
Unsupervised Multiview Embedding of Node
Embeddings

Jia Chen
Dept. of Electrical and Computer Engineering

University of California Riverside
jiac@ucr.edu

Dalia Orozco
Dept. of Electrical and Computer Engineering

University of Texas Rio Grande Valley
dalia.orozco01@outlook.com

Lizeth Figueroa
Dept. of Electrical and Computer Engineering

University of Texas Rio Grande Valley
lizeth.figueroa01@utrgv.edu

Evangelos E. Papalexakis
Dept. of Computer Science and Engineering

University of California Riverside
epapalex@cs.ucr.edu

Abstract—In this paper, we propose a comprehensive unsu-
pervised framework that leverages existing and novel multiview
learning models, towards obtaining a single node embedding
from a collection of node embeddings, combining the best of
all worlds. Through extensive experiments, we demonstrate that
the proposed multiview node embedding is able to perform
on par or better than the best of its constituents and provide
reliable performance across downstream tasks including node
classification and graph reconstruction.

Index Terms—multiview learning, node embedding, hybrid
tensor decomposition, unsupervised learning

I. INTRODUCTION

Graphs are appear in every aspect of life. Transportation
networks, e.g., road networks and power lines, capture in-
frastructure movement or flow among geographical locations.
Other examples include scientific paper citation networks,
social networks, and brain connectives, to name a few. The
interest of performing node embedding on graphs is growing,
which learns latent representations of nodes/vertices for a
given graph while preserving the neighborhood similarity or
connectivity in the original graph. Node embedding is a core
step for a lot of downstream tasks.

Long in the purview of researchers, node embedding is a
well-established problem and various approaches have been
proposed. Most state-of-the-art node embedding techniques as-
sume some measure of graph smoothness, thus consider nodes’
representations are similar when they are close in the graph.
Such type of approaches include DeepWalk [1], Node2Vec [2],
HOPE [3], Graph Factorization [4], Walklets [5], Grarep [6],
LINE [7], and so on. However, which embedding to choose
remains an open problem.

In this paper, we propose to embed node embeddings with
a number of multivew learning methids and generate a single
embedding by leveraging the complementary advances of

Research was supported by NSF under CAREER grant no. IIS 2046086 and
CREST Center for Multidisciplinary Research Excellence in Cyber-Physical
Infrastructure Systems (MECIS) grant no. 2112650, and UCR Regents Faculty
Fellowship.

different embeddings. Specifically, we use four different multi-
view learning algorithms to learn a shared node representation
among the multiple representations obtained from different
embeddings or the same embedding technique with different
pre-defined dimensions which are called multiple views. In
earlier preliminary work, we use irregular tensor factorization
to consolidate multiple embeddings obtained from a single
node embedding (DeepWalk) with various dimensions for the
node representations [8]. Different from [8], our proposed
framework considers various types of node embeddings as
different views providing a more comprehensive ensemble
node embedding framework. Our main contributions are:

• We propose four ensemble node embedding schemes;
• We develop a new tensor model HYTUCK2 that is well-

suited for the task, in the sense that it is able to capture
non low-rank trilinear structure;

• We extensively evaluate our framework on three datasets
and test the effectiveness of our approach in classification
and graph reconstruction tasks.

II. PROPOSED METHOD

Given a graph G := {V, E} with V := {a1, a2, ..., am}
collecting all the m nodes and E indicating the edge set where
the (binary or weighted) adjacency matrix is A ∈ Rm×m, we
consider the problem of learning the node representations V ∈
Rm×d while preserving the node similarities in G from higher-
dimensional space Rm to a lower-dimensional space Rd with
d ≪ m. Toward this end, we propose a two-step multiview
node embedding scheme by first running the existing node
embedding algorithms, e.g., DeepWalk, Node2Vec, and LINE,
to get multiview data, denoted as {Xn ∈ Rdn×m}Nn=1 where
dn is the pre-defined dimension of the n-th embedding/view
and N is the total number of embeddings, and then applying
multiview learning models to fuse the N views into a shared
node embedding V. Note that, datasets from the same node
embedding with different dimensions are seen as different
views. Below we describe the multiview learning models of
our framework.

(a) PARAFAC2 (b) Proposed HYTUCK2 (c) Stacked SVD (d) MCCA

Fig. 1: Multiview learning models. Each sub-figure also shows the way in which each view Xn is related to the model in shaded color.

A. Projection model

Canonical correlation analysis (CCA) finds the shared rep-
resentation of two datasets by projecting them into the same
space and forcing the two projected datasets to be close in
the Euclidean space or the correlation to be maximized [9].
Multiview (M) CCA generalizes CCA from dealing with two
datasets jointly to arbitrary (≥ 2) number of datasets [10].

Given the sought multiview embeddings {Xn}Nn=1, MCCA
searches for the shared node embedding V by solving

min
{Un}N

n=1,V

N∑
n=1

∥∥U⊤
n X̄n −V⊤∥∥2

F
(1)

under the constraint that V⊤V = I, where X̄n is the
centered data of X, {Un ∈ Rdn×d}Nn=1 are projection
matrices, and the constraint is imposed to avoid a trivial
solution; see Fig. 1-(d) for further demonstration. The optimal
V is obtained by computing the eigenvalue decomposition
on the matrix

∑N
n=1 X̄

⊤
n (X̄nX̄

⊤
n)

−1X̄n, and the columns
of V are the d eigenvectors corresponding to the top-n
eigenvalues. The optimal projection matrices are given by
{Un = (X̄nX̄

⊤
n)

−1X̄nV}Nn=1.

B. Factorization models

From factorization perspective, we consider three multiview
learning models: stacked SVD and two irregular tensor de-
composition methods. Intuitively, we can concatenate all the
individual embeddings generating a higher-dimensional data
matrix X := [X⊤

1 ,X
⊤
2 , ...,X

⊤
N]⊤ ∈ R(d1+d2+...+dN)×m and

then perform SVD on X, i.e., X = USV⊤, to get a lower-
dimensional representation V, which is referred to as stacked
SVD; see Fig. 1-(c).

Given embeddings {Xn}Nn=1, irregular tensor decomposi-
tion method, namely PARAFAC2 (shown in Fig. 1-(a)) is used
to extract the ensemble embedding V, which is boiled down
to tackling the following constrained minimization problem

min
{Un∈Rdn×d,Sn∈Rd×d}N

n=1,V

N∑
n=1

∥Xn −UnSnV
⊤∥2F

s. to Un = QnH, Q⊤
nQn = I, ∀n

(2)

where Sn is a diagonal matrix whose diagonal entries indicate
the importance of latent components (a.k.a., the columns

of V), factor matrix Un is decomposed into two matrices,
Qn that has orthonormal columns and H which is invariant
regardless of n. Problem (2) can be solved by alternating least
squares (ALS) approach [11].

Furthermore, we develop a new tensor model HYTUCK2,
shown in Fig. 1-(b), to fulfill such multiview learning task,
which can be seen as the generalization of the Tucker model
[12] (which is applicable to regular tensors), to the paradigm
of PARAFAC2 which applies to irregular tensors where there
is a mismatch in one of the modes. We define the slice
representation of HYTUCK2 as follows:

Xn ≈ G×1 Un ×2 V ×3 W(n, :)

with similar constraints as PARAFAC2: Un =
QnH, Q⊤

nQn = I, ∀n, and where G is a core tensor,
which captures multi-way interactions between the different
modes. An advantage of HYTUCK2 against PARAFAC2 is
its ability to naturally express structure that does not adhere
to the low-rank trilinear model that PARAFAC2 assumes.

In order to fit the HYTUCK2 model, we follow an Alter-
nating Least Squares (ALS) approach, as the one that is tradi-
tionally used for PARAFAC2 [11]. The main difference in the
case of HYTUCK2 is that the projected tensor Y from Alg. 2
in [11], whose slices are constructed as Yn = Q⊤

nXn, is now
decomposed according to the Tucker-3 model, instead of the
CP model. For computational efficiency, we can fit a single-
shot approximation of the Tucker-3 model via the Higher-
Order or Multilinear SVD (HOSVD or MLSVD), instead of
the more costly ALS-based Higher-Order Orthogonal Iteration
(HOOI) [12]. In experiments, we observed that both solutions
yielded numerically almost identical results, thus, we opt for
the more economical approach.

III. EXPERIMENTAL EVALUATION

We evaluate our approach on two tasks: node classification,
and graph reconstruction. Three real-world datasets are con-
sidered: (1) Blogcatalog is social relationship network data
provided by blogger authors with labels representing the topic
categories, which consists of 10, 312 nodes, 333, 983 edges,
and 39 labels [13]; (2) Cora dataset consisting of 2, 708 nodes,
5, 429 edges, and 7 labels is a citation network for scientific
publications [14]; and (3) Wiki dataset is a co-occurrence
network of words showing up in the first million bytes of

the Wikipedia dump with 2, 405 nodes, 17, 981 edges, and 19
labels [15]. The number of ALS iterations in both HYTUCK2
and PARAFAC2 are set to be 15 in Secs. III-A and III-B. In
all experimental results, the best performance appears in bold.
We use the code provided by [11] for PARAFAC2, and make
our code for fitting HYTUCK2 publicly available1.

A. Node classification

We evaluate the embeddings on two node classification
scenarios: Scenario 1: some views provide good classification
results; Scenario 2: none of the views provide good perfor-
mance. In each scenario, we compare our proposed multi-
view node embeddings techniques with individual embedding
models including DeepWalk [1], Node2Vec [2], HOPE [3],
LINE [7], graph representation (Graphrep) [6], and/or graph
factorization (Graphfac) [4]. We use OpenNE2 to obtain all the
single views from the existing node embedding techniques. We
randomly choose 90% of the data as traning data and the rest
are used as test. For both individual embedding models and
ensemble embeddings models, a one-vs-rest logistic regression
implemented by LibLinear [16] is used to carried out the
classification and we use the code provided online3 . We repeat
this process 50 times, and report the average Micro-F1 and
Macro-F1 scores with their corresponding standard deviations.

To test the effectiveness of the proposed schemes in Sce-
nario 1 using Cora dataset, in the middle part of Table I,
we show the classification performance of m = 15 single
views including implementing various state-of-the-art node
embeddings techniques with different embedding dimensions
which are specified after the model names, e.g., Node2Vec-
128. The Micro-F1 and Macro-F1 scores from the proposed
four multiview embedding models are shown on the bottom
of Table I. Further, we investigate the classification results of
different models in Scenario 2, a more challenging case when
m = 7 views are used; see Table II. After combining the
results in Tables I and II, one can conclude that when single
view(s) can provide promising performance, our multiview
models perform competitively; while when all the views are
performing very poorly using multiview models the perfor-
mance has been improved significantly. Similar conclusions
are drawn when testing Blogcatalog and Wiki datasets, see
results for Scenario 1 in Tables III and IV and results for
Scenario 2 in Tables V and VI.

B. Graph reconstruction

We test the quality of our multiview node embeddings
in graph reconstruction. Given the embedding V, we use
k-nearest neighbors to recover the graph G via taking the
following three steps:

• Step 1: Calculate the Euclidean distance between two
nodes and assign the inverse of the distance as the
similarity between them, i.e., the (i, j)-th entry of the
similarity matrix is A0(i, j) :=

1
∥vi−vj∥2+ϵ where vi is

1https://www.cs.ucr.edu/∼epapalex/src/HyTuck2-public-code.zip
2https://github.com/thunlp/OpenNE
3https://github.com/phanein/deepwalk

Models Micro-F1 Macro-F1 Models Micro-F1 Macro-F1

Node2Vec-32 .80 ± .028 .79 ± .034 DeepWalk-16 .73 ± .027 .69 ± .033
Node2Vec-128 .81 ± .027 .80 ± .031 DeepWalk-32 .78 ± .024 .77 ± .027
Node2Vec-200 .82 ± .023 .82 ± .027 DeepWalk-200 .85 ± .018 .84 ± 0.02
LINE-32 .36 ± .026 .16 ± .032 HOPE-16 .45 ± .031 .28 ± .033
LINE-200 .50 ± .026 .43 ± .032 HOPE-64 .57 ± .026 .52 ± .016

HOPE-200 .68 ± .026 .66 ± .032
Grafac-32 .50 ± .02 .43 ± .023 Grarep-32 .72 ± .029 .67 ± .014
Grafac-200 .58 ± .022 .56 ± .025 Grarep-200 .77 ± .02 .75 ± .022

StackSVD-200 .85 ± .021 .84 ± .025 PARAFAC2-200 .85 ± .015 .84 ± .018
MCCA-200 .83 ± .022 .82 ± .023 HYTUCK2-200 .85 ± .02 .84 ± .023

TABLE I: F1 scores in Scenario 1 using Cora data. In HYTUCK2-
200, p = 200, d = 200, and q = 15. In HYTUCK2-300, p = 400,
d = 300, q = 5.

Models Micro-F1 Macro-F1 Models Micro-F1 Macro-F1

HOPE-16 .45 ± .031 .28 ± .033 HOPE-200 .68 ± .026 .66 ± .032
LINE-32 .36 ± 0.026 .16 ± .032 LINE-64 .39 ± .027 .22 ± .027
LINE-200 .50 ± .026 .43 ± .032 Grarep-16 .64 ± .029 .54 ± .025
Grafac-64 .53 ± .029 .50 ± .031

StackSVD-200 .77 ± .024 .75 ± .028 PARAFAC2-200 .77 ± .024 .76 ± .028
MCCA-200 .73 ± .026 .71 ± .027 HYTUCK2-200-1 .78 ± .026 .76 ± .03

HYTUCK2-200-2 .78 ± .022 .76 ± .025

TABLE II: F1 in Scenario 2 using Cora data. p, d = 200, q = 7
for HYTUCK2-200-1. HYTUCK2-200-2, p = 500, d = 200, q = 10.

the i-th column of V and ϵ = 2.2 × 10−16 is used to
avoid A0(i, j) = ∞.

• Step 2: Sparsify A0 to A1 by preserving the k-nearest
neighbors of each node and setting the rest entries as
zeros.

• Step 3: Sort weights in A1 in a descending order and
set the top-T weights to be 1 with the rest to be 0 using
which as the adjacency matrix forming the reconstructed
graph Ĝ, where T is the number of edges in the orginal
graph G.

To evaluate the quality of the reconstructed graph, we adopt
the DeltaCon method [17] to quantify the similarity in connec-
tivity between two graphs: G and Ĝ. Such graph similarity
score is in the range of [0, 1], and 0 means totally different
graphs, while 1 means identical graphs. We set k = 500 when
testing Blogcatalog data and k = 100 when testing Cora and
Blogcatalo data to make sure that after Steps 1 and 2 there are
enough edges with nonzero weights for Step 3. Note that when
reconstructing the graph using a single view data from the
existing node embedding technique, V is substituted with the
corresponding embedding Xn. We consider two cases:Case
1: some views have good graph reconstruction performance

Models Micro-F1 Macro-F1 Models Micro-F1 Macro-F1

Node2Vec-32 .40 ± .010 .23 ± .009 DeepWalk-32 .40 ± .013 .23 ± .009
Node2Vec-64 .41 ± .013 .26 ± .014 DeepWalk-64 .42 ± .013 .27 ± .014
Node2Vec-128 .41 ± .013 .27 ± .014 DeepWalk-200 .42 ± .012 .29 ± .014
Node2Vec-200 .40 ± .013 .27 ± .014
LINE-32 .27 ± .008 .11 ± .008 HOPE-32 .22 ± .01 .07 ± .007
LINE-200 .38 ± .01 .23 ± .009 HOPE-200 .31 ± .009 .15 ± .01
Grafac-32 .21 ± .013 .05 ± .004 Grarep-32 .23 ± .013 .08 ± .015
Grafac-200 .30 ± .011 .12 ± .008 Grarep-200 .37 ± .009 .21 ± .008

StackSVD-200 .41 ± .009 .27 ± .011 PARAFAC2-200 .41 ± .01 .27 ± .013
MCCA-200 .42 ± .013 .29 ± .011 HYTUCK2-200 .41 ± .014 .28 ± .011

TABLE III: Micro-F1 and Macro-F1 in Scenario 1 using Blogcata-
log data. In HYTUCK2, the dimensions are set as p = 200, d = 200,
and q = 15.

https://www.cs.ucr.edu/~epapalex/src/HyTuck2-public-code.zip
https://github.com/thunlp/OpenNE
https://github.com/phanein/deepwalk

Models Micro-F1 Macro-F1 Models Micro-F1 Macro-F1

Node2Vec-32 .62 ± .032 .45 ± .05 DeepWalk-32 .64 ± .024 .48 ± .044
Node2Vec-64 .65 ± 0.029 .49 ± .034 DeepWalk-128 .69 ± .032 .57 ± .036
Node2Vec-200 .66 ± .032 .51 ± .052 DeepWalk-200 .71 ± .029 .59 ± 0.021
LINE-32 .36 ± .03 .24 ± .025 HOPE-32 .49 ± .03 .33 ± .018
LINE-200 .58 ± .033 .41 ± .027 HOPE-128 .60 ± .024 .43 ± .034

HOPE-200 .61 ± .027 .45 ± .026
Grafac-32 .51 ± .032 .34 ± .024 Grarep-32 .54 ± .03 .34 ± .018
Grafac-200 .57 ± .036 .41 ± .033 Grarep-200 .64 ± .032 .47 ± .039

StackSVD-200 .70 ± .025 .58 ± .044 PARAFAC2-200 .70 ± .03 .58 ± .042
MCCA-200 .69 ± .024 .57 ± .044 HYTUCK2-200-1 .70 ± .032 .59 ± .06
MCCA-250 .70 ± .03 .59 ± .028 HYTUCK2-200-2 .71 ± .028 .59 ± .034

TABLE IV: Micro-F1 and Macro-F1 in Scenario 1 using Wiki data.
In HYTUCK2-200-1, the dimensions are set as p = 200, d = 200,
and q = 15. In HYTUCK2-200-2, the dimensions are set as p = 200,
d = 200, and q = 10.

Models Micro-F1 Macro-F1 Models Micro-F1 Macro-F1

HOPE-32 .22 ± .01 .07 ± .007 HOPE-200 .31 ± .009 .15 ± .01
Grafac-32 .21 ± .013 .05 ± .004 Grafac-200 .30 ± .011 .12 ± .008
LINE-32 .27 ± .008 .11 ± .008 Grarep-32 .23 ± .013 .08 ± .015

StackSVD-200 .34 ± .013 .18 ± .011 PARAFAC2-200 .35 ± .011 .20 ± .01
MCCA-200 .34 ± .014 .20 ± .011 HYTUCK2-200 .34 ± .011 .20 ± .009

TABLE V: F1 score in Scenario 2 using Blogcatalog data. In
HYTUCK2, p = 200, d = 200, and q = 6.

Models Micro-F1 Macro-F1 Models Micro-F1 Macro-F1

HOPE-32 .49 ± .03 .33 ± .018 LINE-32 .36 ± .03 .24 ± .025
DeepWalk-16 .58 ± .026 .40 ± .026 LINE-128 .54 ± .032 .36 ± .018
Grarep-32 .54 ± .03 .34 ± .018 LINE-200 .58 ± .033 .41 ± .027
Grafac-32 .51 ± .032 .34 ± .024

StackSVD-200 .66 ± .028 .53 ± .041 PARAFAC2-200 .65 ± .024 .52 ± .039
MCCA-200 .62 ± .026 .51 ± .049 HYTUCK2-200 .64 ± .029 .52 ± .042

TABLE VI: F1 scores in Scenario 2 using Wiki data. In HYTUCK2-
200, the we set p = 200, d = 200, and q = 7.

in terms of high graph similarity scores; Case 2: none of the
views have good performance. We present the graph similarity
scores using the Cora dataset in the above two cases for
different ratios of training data ranging from 10% to 90%. The
results show that MCCA and HYTUCK2 perform similarly
to the best views in Case 1; see Table VII, and remarkably
better than the best views in Case 2; see Table VIII. Similar
conclusion can be drawn when testing Blogcatalog dataset, see
the results in IXX.

C. Discussions

1) HYTUCK2 versus PARAFAC2: We study the ability
of each model to capture meaningful structure in the data,
especially as a function of the number of ALS iterations
necessary in order to do so. Specifically, we compare the fit (as
a percentage of the variation explained by each model defined
in (3)) of HYTUCK2 and PARAFAC2 (whose fit is defined in
(3) after substituting the numerator with the objective in (2))
as a function of the number of ALS iterations, on the Wiki
dataset. Our results are shown in Fig. 2, where we observe
that HYTUCK2 with 5 ALS iterations is able to achieve the
same fit as PARAFAC2 with 30 iterations, whereas 1 iteration
of HYTUCK2 is also extremely close to the 30 iterations of
PARAFAC2. This outlines the ability of HYTUCK2 to better

Models 10% 20% 30% 40% 50% 60% 70% 80% 90%

Node2Vec-32 49 52 53 55 59 59 60 62 66
Node2Vec-128 37 39 40 41 43 43 45 46 49
Node2Vec-200 37 38 40 41 43 43 44 46 48
DeepWalk-16 52 55 56 58 62 63 64 66 70
DeepWalk-32 54 57 59 61 65 66 67 69 73
DeepWalk-200 56 59 61 64 68 68 69 71 75
LINE-32 46 49 51 53 57 57 59 61 66
LINE-200 54 58 60 62 66 66 67 69 74
HOPE-16 22 23 24 25 26 26 26 27 28
HOPE-64 23 24 24 25 26 26 27 27 28
HOPE-200 23 24 24 25 26 26 27 27 29
Grafac-32 50 52 54 56 59 60 61 63 67
Grafac-200 53 56 58 60 63 63 65 67 71
Grarep-32 23 23 24 25 26 26 27 27 28
Grarep-200 23 23 24 25 26 26 26 27 29

StackSVD-200 53 57 59 61 65 65 66 69 73
PARAFAC2-200 52 55 57 59 63 63 64 66 71
MCCA-200 54 57 59 61 65 66 67 69 73
MCCA-300 55 58 61 63 67 67 69 70 75
HYTUCK2-200 54 57 59 62 66 66 67 69 74
HYTUCK2-300 55 59 61 63 68 68 69 71 75

TABLE VII: Graph similarity scores (%) between the original and
reconstructed graphs for different ratios of training data in Case 1
using Cora data. In HYTUCK2-200,p = 200, d = 200, and q = 15.
In HYTUCK2-300, p = 400, d = 300, and q = 5.

Models 10% 20% 30% 40% 50% 60% 70% 80% 90%

LINE-32 46 49 51 53 57 57 59 61 66
LINE-64 48 51 53 55 59 60 61 63 68
LINE-200 54 58 60 62 66 66 67 69 73
HOPE-16 22 23 24 25 26 26 26 27 28
HOPE-200 23 24 24 25 26 26 27 28 29
Grarep-16 23 23 24 25 26 26 26 27 28
Grafac-64 52 55 57 59 62 63 64 66 70

StackSVD-200 48 50 52 54 58 58 60 62 67
PARAFAC2-200 49 51 53 55 58 59 59 62 66
MCCA-200 58 62 64 67 71 71 72 73 77
HYTUCK2-200-1 55 58 61 63 67 68 69 70 74
HYTUCK2-200-2 55 59 61 63 68 68 69 71 75

TABLE VIII: Graph similarity scores () between the original and
reconstructed graphs for different ratios of training data in Case 2
using Cora data. In HYTUCK2-200-1, p = 200, d = 200, and q = 7.
In HYTUCK2-200-2, p = 500, d = 200, and q = 10.

Models 10% 20% 30% 40% 50% 60% 70% 80% 90%

Node2Vec-32 .29 .31 32 33 35 35 36 38 41
Node2Vec-64 26 27 28 29 31 31 32 33 36
Node2Vec-128 22 23 24 25 26 26 27 28 30
Node2Vec-200 20 20 21 22 23 23 24 25 27
DeepWalk-32 29 30 31 32 34 35 36 37 40
DeepWalk-64 26 28 29 29 31 31 32 33 36
DeepWalk-200 24 24 25 26 27 27 28 29 30
LINE-32 21 22 23 24 26 27 28 29 32
LINE-200 18 19 20 21 22 23 23 25 28
HOPE-32 13 14 14 15 16 16 17 18 19
HOPE-200 11 12 12 13 14 14 14 15 16
Grafac-32 27 28 29 30 32 32 33 35 37
Grafac-200 23 23 24 25 26 26 27 28 30
Grarep-32 23 24 25 26 28 29 30 31 34
Grarep-200 25 27 28 29 31 32 33 35 38

StackSVD-200 17 18 19 20 22 22 23 24 27
PARAFAC2-200 24 25 26 27 29 30 31 32 35
MCCA-200 28 30 30 32 34 34 35 36 39
HYTUCK2-200 27 28 29 30 32 32 33 35 37

TABLE IX: Graph similarity scores (%) between the original and
reconstructed graphs for different ratios of training data in Case 1
using Blogcatalog data. In HYTUCK2-200, the dimensions are set as
p = 200, d = 200, and q = 15.

capture the structure in the data, more efficiently.

Fit = 100−
∑N

n=1 ||Xn − G×1 Un ×2 V ×3 W(n, :)||2F∑N
n=1 ||Xn||2F

×100

(3)

Models 10% 20% 30% 40% 50% 60% 70% 80% 90%

HOPE-32 13 14 14 15 16 16 17 18 19
HOPE-200 11 12 12 13 14 14 14 15 16
LINE-32 21 23 23 24 26 27 28 29 33
Grarep-32 23 24 25 26 28 29 30 31 34
Grafac-32 27 28 29 30 32 32 33 35 37
Grafac-200 23 23 24 25 26 26 27 28 30

StackSVD-200 16 16 17 18 19 19 20 22 24
PARAFAC2-200 23 24 25 26 28 29 30 31 35
MCCA-200 30 31 32 33 35 35 36 38 40
HYTUCK2-200 27 29 30 31 33 33 34 36 38

TABLE X: Graph similarity scores (%) between the original and
reconstructed graphs for different ratios of training data in Case 2
using Blogcatalog data. In HYTUCK2-200, the dimensions are set as
p = 200, d = 200, and q = 6.

Fig. 2: HYTUCK2 vs. PARAFAC2

Fig. 3: HYTUCK2 sensitivity analysis

2) Fine-tuning HYTUCK2: We investigate how the first
dimension p influences the fit of HYTUCK2 when fixing the
remaining two dimensions. In Fig. 3 we use the 15 views of the
Wiki dataset and we plot the fit versus p when fixing d = 200

and d = 500 accordingly, which shows that the fit increases
with p growing and then decreases due to overfitting.

IV. CONCLUSIONS

In this paper we introduce a comprehensive multivew
framework for embedding different node embeddings. To that
end, we introduce a novel irregular tensor decomposition
model HYTUCK2, which is able to capture structure that
existing models cannot. Through extensive experimentation we
demonstrate that our proposed multiview framework produces
embeddings that are on-par with the best-performing single
view, if there is a view that achieves state-of-the-art perfor-
mance, or performing better than the best-performing view, if
no views achieve state-of-the-art.

REFERENCES

[1] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2014, pp. 701–710.

[2] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855–
864.

[3] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity
preserving graph embedding,” in Proceedings of the 22nd ACM SIGKDD
international conference on Knowledge discovery and data mining,
2016.

[4] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and
A. J. Smola, “Distributed large-scale natural graph factorization,” in
Proceedings of the 22nd international conference on World Wide Web,
2013, pp. 37–48.

[5] B. Perozzi, V. Kulkarni, and S. Skiena, “Walklets: Multiscale graph
embeddings for interpretable network classification,” arXiv preprint
arXiv:1605.02115, 2016.

[6] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations
with global structural information,” in Proceedings of the 24th ACM
international on conference on information and knowledge management,
2015, pp. 891–900.

[7] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding.” in WWW. ACM, 2015.

[8] J. Chen and E. E. Papalexakis, “Ensemble node embeddings using tensor
decomposition: A case-study on deepwalk,” in 1st Workshop on Multi-
Source Data Mining, ICDM, 2020.

[9] H. Hotelling, “Relations between two sets of variates,” in Breakthroughs
in statistics. Springer, 1992, pp. 162–190.

[10] P. Horst, Generalized canonical correlations and their application to
experimental data. Journal of clinical psychology, 1961, no. 14.

[11] I. Perros, E. E. Papalexakis, F. Wang, R. Vuduc, E. Searles, M. Thomp-
son, and J. Sun, “Spartan: Scalable parafac2 for large & sparse data,”
in Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2017, pp. 375–384.

[12] T. Kolda and B. Bader, “Tensor decompositions and applications,” SIAM
review, vol. 51, no. 3, 2009.

[13] L. Tang and H. Liu, “Relational learning via latent social dimensions,”
in Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2009, pp. 817–826.

[14] L. Getoor, “Link-based classification,” in Advanced methods for knowl-
edge discovery from complex data. Springer, 2005, pp. 189–207.

[15] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-
rich part-of-speech tagging with a cyclic dependency network,” in
Proceedings of the 2003 Human Language Technology Conference of
the North American Chapter of the Association for Computational
Linguistics, 2003, pp. 252–259.

[16] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“Liblinear: A library for large linear classification,” the Journal of
machine Learning research, vol. 9, pp. 1871–1874, 2008.

[17] D. Koutra, J. T. Vogelstein, and C. Faloutsos, “Deltacon: A principled
massive-graph similarity function,” in Proceedings of the 2013 SIAM
International Conference on Data Mining. SIAM, 2013, pp. 162–170.

	Introduction
	Proposed Method
	Projection model
	Factorization models

	Experimental Evaluation
	Node classification
	Graph reconstruction
	Discussions
	HyTuck2 versus PARAFAC2
	Fine-tuning HyTuck2

	Conclusions
	References

