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ABSTRACT
Most social media messages are written in languages other than
English, but commonly used text mining tools were designed only
for English. This paper introduces the Unicode Convolutional Neural
Network (UnicodeCNN) for analyzing text written in any language.
The UnicodeCNN does not require the language to be known in ad-
vance, allows the language to change arbitrarily mid-sentence, and
is robust to the misspellings and grammatical mistakes commonly
found in social media. We demonstrate the UnicodeCNN’s effective-
ness on the challenging task of content-based tweet geolocation
using a dataset with 900 million tweets written in more than 100
languages. Whereas previous work restricted itself to predicting a
tweet’s country or city of origin (and only worked on tweets writ-
ten in certain languages from highly populated cities), we predict
the exact GPS locations of tweets (and our method works on tweets
written in any language sent from anywhere in the world). We pre-
dict GPS coordinates using the mixture of von Mises-Fisher (MvMF)
distribution. The MvMF exploits the Earth’s spherical geometry to
improve predictions, a task that previous work considered too com-
putationally difficult. On English tweets, our model’s predictions
average more than 300km closer to the true location than previous
work, and in other languages our model’s predictions are up to
1500km more accurate. Remarkably, the UnicodeCNN can learn
geographic knowledge in one language and automatically transfer
that knowledge to other languages.
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1 INTRODUCTION
Social media platforms are becoming increasingly multilingual.
More than 100 languages are known to be actively used on Twitter
[25], and while English is still the most popular, its popularity is
shrinking. An analysis of tweets sent in 2012 found that 53% of
tweets were written in English [21], but our analysis of tweets sent
in 2018 shows that only 42% of tweets were written in English. Most

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CIKM ’19, November 3–7, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00
https://doi.org/10.1145/3357384.3357926

prior work only studies these English messages, and unfortunately
this English-only approach can create unfair bias against minority
communities [e.g. 5, 12, 23, 55].

This paper introduces the Unicode Convolutional Neural Network
(UnicodeCNN) for analyzing multilingual social media text. The
UnicodeCNN generates features directly from the Unicode char-
acters in the input text and requires no tokenization, stemming,
or other preprocessing. Character-level convolutional neural net-
works have previously been successfully applied to text corpora
containing only English [10, 62] or a limited number of European
languages [33, 58], but our UnicodeCNN can take any Unicode
string as input and therefore works with all languages. We use the
same model to analyze English, Arabic, Japanese, and the more than
100 languages present in our Twitter dataset. The UnicodeCNN
is particularly well-suited to analyzing social media text because
it is naturally robust to the spelling mistakes and non-standard
grammar commonly found in this domain.

We apply the UnicodeCNN to the challenging problem of content-
based tweet geolocation, i.e. predicting where a tweet was sent from
based only on its text. Geolocation is a well-studied problem, and
we improve the state-of-the-art in three ways.
1. Ourmethodworkswith all languages. Most prior work considers

only English-language tweets [6, 9, 13, 14, 20, 34, 37, 45, 46, 61],
or tweets in a single non-English language like Spanish [17, 38,
54] or Italian [42]. Han et al. [21] propose the only previous
multilingual system, but they explicitly “do not consider under-
represented languages” due to the difficulty of modeling them.
A common feature of all these methods is that they generate
features from words in the tweet’s text. Their learning pipeline
therefore requires special tools for tokenizing the input text
into a list of words. Existing tokenization tools work only for
some languages, and extending the word-level approach to the
highly multilingual setting requires developing tokenizaiton
tools for all possible languages. The UnicodeCNN, in contrast,
works at the character level and processes all languages in a
unified method. Remarkably, we show that certain geographic
information learned in one language is automatically learned in
other languages as well.

2. Our method works on tweets sent from anywhere in the world.
All previous work considered only a subset of tweets that were
particularly easy to geolocate. In particular, all works cited above
filter their datasets to contain only tweets sent from certain
countries or major cities. We perform no such filtering. A side
effect of this lack of filtering is that our dataset is orders of
magnitude larger than previously considered tweet geolocation
datasets. Our dataset contains more than 900 million tweets,
whereas the largest previously considered dataset WORLD+ML
contains only 23 million tweets [21].
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3. We predict exact GPS locations and exploit the Earth’s spherical
geometry. Most previous work solves a classification problem,
where each tweet is associatedwith either its country or a nearby
city. Duong-Trung et al. [14] propose the only prior method
for predicting exact GPS coordinates, but they do not consider
the non-Euclidean nature of the Earth’s surface and so have
only limited success. We instead use a mixture of von Mises-
Fisher (MvMF) distributions to predict the exact GPS location
of tweets. (See Figure 1 for an example output.) The MvMF is
flexible enough to use input features from either the existing
word-level methods or from the UnicodeCNN, and we show that
the UnicodeCNN geolocates tweets more than 300km closer to
their true locations on average.
Improved tweet geolocation has many important applications.

Geotagged tweets have been used to map the spread of influenza
[43, 50], for measuring the impact of earthquakes [49], for coor-
dinating emergency services [28, 48],for measuring the spread of
political opinions [2, 11], for comparing dietary habits in different
locations [60], for measuring neighborhood happiness levels [40],
for measuring unemployment rates [1, 35], and for understand-
ing differences between African American English and Standard
American English [4, 16, 27]. Unfortunately for these applications,
only about 1% of tweets are geotagged by their users. Our system
can predict the location of the other 99% of tweets and therefore
improve the accuracy and applicability of all of these methods.
Paper Outline. The next section qualitatively illustrates the ad-
vantage of the UnicodeCNN over other models. We show specific
linguistic properties that the UnicodeCNN is sensitive to that no
word-level model can detect. Section 3 describes the UnicodeCNN
and the MvMF output layer for predicting GPS coordinates. Section
4 describes our dataset of 900 million tweets, baseline comparison
models, and our experimental results.

2 SIMPLE EXAMPLES
This section presents two simple examples that illustrate the com-
plexity of the content-based geolocation problem. We use these
examples to demonstrate that the UnicodeCNN generates more
powerful features than previous state-of-the-art methods.
Example 1. Our first example illustrates how the UnicodeCNN is
able to learn verb conjugation rules and use them for geolocation.
Consider the following short Spanish tweet:1

No me habléis

which translates to
Don’t speak to me

Figure 1 shows the GPS coordinates that our model predicts this
tweet was sent from, and the plot below shows the model’s top
three predicted countries and associated probabilities.

0.0 0.2 0.4 0.6 0.8 1.0

Spain
Argentina

United States

1Tweets in both examples are real tweets. Out of respect for the sender’s privacy, we
do not disclose the tweet IDs.
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Figure 1: We model a tweet’s location as a mixture of
vonMises-Fisher distributions over the Earth’s surface. This
map shows the distribution for the tweet No me hablen from
Example 1 below. Darker, bluer regions have higher prob-
ability, and lighter, greener regions have lower probability.
Notice that the tweet’s true location is assigned relatively
high probability.

This tweet was in fact sent from Spain as our model predicts. Our
model made this prediction by learning that the word habléis is a
conjugation of the verb hablar in the vosotros form, which is only
used in the Castilian Spanish dialect of Spain. American Spanish
dialects use the ustedes form instead, which conjugates the verb
as hablen. If we modify the tweet to use the American Spanish
dialect:
No me hablen

then the model’s predictions change accordingly:
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Argentina

Mexico

The UnicodeCNN’s ability to understand verb conjugations is
quite robust. For example, if we modify the original tweet by re-
moving spaces (to get Nomehabléis), by removing the accent (No
me hableis) or by dropping letters (No me ableis), then our
model still predicts the tweet was sent from Spain. Remarkably,
the UnicodeCNN even understands verb conjugations it has never
seen before. The Spanish verb apresar2 does not appear in our
training data in either the vosotros form (apreséis) or the ustedes
form (apresen). Nevertheless, our model correctly predicts that the
Castillian Spanish phrase
No me apreséis

is from Spain:

0.0 0.2 0.4 0.6 0.8 1.0

Spain
Argentina

Mexico

2 The word apresar translates as to arrest. The phrases No me apreséis/No me
apresen translate as Don’t arrest me.



Similarly, our model predicts that the American Spanish phrase
No me apresen

is from the Americas:

0.0 0.2 0.4 0.6 0.8 1.0

Argentina
Mexico

United States

There are many other geographical variations in Spanish verb
conjugation patterns which the UnicodeCNN exploits, but no pre-
vious work studying Spanish language geolocation exploits these
patterns [17, 21, 38, 54]. Exploiting these patterns is difficult for
methods using word-level features because word-level feature ex-
traction requires explicit tokenization, and the tokenization proce-
dure would somehow need to understand these conjugation pat-
terns. Special purpose tokenizers for tweet analysis have been built
for English [41] and are widely used in existing tweet analysis work.
Similar tools could be designed for Spanish, but many other less
common (and less studied) languages also have sophisticated verb
conjugation systems, and it would be difficult to develop special
tokenizers for all of these languages. The UnicodeCNN avoids this
difficulty because it operates at the character level rather than the
word level and so does not need an explicit tokenization step. The
UnicodeCNN is able to learn conjugations in all languages in a
simple, unified manner.
Example 2. This example shows how the UnicodeCNN can learn
geographic knowledge in one language and transfer that knowledge
to other languages. Consider the following tweet sent from Kuwait
written in a mixture of English and Arabic:
I’m at JAC� ��mWA�� in ��kw§.

Translated fully into English, this tweet reads:
I’m at a street restaurant in Kuwait.

For this tweet, there is no need to analyze subtle linguistic clues to
determine where the tweet was sent from because the location is
written directly in the text. To identify this tweet’s location, all we
need to do is understand that the Arabic word ��kw§ refers to the
country Kuwait. The UnicodeCNN successfully learns this fact. Its
top three predicted countries and associated probabilites are:

0.0 0.2 0.4 0.6 0.8 1.0

Kuwait
Saudi Arabia

Egypt

Now consider the following plausible scenario: A Japanese tourist
visits Kuwait and sends a similar tweet but with the Arabic portions
written in Japanese. The translated tweet is:
I’m at 通りレストラン in クウェート.

A good geolocationmodel should still predict this tweet was written
in Kuwait despite the language change, and our model does (but
with lower confidence). Its output is

0.0 0.2 0.4 0.6 0.8 1.0

Kuwait
Saudi Arabia

Egypt

This result is remarkable because the Japanese word for Kuwait
(クウェート) never appears in our training data. The UnicodeCNN
learned thatクウェート is Japanese for Kuwait because this word
sounds similar to the Arabic and English words for Kuwait, and
these words are in the training data. Similar transfers of knowledge
happen for many other location and language combinations, and
more generally for loan words adopted from foreign languages.
This knowledge transfer is due to the novel way we encode the
input Unicode text, and no previous work has observed similar
transfers.

In this example, we specifically chose to mix Japanese and Eng-
lish in a single tweet to demonstrate another advantage of the
UnicodeCNN. Japanese text does not uses spaces to mark word
boundaries, and so the only prior work on multilingual tweet ge-
olocation [21] required a specialized tokenizer to extract words
from Japanese tweets. This tokenizer works only on pure Japanese
tweets, and can fail for tweets containing a mixture of Japanese
and other languages. Many other Asian languages also require
specialized tokenizers to extract words from tweets, but these lan-
guages were ignored by [21] due to the additional complexity of
supporting them. The UnicodeCNN, in contrast, does not require
tokenization because it constructs features from characters rather
than words. It therefore works with all languages and supports
arbitrary combinations of languages in the same sentence.

3 OUR MODEL
The structure of our geolocation model is shown in Figure 2. The
input text is passed to the UnicodeCNN, which generates features
and passes those features to the output layers. The UnicodeCNN
generates its features in four stages: a character encoder, convolu-
tional layers, a language estimator, and a feature mixing layer. The
convolutional and feature mixing layers are inspired by the charac-
ter level convolutional neural network (CLCNN) [62]. The CLCNN
was designed only for English language text, and the character
encoder and language estimator are the key improvements which
let the UnicodeCNN support all languages. The experiments in
Section 4 evaluate three versions of the UnicodeCNN with different
hyperparameter settings. We call these the Small, Large, and Huge
models, and Table 1 summarizes their differences. The output of
the UnicodeCNN is a set of application agnostic features. For our
geolocation application we use a standard cross entropy layer to
estimate the country and our novel mixture of von Mises-Fisher
layer to estimate the GPS location. Other output layers can easily
be used for other applications, and we open source our model’s
weights to facilitate transfer learning between applications.

3.1 The UnicodeCNN
We first present necessary background from the Unicode standard
[53], including a summary of shortcomings of previous Unicode-
aware deep learning systems. Then we describe the four stages of
the UnicodeCNN feature generator.
Unicode Background. The fundamental building block of Uni-
code strings is called a code point. A code point is a number (written
as U+ the number in hexadecimal) that represents either a charac-
ter or formatting command. For example, the code point U+004F
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Figure 2: The UnicodeCNN adds a novel character embedding and language estimator to the character level convolutional
neural network (CLCNN) [62]. We use two outputs for the geolocation task: the standard cross entropy to predict the country,
and a novel mixture of von Mises-Fisher distributions to predict the GPS coordinates.

represents the Latin uppercase O. Complex characters can be en-
coded directly or as a combination of simple letters plus formatting
commands called marks. For example, the Vietnamese character
Ớ can be represented by the single code point U+1EDA, or by the
sequence of code points U+004F (Latin uppercase O) U+031B (com-
bining horn) U+0301 (combining acute accent), or a number of other
strings. Each of these strings is semantically equivalent, because
they represent the same character.

For each code point, the Unicode standard [53] associates im-
portant linguistic information that the UnicodeCNN’s character
encoder will exploit. For example, normalization strategies are meth-
ods for converting between semantically equivalent strings; translit-
erations are methods for converting between different alphabets;
and character properties is the generic Unicode term for other infor-
mation associated with a code point. This information represents
the combined expertise of hundreds of linguistic experts working
for nearly 30 years.

Previous Unicode-aware deep learning systems have ignored
these features of code points and instead operated at the encod-
ing level. An encoding associates each code point with a binary
representation. UTF-8 is a popular encoding that uses 1 byte to
represent Latin characters, 2 bytes to represent most other Euro-
pean and Arabic characters, and 3 bytes to represent most Asian
characters. Gillick et al. [15] and Plank et al. [44] are the only two
previous works developing neural networks that accept Unicode
input, and their models work directly on UTF-8 encoded strings.
This method of incorporating Unicode inputs is simple but has
two disadvantages. First, strings written in English have simpler
UTF-8 encodings than strings written in other languages. and so
the learning pipeline will be biased to favor English text. Second,
Unicode’s linguistic knowledge of normalization, transliteration,
and character properties is not used in the learning pipeline. Our
character encoder works at the code point level instead of the en-
coding level. It is more complicated than directly using the UTF-8
encoding, but has reduced bias for English language strings and
takes full advantage of Unicode’s many features.
Character Encoder. The character encoder converts the input
text into a binary matrix. This conversion is necessary because
deep learning systems require numeric inputs and cannot work di-
rectly on text. The original CLCNN model used an encoding matrix

constructed by 1-hot encoding the input characters. A 1-hot en-
coding was feasible because the CLCNN only supported the Latin
alphabet. Unicode supports more than one million code points,
however, so a 1-hot encoding of a Unicode string is infeasible.3
We use an alternative to 1-hot encoding that greatly reduces the
encoding size and ensures that similar inputs have similar encoding
matrices. This latter property facilitates the UnicodeCNN’s robust-
ness to spelling mistakes and the transfer of language knowledge
observed in Section 2 above. For example, the construction ensures
that the English word Kuwait, the Arabic word ��kw§ (which
means Kuwait), and the Japanese wordクウェート (which also
means Kuwait) use similar encoding matrices.

The character encoder produces a 280 d encodingmatrix, where
each entry is either 0 or 1, and d is a hyperparameter called the
encoding size. The number of rows is set to 280 because this is the
maximumnumber of characters in a tweet. Most Unicode characters
are encoded as a single row in the encoding matrix, but certain
complex characters (e.g. Chinese, Japanese, and Korean characters)
get encoded into multiple rows. Twitter limits the size of tweets in
these languages to only 140 characters, so tweets in these languages
still typically fit in the 280 row encoding matrix.

The first step to generating the encoding matrix is to normalize
the string’s representation using Unicode’s NFKC normalization
strategy. NFKC normalization converts the input string into the
smallest possible semantically equivalent string. This step ensures
that all semantically equivalent input tweets will have the same
character encoding matrix.

Next, we loop through each code point in the normalized string
and update the corresponding rows in the encoding matrix. We
determine the number of rows a code point occupies as follows: If
the code point is not a letter, then it gets a single row. Otherwise,
we first transliterate the letter into the Latin alphabet. The number
of characters in the transliteration is the number of rows the code
point gets in the matrix. For example, the Vietnamese character
Ớ is transliterated into O and so gets only a single row, but the

3 The sparsity of the encoding doesn’t help because the total number of parameters
used in future stages of the model is proportional to the size of the encoding matrix and
not the sparsity. A hypothetical 1-hot encoding of Unicode code points also wouldn’t
take advantage of similar code points sharing parameters as our encoding does.



Chinese character東 gets transliterated into dong and so occupies
4 rows. For each row, the column values are assigned as follows.
Columns 1-7: These columns are a 1-hot encoding of the code
point’s Unicode category. The Unicode category can be either: letter,
mark, number, punctuation, symbol, separator, or other.
Column 8: This column is set to one if the code point is either an
upper case or title case character, and zero otherwise.
Columns 9-13: These columns are a 1-hot encoding of the code
point’sUnicode directionality. The directionality can be either: strongly
left-to-right (e.g. Latin letters), strongly right-to-left (e.g. Arabic
letters), weak (e.g. numbers), neutral (e.g. paragraph separators), or
an explicit formatting command.
Columns 14-29: These columns encode diacritic marks on letter
code points as follows. The code point is decomposed into a ready-
made character and combining marks using the NFD normalization
scheme. Each mark in the decomposition is assigned a number
between 0 and 15 by first multiplying the code point’s value by
a large prime, then taking the remainder mod 16. Then, column
14 + r is set to 1 for each mark. There are thousands of marks
defined in the Unicode standard, so many marks will have the same
representation. This procedure can be thought of as an advanced
form of feature hashing [59] at the mark level.
Columns 30-31: Column 30 is set to 1 if the character is #, and
column 31 is set to 1 if the character is @. These characters have
their own columns because they have special meaning in Twitter
messages (indicating hashtags and mentions).
Columns 32-57: These columns encode the Latin transliteration of
the code point. Column 32 is set to 1 if the transliteration of the
code point is a, column 33 if the transliteration is b, and so on until
column 57 if the transliteration is z.
Column 58: This column is set to 1 if the character is actually from
the Latin alphabet.
Column 59: This column is set to 1 if the character is the first
character in a transliteration string.
Columns 60-d : If the character is from the Latin alphabet (i.e. Col-
umn 58 is 1), then all these bits are set to 0. Otherwise, the code
point is multiplied by a large prime and the remainder r with respect
to d − 60 is taken. Column 60 + r is then set to 1 and all others to 0.
As with columns 14-29, these columns will have many collisions
and can be thought of as feature hashing [59] at the character level.
As d increases, the number of collisions decreases, and we expect
better training performance. As shown in Table 1, the small and
large models use d = 128 and the huge model uses d = 256.
Convolutional Layers. The character encoding matrix is passed
as the input to a series of six temporal convolutional layers. The
purpose of these convolutional layers is to find important patterns
in the input encoding matrix. Temporal convolution is a standard
deep learning method, and a full description is beyond the scope
of this paper. Here, we briefly describe the intuition behind these
convolutional layers and state the parameters that we use. We refer
the reader to the Deep Learning Book [18] and the original paper
on CLCNNs [62] for mathematical details.

Intuitively, a convolutional layer generates a new “higher level”
set of features from the input “low level” features. These higher level

Hyperparameter Small Large Huge
encoding size (d) 128 128 256
convolutional channels 256 1024 2048
feature mixing layer size 1024 2048 4096

Table 1: Hyperparameters for the three variants of the Uni-
codeCNN.

features are known to be robust to small variations in spelling. They
are formed by convolving a suitable filter with the input matrix,
then optionally performing max-pooling. There are two important
parameters: the number of channels and the width. The number
of channels determines the number of filters that are applied in
parallel, each creating its own set of output features. Increasing
the number of channels increases the model’s ability to detect
important linguistic features, but it also increases the computational
complexity of the model and the model’s ability to overfit the data.
Our Large and Small models use the same number of channels
as the Large and Small models of the original CLCNN [62], and
our Huge model uses twice as many channels (see Table 1). Our
training dataset is orders of magnitude bigger than the datasets
used to evaluate the original CLCNN, so we are able to train bigger
models without overfitting. The width of a convolutional or max-
pooling layer determines the number of input features that get
combined into a single output feature. All three sizes of our model
use the same size widths as the original CLCNN. The parameters
for each convolutional layer are shown in the table below:

Layer Kernel Width Max-Pooling Width
1 7 3
2 7 3
3 3 N/A
4 3 N/A
5 3 N/A
6 3 3

It is possible to replace the CLCNN convolutional layers we
use with alternative architectures designed for character-level pro-
cessing. Alternative architectures have proposed using deeper con-
volutional layers with resnet connections [10], recurrent neural
networks [8], or complex combinations of convolutional and re-
curent networks [30, 31]. Each of these techniques requires consid-
erable processing resources, however, so we do not exhaustively
compare these techniques against each other. (Training the Huge
UnicodeCNN requires an estimated 90 GPU-weeks as described in
Section 4, and the alternative models are similarly computation-
ally expensive.) We chose to base our model off of the CLCNN’s
convolutional layers because it had the best performance on initial
tests using a small held-out subset of tweets. We speculate that
convolutions perform better than recurrent networks on twitter
analysis because tweets are guaranteed to be short, but recurrent
networks are designed for arbitrary length inputs.
Language Encoder. The output of the convolutional layers is
passed to two fully connected rectified linear unit (ReLU) layers. For
all three model sizes we set the width of these layers to 1024. The



fully connected layers are then passed to a softmax layer which
predicts the language of the tweet.

Training the model requires that the text be labeled with the
language in some way. For unlabeled text, standard language pre-
dictors such as langid.py [36] can be used, but the Twitter API
associates a language with each tweet and we use this label. The
Twitter API labels each tweet with one of 65 officially supported
languages or Unknown if it cannot determine a language. For exam-
ple, Croatian is not an officially supported language, and so tweets
written in Croatian get classified as Unknown. Twitter’s language
labels are rather noisy. Short tweets are likely to get mislabelled,
and many tweets in unsupported languages get misclassified as a
supported language. For example, tweets written in Catalan get
classified as Spanish, and tweets written in Malay get classified as
Indonesian. Our fully trained system estimates the Twitter API’s
language labels with about 95% accuracy for all three UnicodeCNN
sizes, and we suspect this is close to optimal.

Why not just directly use labels provided by the Twitter API or
a language classifier? Two reasons: First, we believe our learned
language labels are more accurate than the Twitter API’s. Second,
language classifiers like langid.py are slow. Language classifiers
use their own alternate pipeline to generate features from text, but
we can simply reuse the feature generation pipeline we’ve already
created to avoid duplicated work.
Feature Mixing. The feature mixing stage combines the output
of the previous stages to generate the final features. It consists of
another two fully connect ReLU layers. The size of these layers de-
pends on the model size and is shown in Table 1. The input to these
ReLU layers is a concatenation of the output of the convolutional
layers and the softmax language estimate. The output of the feature
mixing layer is the features generated by the UnicodeCNN, and
these are passed to the output layers.

3.2 Model Output
To geolocate tweets, we connect two types of output layers to the
UnicodeCNN that model location at different levels of granularity.
Country Cross Entropy. This output predicts the tweet’s coun-
try of origin. Determining this country is a standard classification
problem, and we therefore use the standard softmax cross entropy
loss. Our primary goal is to estimate the exact GPS coordinates
using the Mixture of von Mises-Fisher output described below, but
we observed that jointly optimizing both the country and the GPS
coordinates accelerated training. Using multiple related outputs
is commonly called multitask learning and is a well known tech-
nique for accelerating training [63]. No previous work on tweet
geolocation used multitask learning.
Mixture of von Mises-Fisher Distributions. This output layer
was introduced by [29] to predict the exact GPS locations of im-
ages, and we adapt this work to predict the GPS location of tweets
instead. Previous work attempting to predict the exact GPS coordi-
nates of tweets [14] modeled GPS coordinates in Euclidean space.
GPS coordinates live in a non-Euclidean manifold, however, and
the Euclidean approximation can fail in two ways. First, two points
near the poles can have small distance but large difference in GPS
coordinates. Second, two points on opposite sides of the interna-
tional date line will have small distance but large difference in GPS

coordinates. The Mixture of von-Mises Fisher distributions does
not suffer from these problems because it accounts for the Earth’s
spherical geometry. This is the first method for tweet geolocation
to account for this geometry.

The von Mises-Fisher (vMF) distribution is one of the standard
distributions in the field of directional statistics, which is the study
of distributions on hyperspheres. The vMF can be considered the
spherical analogue of the Gaussian distribution [e.g. 39] and enjoys
many of the Gaussian’s nice properties. Thus, the mixture of vMF
(MvMF) distributions can be seen as the spherical analogue of the
commonly used mixture of Gaussian distributions.

We now formally describe the MvMF layer. Let S2 = {x ∈ R3 :
∥x∥2 = 1} denote the unit sphere. Then the density of the vMF
distribution is given by

vMF(x; µ,κ) = κ

sinhκ
exp(κµ⊤x), (1)

where x is any point in S2, µ ∈ S2 is called themean direction, κ ∈ R
is called the concentration parameter. The density of a mixture of q
vMF distributions is given by

MvMF(x; µ,κ ,w) =
q∏
i=1

vMF(x; µi ,κi )wi (2)

where µ is an array of q mean directions, κ is an array of q concen-
tration parameters, and w is a vector of mixture weights satisfying
wi ∈ (0, 1) and ∑q

i=1wi = 1. The associated log loss is

ℓ(x; µ,κ ,w) = − log
q∑
i=1

wivMF(x; µi ,κi ), (3)

and this is the expression we optimize. A linear function maps
the features generated by the UnicodeCNN onto the wi mixture
components. Thus, the features extracted from the text determine
the relative weight of each component in the mixture, but does not
determine the mean direction or the concentration parameters of
the components. Each κi is initialized to 10, which we empirically
observed to correspond to a standard deviation about the size of a
large city. Each µi is initialized by setting it equal to the location on
the sphere of the world’s ith most populated city. In our model, we
use q = 10000 mixture components. The number of components
can easily be increased at the expense of more computation, but
we found q = 10000 to be a good compromise between accuracy of
prediction and computational expense.

After training, the values of each µi and κi are fixed. Inputing
a text string fixes the UnicodeCNN’s features, which fixes the wi ,
and so all the parameters of the distribution are completely de-
termined. Figure 1 plots the density of an example distribution. A
point estimate can be computed using the maximum likelihood:

x̂ = argmax
x∈S2

MvMF(x; µ,κ ,w). (4)

In our experiments below, we measure the quality of our point esti-
mate by measuring the distance between the tweet’s true location
and x̂ on the surface of the sphere using Vincenty’s numerically
stable distance formula [56].



average accuracy
model distance (km) @50km @100km @500km @1000km @2000km @3000km @country
lang 2715.577 0.125 0.169 0.347 0.456 0.632 0.704 0.635
lang+bow 2150.998 0.187 0.257 0.465 0.577 0.711 0.762 0.719
UnicodeCNN (Small) 1945.779 0.181 0.246 0.468 0.587 0.741 0.797 0.737
UnicodeCNN (Large) 1826.648 0.192 0.261 0.487 0.608 0.758 0.812 0.752
UnicodeCNN (Huge) 1783.320 0.196 0.267 0.494 0.614 0.765 0.818 0.757

Table 2: The UnicodeCNN features give the best results across all measures, with the larger UnicodeCNN’s giving better results
than the smaller ones. The baseline lang+bowmodel generalizes methods from previous work [6, 9, 13, 20, 34, 37, 45, 46, 61] to
our setting of multilingual input and GPS location output. Recall that smaller values indicate better performance for average
distance and larger values are better for accuracy.

4 EXPERIMENTS
We perform three experiments to validate our UnicodeCNN and
MvMF techniques. In our main experiment, we introduce a new
multilingual dataset that is orders of magnitude larger than all
previous geolocation datasets. We show on this dataset that our
UnicodeCNN andMvMF techniques work well for all tweets written
in all languages sent from anywhere in the world. The second
experiment uses a standard English-only benchmark dataset. We
show that our techniques not only work on all languages, but they
even outperform specialized English-only techniques on an English-
only benchmark task. The third experiment introduces an artificial
dataset that helps demonstrate that our UnicodeCNN models are
able to learn geographic textual cues in any language.

4.1 Main Experiment
Dataset. Our dataset contains all tweets with geolocation infor-
mation sent between 26 October 2017 and 08 July 2018. The dataset
contains more than 900 million tweets written by 3.0 million users
in over 100 languages. Unlike previous work, we perform no filter-
ing to remove “hard” tweets from the dataset, and as a result our
dataset is orders of magnitude larger than previously used datasets.

The largest previously used dataset for geolocating tweets was
theWORLD+ML dataset [21], which contains only 23million tweets
written by 2.1million users. WORLD+ML includes tweets in all lan-
guages, but removes hard-to-geolocate tweets that are not close to
major cities. Whereas the WORLD+ML dataset contained only 47%
non-English tweets, our dataset contains 58% non-English tweets.
Other datasets such as WNUT [22], WORLD [19], and NA [47]
additionally remove non-English tweets and so are considerably
smaller.

For each tweet in our dataset, we associate a country and GPS
coordinates using the Twitter API. The Twitter API defines a total
of 247 unique country codes that a tweet can be sent from. This
number is larger than the number of sovereign states recognized
by the United Nations (206) because many non-countries are given
country codes (e.g. Puerto Rico and Hong Kong). The process of
assigning GPS coordinates is slightly more complicated. User pri-
vacy settings allow Twitter to share the exact GPS coordinates
of approximately 16% of tweets in our dataset. For the remaining
tweets, Twitter only provides the city of origin. For these tweets,
we take the city’s center of mass to be the true GPS location of the
tweet. There are approximately 3 million unique city-level locations
in our dataset. The WNUT [22], WORLD [19], and WORLD+ML

[21] datasets generated class labels using a complex procedure to:
(i) select approximately the 3000 most populated of these cities,
(ii) combine them with nearby cities into a single metropolitan
area which serves as the class label, and (iii) discard all tweets
not from these metropolitan areas. Clearly, significant amounts of
information is lost when creating class labels in this way as the
transformation is not reversible. Our method of using the GPS coor-
dinates preserves as much information from the tweet as possible
and creates a more challenging prediction problem.
Baseline Models. We compare our UnicodeCNN with three base-
line models. All three models use multitask learning to predict
both the country and gps coordinates a tweet was sent from as
described in Section 3.2. The only difference is the way the features
are generated.

The first model, lang uses only the language of the tweet 1-hot
encoded as an input feature. This is the simplest reasonable model
for the multilingual geolocation problem. This model is able to
capture the fact that different countries use different languages, but
is unable learn patterns about how different regions use different
dialects of the same language.

The final model, lang+bow adds bag-of-words features to the
model generated from the text. Bag-of-words features are a classic
method for analyzing English-language text corpora, and our model
follows best practices. In particular, we use feature hashing with
L1 regularization to automatically select the best features (which
correspond to the most location indicative words). Bag-of-words
features are the most popular features used in content-based tweet
geolocation, and they have been used in all the following papers:
[6, 9, 13, 17, 20, 34, 37, 38, 45, 46, 54, 61]. Our results are not directly
comparable to the results in these papers because we perform no
filtering of hard tweets in our dataset, and we use the MvMF output
layer to predict exact GPS coordinates.

Many methods augment their bag-of-words models with addi-
tional features. For example, Zhang and Gelernter [61] use gazeteers
(databases that map place names to GPS coordinates) to improve the
quality of prediction. Because these gazeteers are only available in
English, they are not applicable in our highly multilingual domain,
and we do not compare against this method. Other methods use
the social graph or metadata associated with each tweet to improve
performance [e.g. 21, 24, 51]. We do not compare against these
methods because our focus is only on content-based geolocation.
Considering other non-content features would obscure the impact
of the tweet’s text on the predicted location.



Training and Evaluation Procedure. We train all models using
the Adam optimizer [32] and evaluate performance online. That is,
we perform only a single pass over the dataset. For each tweet, we
first compute the loss of themodel on that tweet; thenwe update the
model’s parameters. The total loss is then the sum of the individual
tweet losses. Online learning is a standard learning paradigm [e.g.
52], and we emphasize that at all time steps our evaluated losses
are unbiased estimates of the model’s true loss. We choose online
evaluation rather than the more popular batch evaluation (i.e. with
a train/test split) for three reasons. First, training and evaluating
the bigger UnicodeCNN models is extremely computationally ex-
pensive (many weeks using parallel computing as described below).
Many of the computations between the Adam parameter update
and loss computation can be shared, and so the total amount of
computation is reduced in the online setting. Second, online evalua-
tion is a natural model for tweet geolocation because new data can
easily be obtained. The train/test split experimental method was
designed for situations with limited training data where obtaining
new evaluation data is difficult. Finally, our dataset is large enough
that a single pass is sufficient to train the models to convergence. If
multiple passes were needed, then the evaluated losses would no
longer be unbiased estimates of the true loss after the first pass.

We use several losses to evaluate the models’ performance. The
distance measures the distance between a tweet’s true location and
the point estimate given by the MvMF output. The accuracy @50km
is the fraction of tweets whose distance error is less than 50km.
The accuracy @100km, @500km, 1000km, 2000km, and 3000km
measures are similar. Finally, the accuracy @country measures
the fraction of tweets whose country of origin was correctly pre-
dicted. Table 2 shows numerical results for all baseline and all
UnicodeCNN models evaluated on the full dataset. The Huge Uni-
codeCNNmodel geolocates tweets on average 367km closer to their
true location than the baseline lang+bow model. Table 3 compares
the performance of these two models over different languages. For
all languages, the Huge UnicodeCNN significantly outperforms the
lang+bow model. The difference is most striking for those tweets
that the Twitter API classifies as having an Unknown language,
where the UnicodeCNN geolocates tweets an average of 1563km
closer. Recall that a tweet gets labelled as Unknown if the language
is so infrequently used that it is not officially supported by Twitter,
or the text is too short. These are the hardest tweets to geolocate,
and the tweets worst served by current state-of-the-art. They com-
prise approximately 7.4% of all tweets, which is about 40 million
tweets per day.

To train the UnicodeCNN models, we use a single machine with
16 CPUs, 64 GB of RAM, and 6 NVidia Titan x80 GPUs. We train
using the Adam optimizer [32] with a learning rate of 5 10−4 and a
batch size of 600. The character encoding is computed on the CPUs,
and all other parts of the model are computed on the GPUs. We use
data parallelism, so that each GPU processes 100 tweets per batch,
and then the gradients are averaged together. The batch size of 100
tweets/GPU is the largest batchsize we could fit on a GPU with the
huge model. We observed about a 5-fold speed up using all 6 GPUs,
and in total, training the large model took about 4 weeks with this
setup. The results reported for the huge model are on approximately
20% of the data after 3 weeks of training. We estimate that training
the huge model on the full dataset would take about 15 weeks. We

fraction average accuracy
language of dataset model distance (km) @country

English 0.425 lang+bow 2708.620 0.703
UnicodeCNN (Huge) 2326.873 0.745

Portuguese 0.139 lang+bow 785.798 0.940
UnicodeCNN (Huge) 734.632 0.951

Spanish 0.102 lang+bow 2757.163 0.479
UnicodeCNN (Huge) 2343.886 0.535

Unknown 0.074 lang+bow 5120.919 0.429
UnicodeCNN (Huge) 3557.385 0.525

Japanese 0.060 lang+bow 337.931 0.964
UnicodeCNN (Huge) 332.421 0.968

Arabic 0.030 lang+bow 723.563 0.522
UnicodeCNN (Huge) 707.136 0.562

Turkish 0.029 lang+bow 323.291 0.901
UnicodeCNN (Huge) 296.059 0.943

Indonesian 0.025 lang+bow 1060.114 0.734
UnicodeCNN (Huge) 899.193 0.824

Tagalog 0.024 lang+bow 1086.997 0.788
UnicodeCNN (Huge) 983.495 0.872

Other 0.090 lang+bow 1738.139 0.731
UnicodeCNN (Huge) 1379.444 0.767

Table 3: The performance of the best baseline and Uni-
codeCNN models across the ten most popular languages as
labelled by the Twitter API. The Huge UnicodeCNN signifi-
cantly outperforms the lang+bow baseline model on all lan-
guages. Notice the dramatic improvement for tweets with
unknown language.

expect the huge model’s performance would continue to slightly
improve given more training time. An ablative study comparing all
possible character encodings and model architectures discussed in
Section 3 is clearly infeasible when model training is so expensive.

All baseline models were trained using Adam [32] and random
hyperparameter search [3]. Random hyperparameter search is a
state-of-the-art hyperparameter tuning method that requires no
manual intervention and works well when there is more than one
hyperparameter to tune. For each model, we randomly selected
a learning rate, L2 regularization strength, and (for the lang+bow
model only) L1 regularization strength in the range 10−6 to 100
distributed uniformly over the logarithm. We trained 20 versions
of each model and report only the best model.

4.2 English Benchmark
The 2016 Workshop on Noisy User-generated Text (WNUT2016)
hosted a tweet geolocation challenge [22]. The dataset for the chal-
lenge consists of 12.8 million tweets sent between 2013 to 2015.
In total, 419 million geotagged tweets were sent during this time
period, but all tweets not written in English and not sent from a
major city were discarded from the dataset. That is, 97% of avail-
able tweets were excluded from the competition because they were
thought to be too difficult to geolocate. In this experiment, we will
show that our UnicodeCNN+MvMF model achieves state-of-the-art
performance on this dataset of easily geolocated tweets. In other



model accuracy median (km) mean (km)
Chi et. al., 2016 [7] 0.121 3105.8 4867.5
lang 0.041 2678.4 3609.8
lang+bow 0.071 1710.5 3292.4
UnicodeCNN (Small) 0.119 1621.3 3140.5
UnicodeCNN (Large) 0.131 1562.1 2898.3
UnicodeCNN (Huge) 0.133 1532.8 2802.1

Table 4: Evaluation on the WNUT2016 test set for English
language content based tweet geolocation. TheUnicodeCNN
outperforms the previous state-of-the-art.

words, this experiment shows that our methods beat existing meth-
ods at the small subset of tweets those methods were designed for,
plus our methods generalize this performance to all tweets.

Table 4 compares our methods with the existing state-of-the-art
on the WNUT2016’s validation dataset. In this table, the “accuracy”
represents the probability that the tweet was geolocated to the
correct city, and the “median” and “mean” distance represents the
distance between the estimated city location and the true city loca-
tion. All prior work using the WNUT2016 dataset has focused on
optimizing the accuracy of prediction but acknowledged that the
median/mean distance more accurately captures desired real world
performance.

Chi et. al., 2016 [7] have the previous best reported performance
using content-based geolocation techniques only.4 Their method
uses a special feature extraction specialized to the English language,
and a classification strategy to select the most probable city. Re-
markably, our lang baseline method has better median and mean
distances even though it uses no input features! (The only feature,
language, is the same for all tweets.) The reason is that it uses the
MvMF loss, which is specifically designed to select locations that
have low distance. This shows that the MvMF loss is clearly better
than classification-based strategies when our goal is to minimize
distance. The UnicodeCNN has better features than Chi et. al.’s
method, and has both slightly better accuracy and median/mean
performance almost twice as good.

4.3 Artificial Data
Our final experiment shows that the UnicodeCNN learns features
related to geographical words in the tweet’s text, and is able to
transfer these features to other languages. It is a quantitative ver-
sion of the examples in Section 2 and helps to explain why the
UnicodeCNN performs well in the linguistically diverse main ex-
periment.

We generated two artificial datasets according to the following
procedure. First, we created an English-language dataset using a
list of the world’s 100 “most prominent” cities.5 For each city we
generated an artificial tweet containing the text “city, country” and
with GPS position at the center of the city. For example, for the city
of Tokyo, we generated a tweet with text

Tokyo, Japan

4Other techniques have taken advantage of the social graph or metadata embedded
within the tweet. These methods have better performance, but they are not comparable
to our text-only method and so not reported here.
5As provided by https://simplemaps.com/data/world-cities

model English other
lang 0.140 0.082
lang+bow 0.270 0.163
UnicodeCNN (Small) 0.710 0.250
UnicodeCNN (Large) 0.920 0.346
UnicodeCNN (Huge) 0.940 0.382

Table 5: Accuracy at predicting country location on synthetic
dataset of city names.

located at 35.685N, 139.7514E.
Then we generate a second dataset by translating the tweets

in the first dataset into 20 other languages using Google Trans-
late. We selected the following languages for their linguistic di-
versity: Arabic, Burmese, Chinese (Simplified), Czechoslovakian,
Farsi, French, German, Greek, Hebrew, Indonesian, Italian, Japanese,
Korean, Pashto, Punjabi, Portuguese, Spanish, Tagalog, and Turk-
ish. In this other-language dataset, the Tokyo tweet from before is
represented in Spanish as

Tokio, Japón

and in Japanese as

東京、日本

Notice that this dataset contains tweets written in many scripts, and
even languages using the latin script represent cities and countries
in different ways. The vast majority of these translations do not
exist anywhere in our training data.

Table 5 shows the results of predicting the country of origin
for these tweets. The lang model on the English dataset has no
features to use, and achieves 0.14 accuracy simply be guessing
the United States for each location. The UnicodeCNN is able to
predict the correct country for almost all English language tweets.
This indicates that the model has learned features that capture the
geographic meaning of most city and country names. Some cities
(such as Pyongyang, DPRK) have essentially no training data in our
dataset, however, and so the UnicodeCNN is not able to learn good
features for these cities.

5 DISCUSSION
The UnicodeCNN is the first deep learning model that supports any
input language and exploits the Unicode standard’s many features.
Many text processing pipelines could be made multilingual simply
by replacing the existing feature extraction methods with the Uni-
codeCNN. Unfortunately, training the UnicodeCNN from scratch is
computationally expensive. We ameliorate this problem by open
sourcing our learned model weights. Transfer learning can then
be used to reuse these weights, learning only a new application-
specific output layer [26, 57]. Transfer learning is known to be
especially effective where the original model was trained on a large
dataset like ours.
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