approach of sending raw packets
for inference: To test the feasibility of just copying and forwarding
raw packets instead of generating summaries, we set up a realis-
tic ISP topology and replayed backbone traces mixed with attack
traffic (identical setup to the experiments above). The monitors (se-
lected as previously) copy packets and transfer them to the central
inference engine. We randomly vary the selection of the location
of the inference engine across the experiments (a total of 25) to
simulate different scenarios. The analysis engine runs Snort for the
purposes of detection and we consider all the 5 attacks discussed
earlier. Fig. 7 depicts the results of this experiment. We plot the
percentage decrease in (a) the throughput and (b) accuracy on the
Y-axis. The X-axis represents the percentage of traffic that is repli-
cated for analysis purposes (fraction of packets that are copied and
sent).

The network throughput reflects the average rate at which, nor-
mal traffic is processed at each switch (this takes a hit when it
processes the copied traffic). The accuracy is measured as the per-
centage of attacks that the detection engine flags from among all
the attacks injected. The throughput overhead reflects the “loss in
throughput” (compared to the baseline case without replication –
this is what is in existence today) due to the introduction of the
extra (copied) traffic. The results show that in the worst case (for
one particular choice of the central analysis engine), the through-
put overhead is 90%; in the average case the throughut overhead
is 70%. Such high throughput hits will significantly affect network
performance for the ISP (and the users subscribing to that provider).
With Jaal, the replication level roughly corresponds to 35% which
in turn corresponds to an average loss in throughput of less than
10% and a worst case hit of <20%.

We also see a 75% decrease in accuracy when all raw packets are
sent to the inference engine. This loss is a direct artifact of missing
attacks because of packet losses (arising both due to congestion and
overloading of the inference engine). The loss in accuracy shown
does not directly reflect Jaal’s accuracy – it corresponds to the loss
in accuracy due to sampling (since 35% of the packets are replicated
and transferred); as shown earlier Jaal does dramatically better in
terms of accuracy.
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Computation Costs: Our tests indicate that each monitor can
handle rates of 300Mbps easily, indicating that the combination
of SVD and k-means is not compute intensive. We omit detailed
results because of space.

Case study of the Mirai attack: To evaluate Jaal’s efficacy in
countering the Mirai attack, we emulate the attack on our testbed
(using the published source code [6]). A randomly chosen node in
the network initiates the Mirai scan and infects vulnerable devices.
An infected device starts scanning for other devices and in turn
infects them if possible. We randomly selected 150 nodes in our
network to be vulnerable.

We compare two scenarios. In the first, there is no detection
and response in place; we let the emulation run and track the
total number of infections as time progresses. In the second, we
configured Jaal to detect the scan (high variation in destination IP
for common target ports, which are in our case 23 and 2323). We
assume that the administrator shuts down traffic from an infected
node whenever the scan is detected. Jaal detects the scan with
an accuracy of 95% within 3s. Figure 8 shows the result of this
experiment. We see that due to the brute force nature of the scan,
the number of infected devices rises almost exponentially if left
unchecked. With Jaal’s detection and the consequent response in
place, the total number of infected devices never rises above 50
(infected devices are detected within 3s regardless). This means
that in the worst case, there is a three-fold decrease in the number
of devices that could have launched the subsequent DDoS attack. If
the DDoS attack is triggered later, the number of devices could be
significantly smaller (as seen in the figure) since additional devices
are detected and disabled.

Comparison toReservoir Sampling:Next, we compare Jaal’s
performance with that of a system using a state of a art sampling
technique, viz., reservoir sampling [56] [35]. For fair comparison, we
set up reservoir sampling with roughly the same communication
overhead incurred when Jaal uses r = 12,k = 200,n = 1000.
Specifically, we set the size of the reservoir to 250 and then wait
until the sampler has processed 1000 packets prior to shipping
the samples. Table 1 shows the comparison results. Since reservoir
sampling keeps a fixed-size running uniform sample of the entire
stream, attack packets sent over a short period of time will get
“diluted” in the sample by a large number of non-attack packets and
thus will not be well represented. This results in poor detection
accuracy. Note that it is possible to bias the sampling in favor of
specific header fields, but this would not be a “general” approach
towards detecting a large class of attacks.

8.2 Individual Module Performance
Next, we examine the performance of Jaal’s modules.

Greedy flow assignment:We compare Jaal’s greedy flow as-
signment to the optimal online algorithm (i.e., Robin Hood). The
weights for Robin Hood are given (we know the ground truth) and
the assignment is done on a per-flow basis; this is an ideal but im-
practical scenario. We also consider an algorithm which randomly
assigns flows to any monitor in the corresponding monitor group.
We consider Topology 1, and fix the number of monitors to 25. We
use a load update period P = 2s. In Fig. 9, we plot the time averaged

load for different monitor groups j. We see that the greedy assign-
ment closely mirrors the performance of the Robin Hood algorithm
(with deviations of 10% on average and 14% in the worst case). The
random assignment performs poorly as expected. The results are
similar for topology 2 and are omitted in the interest of space.

Dimensionality reduction using SVD: Fig. 10 depicts the vari-
ation in the magnitude of singular values (recall § 4.2) for n = 1000.
The drastic drop in magnitude beyond the top 14 values shows that
the lower values are either zero or are very small and can thus be
ignored compared to the dominant singular values. In fact, as seen
in Fig. 5, r = 12 gives us the best trade off between accuracy and
communication overhead.

Variance estimation: As discussed in § 5, variance in fields
such as port numbers, is used in Jaal’s postprocessor to detect
distributed attacks. We examine how good is Jaal’s estimate of
the variance in the destination port header fields, as we vary k ,
for different batch sizes n. We observe that the error in variance
estimation is less than 5%whenk/n > 0.2, i.e., when summaries cost
only 20% compared to sending raw packet headers, and n ≥ 1000.
Next, we study the effect of batch size on the communication costs.
In Fig. 11, we plot the compression ratio η = 1 − k/n (which is
proportional to the communication cost saved) vs. the batch size
n for two different maximum variance estimation errors ϵ . As the
batch size increases, Jaal attains better compression ratios for a
given maximum error ϵ . For example, for ϵ = 5%, and n = 2000, Jaal
achieves a compression ratio of about 85%. To ensure very low ϵ
(alternatively very high accuracy) when packet arrival rates are low,
a monitor either needs to use a smaller η (which may be acceptable
given the lower load) or wait until a larger number of packets are
accumulated prior to summarization (thus delaying inference).

Discussion on TPR and FPR: Finally, we analyze why attacks
are missed and why there are false positives. We examine the cen-
troids to which packets get assigned by parsing the entire list of
centroids and the packets that have been assigned to them and
determine which malicious packets are assigned to centroids rep-
resenting normal traffic and vice versa. We find that both kinds of
errors occur when attack packets are similar to background traffic
and the clustering is not able to differentiate between them. How-
ever, we point out that both the TPR of 98% and FPR of 9.1% that
Jaal achieves, are well within the reported acceptable performance
levels of a NIDS such as Snort or Bro [1, 31, 47].

One could further request finer grained summaries or raw pack-
ets, when an alert is to be raised to reduce false positives (with
increased cost); conceivably, even random retrieval of full traces
when an attack is flagged, could reduce the FPR. However, we leave
these possibilities to future work.

9 RELATEDWORK
In this section, we discuss relevant related work.

NIDS: There have been attempts to address the scalability issues
in centralized NIDS [38, 54] but only to the extent of scaling to
enterprise scale networks. These solutions do not hold up to the
ISP scale intrusion detection. For example, the approach in [38]
assumes that there will be a single entry and exit point into the
network which is not true for large WANs. The framework pre-
sented in [54] requires the transfer of raw packets to clusters to
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make inferences, which as discussed, leads to both performance
and inference accuracy degradation.

NetworkMonitoring, Sampling, Sketching: Packet sampling
has been proposed for heavy hitter detection [41], packet length
estimation [57] and flow size estimation for small flows [39]. In [34],
the authors provide an API for collecting flow statistics at different
aggregation levels. These approaches however, are tailored towards
measuring only a few pre-specified metrics of interest. In [52, 53] a
more general sampling strategy is developed; the strategy however,
is only effective in measuring aggregate statistics over streams (e.g.
heavy hitter detection, entropy estimation). This is not conducive to
general intrusion detection where retaining the correlations across
individual headers is necessary.

There has been progressive work on estimating various network
related metrics via sketching [44, 49]. While sketches, unlike sam-
pling, offer cost and accuracy guarantees, they suffer from the same
fundamental problem of being restricted to measuring some aggre-
gate statistic over a specified dimension. Our solution can handle
the generality of NIDS rules by retaining finer grained information.

10 DISCUSSION
In this section, we discuss a few avenues for future work as well as
areas where Jaal can be improved.

Payload-based Attacks: Jaalwas not primarily designed to de-
tect payload based attacks. We believe that payload monitoring by
ISP’s raises some important privacy questions that deserve debate.
However, Jaal can handle some rudimentary payload-based attacks
with a simple extension. Specifically, one approach to detect the
presence and/or count of certain keywords (e.g., a specific mali-
cious website, or the term “.exe” which signifies the presence of an
executable) is to construct a term frequency matrix using a batch
of packets - a popular technique used in sentiment analysis and
recommender systems [51]. This matrix can then be treated the
same way as the headers-only batch is considered in this paper.

False Positives: One area of concern with deploying Jaal is the
high FPR. We argue that the TPR and FPR rates achieved by Jaal
are significantly better than what is possible today. In other words,
there are no systems to perform effective intrusion detection at
these scales with these TPR/FPR rates. Future work will look into
reducing this false positive rate (e.g., we will examine if using multi-
ple windows of packet summaries and correlating the of inferences
from those windows can help in this regard). Note that the high FPR
is a problem inherent to signature based systems and is not unique
to Jaal. Since a system such as Jaal has never been deployed at
ISP-scale networks, it is unclear what the implications are in terms
of FPR at that scale. However, we expect analysts to parse logs just
as they would for an enterprise IDS. Establishing a dialogue with
ISP’s about the deployment of Jaal is left to future work.

Applicability:While we showcase Jaal’s performance with a
specific set of attacks, we expect Jaal to detect any attack that can
be characterized by a Snort/Bro-style packet signature. However,
we acknowledge that attacks that only need a fewmalicious packets
to succeed might be more challenging. For example, the TCP reset
attack needs only one packet with the RST field set to induce mali-
cious activity. Currently, Jaal cannot handle such attacks because a
single packet will likely get assigned to an existing centroid that

is not representative of it. Fixing this problem requires changes
to the clustering algorithm and we defer improvements along this
direction to future work.

We also note that Jaal can be used alongside smaller-scale (e.g.,
enterprise) IDSs. Jaal can also be used in conjunction with sketches.
For example, sketches could be used for simple heavy hitter de-
tection while Jaal can be used to detect more complicated attacks
requiring correlation across multiple header fields.

Adaptive attackers: Finally, a last avenue of future work is
evaluating how robust Jaal is to an intelligent attacker that is aware
of how Jaal works. Whether or not an attacker can craft packets to
explicitly bias the summarization process is something we intend
to explore in future work.

11 CONCLUSIONS
Challenges of scale, flexibility and complexity have hindered the
realization of a NIDS that can be deployed on an ISP scale network.
We propose a framework Jaal that addresses this long-standing
challenge by exploiting in-network processing to generate fine
grained, yet concise packet summaries, which can be analyzed
centrally to deliver highly accurate inferences with regards to a
wide range of attacks. Jaal reduces overheads by over 65% compared
to sending raw packets (state of the art today) while achieving a
detection accuracy of over 98%. This detection accuracy, we believe,
is the highest reported for intrusion detection at ISP scale.

Acknowledgment:We thank our shepherd CristinaNita-Rotaru
and the anonymous reviewers for their constructive comments
which helped us significantly improve the paper.

The testbed used in this project was supported by the ARO
DURIP grant W911NF1510508.The effort described in this article
was partially sponsored by the U.S. Army Research Laboratory
Cyber Security Collaborative Research Alliance under Cooperative
Agreement W911NF-13-2-0045. The views and conclusions con-
tained in this document are those of the authors, and should not be
interpreted as representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to re- produce and distribute
reprints for Government purposes, notwithstanding any copyright
notation hereon.

REFERENCES
[1] 2001. Strategies to Reduce False Positives and False Neg-

atives in NIDS. https://www.symantec.com/connect/articles/
strategies-reduce-false-positives-and-false-negatives-nids. (2001).

[2] 2012. Sockstress Tools & Source Code. https://defuse.ca/sockstress.htm. (2012).
[3] 2015. The Expanding Role of Service Providers in

DDoS Mitigation. https://resources.arbornetworks.com/i/
481939-the-expanding-role-of-service-providers-in-ddos-mitigation?
hubItemID=55526068. (2015). [Online; accessed 23-Jan-2017].

[4] 2016. The Biggest Data Breaches in 2016, So Far. https://www.identityforce.com/
blog/2016-data-breaches. (2016). [Online; accessed 10-Jan-2017].

[5] 2016. How the Dyn DDoS attack unfolded. http://www.networkworld.com/
article/3134057/security/how-the-dyn-ddos-attack-unfolded.html. (2016).

[6] 2016. jgamblin/Mirai-Source-Code. https://github.com/jgamblin/
Mirai-Source-Code. (2016).

[7] 2016. KrebsOnSecurity Hit With Record DDoS. https://krebsonsecurity.com/
2016/09/krebsonsecurity-hit-with-record-ddos/. (2016).

[8] 2016. Large DDoS attacks cause outages at Twitter, Spo-
tify, and other sites. https://techcrunch.com/2016/10/21/
many-sites-including-twitter-and-spotify-suffering-outage/. (2016).

[9] 2016. Lessons From the Dyn DDoS Attack. https://www.schneier.com/blog/
archives/2016/11/lessons_from_th_5.html. (2016).

https://www.symantec.com/connect/articles/strategies-reduce-false-positives-and-false-negatives-nids 
https://www.symantec.com/connect/articles/strategies-reduce-false-positives-and-false-negatives-nids 
https://defuse.ca/sockstress.htm
https://resources.arbornetworks.com/i/481939-the-expanding-role-of-service-providers-in-ddos-mitigation?hubItemID=55526068
https://resources.arbornetworks.com/i/481939-the-expanding-role-of-service-providers-in-ddos-mitigation?hubItemID=55526068
https://resources.arbornetworks.com/i/481939-the-expanding-role-of-service-providers-in-ddos-mitigation?hubItemID=55526068
https://www.identityforce.com/blog/2016-data-breaches
https://www.identityforce.com/blog/2016-data-breaches
http://www.networkworld.com/article/3134057/security/how-the-dyn-ddos-attack-unfolded.html
http://www.networkworld.com/article/3134057/security/how-the-dyn-ddos-attack-unfolded.html
https://github.com/jgamblin/Mirai-Source-Code
https://github.com/jgamblin/Mirai-Source-Code
 https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/ 
 https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/ 
https://techcrunch.com/2016/10/21/many-sites-including-twitter-and-spotify-suffering-outage/
https://techcrunch.com/2016/10/21/many-sites-including-twitter-and-spotify-suffering-outage/
https://www.schneier.com/blog/archives/2016/11/lessons_from_th_5.html
https://www.schneier.com/blog/archives/2016/11/lessons_from_th_5.html


Jaal CoNEXT ’17, December 12–15, 2017, Incheon, Korea

[10] 2016. Mirai IoT Botnet Description and DDoS Attack
Mitigation. https://www.arbornetworks.com/blog/asert/
mirai-iot-botnet-description-ddos-attack-mitigation/. (2016).

[11] 2016. Mirai: what you need to know about the botnet behind re-
cent major DDoS attacks. https://www.symantec.com/connect/blogs/
mirai-what-you-need-know-about-botnet-behind-recent-major-ddos-attacks.
(2016).

[12] 2016. Someone Is Learning How to Take Down the Internet. https://www.
schneier.com/blog/archives/2016/09/someone_is_lear.html. (2016).

[13] 2016. Top 7 types of network attacks. http://www.calyptix.com/top-threats/
top-7-network-attack-types-2016/. (2016).

[14] 2017. Cyber-Hunting at Scale (CHASE). https://www.fbo.gov/index?s=
opportunity&mode=form&id=a6b09e0661902c71a9c3205db0fff55d&tab=core&
_cview=1. (2017).

[15] 2017. MAWI Working Group Traffic Archive. http://mawi.wide.ad.jp/mawi/.
(2017).

[16] 2017. Nmap: the Network Mapper. https://nmap.org. (2017).
[17] 2017. Rule Doc Search. https://snort.org/rule-docs. (2017).
[18] 2017. Ryu SDN Framework. https://osrg.github.io/ryu/. (2017).
[19] 2017. Sid 1-19559. https://www.snort.org/rule_docs/1-19559. (2017).
[20] 2017. Sid 3-16294. https://www.snort.org/rule_docs/3-16294. (2017).
[21] 2017. Snort. https://www.snort.org. (2017).
[22] 2017. Snort Users Manual. https://www.snort.org/documents/

snort-users-manual. (2017).
[23] Susanne Albers. 2003. Online algorithms: a survey. Mathematical Programming

97, 1-2 (2003), 3–26.
[24] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. 2009. NP-

hardness of Euclidean sum-of-squares clustering. Machine learning 75, 2 (2009),
245–248.

[25] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. 2017. Understanding the Mirai Botnet. (2017).

[26] David Arthur and Sergei Vassilvitskii. 2007. k-means++: The advantages of
careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on
Discrete algorithms. Society for Industrial and Applied Mathematics, 1027–1035.

[27] Yossi Azar, Andrei Z Broder, and Anna R Karlin. 1994. On-line load balancing.
Theoretical Computer Science 130, 1 (1994), 73–84.

[28] Yossi Azar, Bala Kalyanasundaram, Serge Plotkin, Kirk R Pruhs, and Orli Waarts.
1997. On-line load balancing of temporary tasks. Journal of Algorithms 22, 1
(1997), 93–110.

[29] Allan Borodin, Nathan Linial, and Michael E. Saks. 1992. An Optimal On-line
Algorithm for Metrical Task System. J. ACM 39, 4 (Oct. 1992), 745–763. https:
//doi.org/10.1145/146585.146588

[30] Lothar Braun, Cornelius Diekmann, Nils Kammenhuber, and Georg Carle. 2013.
Adaptive load-aware sampling for network monitoring on multicore commodity
hardware. In IFIP Networking Conference, 2013. IEEE, 1–9.

[31] S Terry Brugger and Jedidiah Chow. 2007. An assessment of the DARPA IDS
Evaluation Dataset using Snort. UCDAVIS department of Computer Science 1, 2007
(2007), 22.

[32] Waleed Bulajoul, Anne James, and Mandeep Pannu. 2013. Network intrusion
detection systems in high-speed traffic in computer networks. In e-Business
Engineering (ICEBE), 2013 IEEE 10th International Conference on. IEEE, 168–175.

[33] Michael Buratowski. 2016. The DNC server breach: who did it and what does it
mean? Network Security 2016, 10 (2016), 5–7.

[34] Shihabur Rahman Chowdhury, Md Faizul Bari, Reaz Ahmed, and Raouf Boutaba.
2014. PayLess: A low cost network monitoring framework for software defined
networks. In 2014 IEEE Network Operations and Management Symposium (NOMS).
IEEE, 1–9.

[35] Nick Duffield, Carsten Lund, and Mikkel Thorup. 2007. Priority sampling for
estimation of arbitrary subset sums. Journal of the ACM (JACM) 54, 6 (2007), 32.

[36] Carl Eckart and Gale Young. 1936. The approximation of one matrix by another
of lower rank. Psychometrika 1, 3 (1936), 211–218.

[37] Cristian Estan, Ken Keys, David Moore, and George Varghese. 2004. Building
a better NetFlow. In ACM SIGCOMM Computer Communication Review, Vol. 34.
ACM, 245–256.

[38] Victor Heorhiadi, Michael K Reiter, and Vyas Sekar. 2012. New opportunities for
load balancing in network-wide intrusion detection systems. In Proceedings of the
8th international conference on Emerging networking experiments and technologies.
ACM, 361–372.

[39] Chengchen Hu, Sheng Wang, Jia Tian, Bin Liu, Yu Cheng, and Yan Chen. 2008.
Accurate and efficient traffic monitoring using adaptive non-linear sampling
method. In INFOCOM 2008. The 27th Conference on Computer Communications.
IEEE. IEEE, 26–30.

[40] Ian Jolliffe. 2002. Principal component analysis. Wiley Online Library.
[41] N Kamiyama and T Mori. [n. d.]. Simple and Accurate Identification of High-

Rate Flows by Packet Sampling. In Proceedings IEEE INFOCOM 2006. 25TH IEEE
International Conference on Computer Communications.

[42] George Khalil. 2015. Open Source IDS High Performance Shootout. White Paper.
SANS Institute.

[43] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. 2003.
Sketch-based change detection: methods, evaluation, and applications. In Pro-
ceedings of the 3rd ACM SIGCOMM conference on Internet measurement. ACM,
234–247.

[44] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. 2016. One sketch to rule them all: Rethinking network flow monitor-
ing with UnivMon. In Proceedings of the 2016 conference on ACM SIGCOMM 2016
Conference. ACM, 101–114.

[45] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129–137.

[46] Jianning Mai, Chen-Nee Chuah, Ashwin Sridharan, Tao Ye, and Hui Zang. 2006.
Is sampled data sufficient for anomaly detection?. In Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement. ACM, 165–176.

[47] Samuel Patton, William Yurcik, and David Doss. 2001. An AchillesâĂŹ heel in
signature-based IDS: Squealing false positives in SNORT. In Proceedings of RAID,
Vol. 2001.

[48] Vern Paxson. 1999. Bro: a system for detecting network intruders in real-time.
Computer networks 31, 23 (1999), 2435–2463.

[49] Anirudh Ramachandran, Srinivasan Seetharaman, Nick Feamster, and Vijay
Vazirani. 2008. Fast monitoring of traffic subpopulations. In Proceedings of the
8th ACM SIGCOMM conference on Internet measurement. ACM, 257–270.

[50] Martin Roesch. 1999. Snort-Lightweight Intrusion Detection for Networks. In
Proceedings of the 13th USENIX conference on System administration. USENIX
Association, 229–238.

[51] Lior Rokach and OdedMaimon. 2005. WebMining. InData mining and knowledge
discovery handbook. Springer, 321–352.

[52] Vyas Sekar, Michael K Reiter, Walter Willinger, Hui Zhang, Ramana Rao Kom-
pella, and David G Andersen. 2008. CSAMP: A System for Network-Wide Flow
Monitoring.. In NSDI, Vol. 8. 233–246.

[53] Vyas Sekar, Michael K Reiter, and Hui Zhang. 2010. Revisiting the case for a
minimalist approach for network flow monitoring. In Proceedings of the 10th
ACM SIGCOMM conference on Internet measurement. ACM, 328–341.

[54] Praveen Kumar Shanmugam, Naveen Dasa Subramanyam, Joe Breen, Corey
Roach, and Jacobus Van der Merwe. 2014. DEIDtect: towards distributed elastic
intrusion detection. In Proceedings of the 2014 ACM SIGCOMM workshop on
Distributed cloud computing. ACM, 17–24.

[55] Neil Spring, Ratul Mahajan, and David Wetherall. 2002. Measuring ISP topologies
with Rocketfuel. ACM SIGCOMM Computer Communication Review 32, 4 (2002),
133–145.

[56] Jeffrey S Vitter. 1985. Random sampling with a reservoir. ACM Transactions on
Mathematical Software (TOMS) 11, 1 (1985), 37–57.

[57] Lili Yang and George Michailidis. 2007. Sampled based estimation of network
traffic flow characteristics. In INFOCOM 2007. 26th IEEE International Conference
on Computer Communications. IEEE. IEEE, 1775–1783.

https://www.arbornetworks.com/blog/asert/mirai-iot-botnet-description-ddos-attack-mitigation/ 
https://www.arbornetworks.com/blog/asert/mirai-iot-botnet-description-ddos-attack-mitigation/ 
https://www.symantec.com/connect/blogs/mirai-what-you-need-know-about-botnet-behind-recent-major-ddos-attacks 
https://www.symantec.com/connect/blogs/mirai-what-you-need-know-about-botnet-behind-recent-major-ddos-attacks 
https://www.schneier.com/blog/archives/2016/09/someone_is_lear.html
https://www.schneier.com/blog/archives/2016/09/someone_is_lear.html
http://www.calyptix.com/top-threats/top-7-network-attack-types-2016/
http://www.calyptix.com/top-threats/top-7-network-attack-types-2016/
https://www.fbo.gov/index?s=opportunity&mode=form&id=a6b09e0661902c71a9c3205db0fff55d&tab=core&_cview=1
https://www.fbo.gov/index?s=opportunity&mode=form&id=a6b09e0661902c71a9c3205db0fff55d&tab=core&_cview=1
https://www.fbo.gov/index?s=opportunity&mode=form&id=a6b09e0661902c71a9c3205db0fff55d&tab=core&_cview=1
http://mawi.wide.ad.jp/mawi/
https://nmap.org
https://snort.org/rule-docs
https://osrg.github.io/ryu/
https://www.snort.org/rule_docs/1-19559
https://www.snort.org/rule_docs/3-16294
https://www.snort.org
https://www.snort.org/documents/snort-users-manual
https://www.snort.org/documents/snort-users-manual
https://doi.org/10.1145/146585.146588
https://doi.org/10.1145/146585.146588

	Abstract
	1 Introduction
	2 Synopsis
	3 System Overview
	4 Packet Summarization
	4.1 Packet filtering and Normalization
	4.2 Dimensionality reduction: fields mode
	4.3 Dimensionality reduction: packets mode

	5 Analysis and Inference
	5.1 Aggregating summaries
	5.2 Inference in Jaal
	5.3 Trading cost for accuracy

	6 Flow Assignment
	7 Implementation
	8 Evaluation
	8.1 Detection Accuracy and Overhead
	8.2 Individual Module Performance

	9 Related Work
	10 Discussion
	11 Conclusions
	References

