
Reviewer Profiling Using Sparse Matrix Regression

Evangelos E. Papalexakis∗, Nicholas D. Sidiropoulos∗, Minos N. Garofalakis∗
∗Dept. of ECE, Tech. Univ. of Crete, 73100 Chania - Crete, Greece

Email: (vagelis, nikos)@telecom.tuc.gr, minos@acm.org

Abstract—Thousands of scientific conferences happen every
year, and each involves a laborious scientific peer review
process conducted by one or more busy scientists serving as
Technical/Scientific Program Committee (TPC) chair(s). The
chair(s) must match submitted papers to their reviewer pool
in such a way that i) each paper is reviewed by experts in its
subject matter; and ii) no reviewer is overloaded with reviews
or under-utilized. Towards this end, seasoned TPC chairs know
the value of reviewer and paper profiling: summarizing the
expertise / interests of each reviewer and the subject matter of
each paper using judiciously chosen domain-specific keywords.
An automated profiling algorithm is proposed for this purpose,
which starts from generic / noisy reviewer profiles extracted
using Google Scholar and derives custom conference-centric
reviewer and paper profiles. Each reviewer is expert on few
sub-topics, whereas the pool of reviewers and the conference
may collectively need many more keywords for appropriate
specificity. Exploiting this sparsity, we propose a sparse matrix
factorization approach in lieu of classical SVD-based LSI
or NMF-type approaches. We illustrate the merits of our
approach using real conference data, and expert scoring of
the assignments by a seasoned TPC chair in the area.

Keywords-Reviewer profiling, text mining, latent semantic
indexing, singular value decomposition, non-negative matrix
factorization, sparse regression, lasso

I. INTRODUCTION

Thousands of scientific conferences happen every year
and each involves a laborious scientific peer review pro-
cess conducted by one or more busy scientists serving as
Technical / Scientific Program Committee (TPC) chair(s).
The chair(s) must match submitted papers to the reviewer
pool in such a way that i) each paper is reviewed by experts
in its subject matter, preferably covering all methodological
and application-oriented aspects of the submission; and ii)
no reviewer is overloaded with reviews, or under-utilized.
Usually there are pre-agreed quotas on the maximum number
of papers that a volunteer is willing to review for the given
conference. Seriously under-utilizing a reviewer is unfair
with respect to reviewing credit, and it may discourage junior
reviewers.

The paper to reviewer assignment requires prior knowl-
edge about each reviewer’s expertise and current research
interests. TPC chairs often work in an ‘assign-as-you-go’
fashion, inspecting each paper on-the-fly and trying to
find reviewers with spare capacity in a sequential fashion.
This process gets more and more complicated, demanding
significant trial-and-error as one moves on and reviewers

become loaded. A low- to mid-size conference with several
hundred submissions may require a week of hard work from
the TPC chair - let alone major events with several thousand
submissions.

As an intermediate step, experience shows that it helps
to summarize the expertise / interests of each reviewer and
the subject matter of each paper using judiciously chosen
domain-specific keywords. Reviewer and paper profiling is a
domain-sensitive process that requires considerable expertise
and serious work by the domain expert - the busy TPC chair.
Papers often come tagged with keywords selected by the
authors, albeit these are not always sufficiently specific for
the purposes of review assignment, and they may be biased.
Reviewer profiling is even more difficult. Even if the chair
is very familiar with the long-term track record of each
reviewer, keeping tabs of recent activity and customizing
profiles for the given conference is tedious. The chair can
ask the reviewers to select from a list or suggest keywords to
build their own profiles, but people tend to ignore their long-
term expertise and over-emphasize current interests. The
reason is that they prefer to sneak-preview what is happening
in the areas they currently work on - this is one of the fringe
benefits of peer reviewing. The net effect is that there is
considerable work involved in producing fair and accurate
reviewer and paper profiles that can really help in the review
assignment process.

Bidding systems, in which reviewers are invited to bid
on / score papers they are interested in reviewing, offer
an alternative way of matching papers to reviewers (e.g.,
Microsoft’s Academic Conference Management Service).
Bidding is prone to the same bias as self-profiling, for
obvious reasons; and it requires each reviewer to browse
a long list of submitted papers. Many reviewers simply skip
bidding for this reason, effectively passing this chore to the
TPC chair.

In this contribution, we consider the problem of auto-
matically building relevant reviewer and paper profiles for
a given conference, without human expert intervention. A
natural starting point for reviewer profiling is a reviewer’s
CV, but CVs are often outdated and come in many different
formats, making them hard to analyze; and a person’s
‘weight’ on a particular topic is hard to measure directly
from the person’s CV without additional information (e.g.,
citation counts). For this reason, we decided to use Google
Scholar [2]. We developed a simple and robust parser to

2010 IEEE International Conference on Data Mining Workshops

978-0-7695-4257-7/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDMW.2010.87

1214

automatically retrieve information (publication titles, plus
year and citation data) for each reviewer from Google
Scholar. We then employ KEA [9], a TF/IDF-based tool,
to extract an initial list of 𝑇 terms from the joint list
of reviewer publication titles and submitted paper titles.
This way, each reviewer (or submitted paper) is initially
represented by a 1× 𝑇 row vector of zeros and ones, with
ones indicating terms present in the reviewer’s publications
(resp. submitted paper’s title). This first filtering step must
be loose / forgiving (i.e., 𝑇 must be large) to include terms
for every entity. As a result, the extracted profiles are very
noisy. Beyond the already implemented linguistic stemming,
we need domain-specific stemming of terms into concepts.
This is usually done using latent semantic indexing (LSI)
[1]. That is, we stack all these row profiles in a matrix with
𝑇 columns, and reduce the resulting matrix to 𝑟 << 𝑇
components using singular value decomposition (SVD).

The key methodological contribution of this paper is the
following. Experience dictates that each domain-specific
concept should be formed from relatively few raw terms;
i.e., any given concept should not contain most terms. It
follows that each concept should be sparse in term space.
Similarly, each reviewer (or paper) can only relate to a few
latent concepts. That is because each reviewer is expert on a
few sub-topics, whereas the pool of reviewers and submitted
papers collectively need many more terms for appropriate
specificity. It follows that each reviewer (or paper) should
ideally be sparse in concept space - i.e., a linear combination
of a few concepts. This double sparsity should be exploited
in the reduction to latent space, yet SVD-based LSI [1]
and other popular indexing schemes do not account for
sparsity. We thus propose using a sparse matrix factorization
approach in place of LSI or existing alternatives, such as
non-negative matrix factorization [3]. We illustrate the merits
of our approach using real conference data, and expert
scoring of the assignments by a seasoned TPC chair in the
area.

Related work to date addresses the reviewer assignment
problem, see [8], [6] and references therein. Automated
reviewer and paper profiling, which we deal with in this
paper, can be viewed as an intermediate step towards opti-
mized reviewer assignment. The method introduced in [6],
for example, assumes the availability of proximity/affinity
estimates between reviewers and papers; these can be ob-
tained by computing inner products or Euclidean distances
between reviewer and paper profile vectors, respectively.

The rest of this paper is structured as follows. In section
II, we recall some basic matrix factorizations and introduce
sparse matrix regression, a tool that we will use as a
core component of our profiling algorithm in the sequel.
In section III we present the proposed automatic profiling
algorithm, starting from a program we developed for retriev-
ing initial (generic / noisy) reviewer profiles from on-line
resources, and explaining the various processing stages step

by step. In section IV we illustrate the performance of the
proposed algorithm using real conference data, and compare
sparse matrix regression to non-negative matrix factorization
in this context. Conclusions are drawn in section V.

II. LATENT FACTORIZATION USING SPARSE MATRIX

REGRESSION

Latent Semantic Indexing [1] approximates high-
dimensional data in a low-dimensional latent space by
approximating the data matrix using a low-rank bilinear
model

M ≈ AB𝑇

where rank(A) = rank(B) << rank(M). The columns of
A are often called loadings, whereas those of B are called
scores. Note that, for our particular application, M will be
composed of two parts:

M =

[
R
P

]

where R is the reviewer-by-term matrix, and P is the paper-
by-Term matrix.

The above approximation is highly non-unique, because

M ≈ AB𝑇 = AQQ−1B𝑇 = (AQ)
(
BQ−𝑇

)𝑇
,

for any invertible Q. Uniqueness of factorization is not
necessarily of interest, however, when the objective is to
filter noise and bring out the essential latent structure.
An optimal approximation in the least squares sense for
a given rank is provided by the truncated Singular Value
Decomposition (SVD), as originally proposed in [1]. The
full SVD is given by M = UΣV𝑇 where U ∈ ℝ

𝐼×𝐼 and
V ∈ ℝ

𝐽×𝐽 are orthonormal matrices and Σ ∈ ℝ
𝐼×𝐽 is

‘diagonal’ (Σ(𝑖, 𝑗) = 0, ∀𝑗 ∕= 𝑖) containing the non-negative
singular values of M in non-increasing order on its diagonal.
Truncating U,Σ,V to the first 𝑟 singular components and
arbitrarily splitting the singular values between the left and
right factors yields an optimal rank-𝑟 approximation of M
in the least-squares sense.

The SVD is an orthogonal decomposition that optimally
compresses the data for a given rank. Uniqueness is impor-
tant when we worry about interpretability of the latent struc-
ture, in which case we often seek meaningful constraints
(e.g., element-wise non-negativity) on the matrix factors
that can ensure unique or quasi-unique decomposition under
certain conditions. Non-negativity does not ensure unique-
ness in all cases (one can easily cook counter-examples),
but it often yields interpretable results. For this reason,
Non-Negative Matrix Factorization (NMF) [3] has recently
become very popular in a number of applications, including
latent semantic indexing.

Another property that is often plausible is latent sparsity,
i.e., the latent loading and/or score vectors are sparse in
the sense of having few non-zero elements. Sparsity is a

1215

useful constraint when it reflects prior knowledge about the
‘true’ factors. In our particular context, for example, the
reviewer profiles are expected to be sparse, as each reviewer
can only be an expert on a few topics. Data collected
for the reviewer from the web will typically be noisy, yet
by imposing sparsity we hope to suppress the noise and
keep only the important terms that match each reviewer’s
expertise. One-sided sparsity (where loadings or scores are
sparse, but not both) has recently drawn much attention and
found diverse applications in the literature; cf. the so-called
lasso in [7]. Two-sided sparsity (both scores and loadings are
sparse) is considered here and in somewhat different form
in [5]. Sparse Matrix Regression (SMR) is a factorization
that introduces additional ℓ1 penalty terms to the standard
least squares cost function. The role of these penalty terms
is to steer the solution towards sparsity. Sparsity is naturally
measured using the number of non-zero elements - the
Hamming weight or ℓ0 ‘norm’. The use of such counting
measures, however, leads to NP-hard problems. In [7] and
follow-up work it was shown that the ℓ1 norm is a good
substitute that is also amenable to efficient computation.

In its basic form, the one-sided (linear) SMR problem can
be stated as follows:

min
B

{∥ M−AB𝑇 ∥2𝐹 +𝜆∣B∣1} (1)

where A is assumed known or given,

∥M∥𝐹 =

√√√⎷ 𝐼∑
𝑖=1

𝐽∑
𝑗=1

𝑚2
𝑖,𝑗

and

∣B∣1 =
𝐽∑

𝑗=1

𝑘∑
ℓ=1

∣𝑏𝑗,ℓ∣

A coordinate-descent method for solving (1) is listed as
Algorithm 1, where M(:, 𝑗) (M(𝑖, :)) denotes the 𝑗-th
column (resp. 𝑖-th row) of M. Algorithm 1 implements
lasso coordinate descent on a row-wise basis, and it is
guaranteed to converge to the global optimum. Element-
wise non-negativity can be easily incorporated by disabling
the second (else if) assignment - it can be shown that this
is optimal. In our application context, both A and B are
presumed to be sparse, and neither is given. Each column
of B (row of B𝑇) corresponds to a latent group of keywords.
Relatively few keywords should be used to form each latent
group - thus B should be sparse. Each row of A is the
representation of a reviewer or paper on the latent basis.
Each reviewer can only be an expert in relatively few topics,
therefore A should be sparse as well.

The two-sided (bilinear) SMR problem with a double
sparsity penalty can be posed as

min
A,B

{∥ M−AB𝑇 ∥2𝐹 +𝜆∣A∣1 + 𝜆∣B∣1} (2)

Algorithm 1 Element-wise Coordinate Descent for one-
sided (linear) SMR

Input: M of size 𝐼 × 𝐽 , A of size 𝐼 × 𝑘, 𝜆
Output: B of size 𝐽 × 𝑘

while convergence criterion is not met do
for 𝑗 = 1 : 𝐽 do

for 𝑓 = 1 : 𝑘 do
d = M(:, 𝑗)−AB(𝑗, :)𝑇 +A(:, 𝑓)B(𝑗, 𝑓)
a = A(:, 𝑓)
if (aTd− 𝜆

2) > 0 then

B(𝑗, 𝑓) =
a𝑇d−𝜆

2

∥a∥2
2

else if (aTd+ 𝜆
2) < 0 then

B(𝑗, 𝑓) =
a𝑇d+𝜆

2

∥a∥2
2

else
B(𝑗, 𝑓) = 0

end if
end for

end for
end while

One may additionally impose non-negativity constraints
when appropriate

min
A,B

{∥ M−AB𝑇 ∥2𝐹 +𝜆∣A∣1 + 𝜆∣B∣1} (3)

subject to 𝑎𝑖,𝑗 ≥ 0 and 𝑏𝑖,𝑗 ≥ 0

The parameter 𝜆 is tunable and controls the sparsity vs.
fidelity trade-off. Problems 2 and 3 can be solved iteratively,
in a block coordinate-descent fashion: fixing A and solving
for B using Algorithm 1, then fixing B and solving for
A (using Algorithm 1 on the transposed system), until
convergence of the cost function. The iteration is guaran-
teed to converge monotonically, albeit reaching the global
minimum is not guaranteed. We note that using a common
𝜆 to penalize both factors is important for convergence - if
different penalty factors are used then additional measures
are needed to ensure stability of the overall algorithm.

III. PROFILING ALGORITHM

A. Data acquisition - Google Scholar Miner

We developed Google Scholar Miner (GSM), a light
custom Java application to query Google Scholar [2] for
a specific researcher, parse the resulting list of publications,
and produce a generic / ‘noisy’ reviewer profile that will
serve as the starting point for subsequent analysis. The idea
for GSM was inspired by a citation analysis application
called Publish or Perish [4]. GSM queries Google Scholar
using the full name of the researcher and the scientific field
in order to disambiguate as much as possible. Parsing the
resulting list, it records the citation count for each publi-
cation and then hops to the BL-Direct page to retrieve the
title and year of publication. This way, GSM is more robust

1216

and yields cleaner output than meta-analysis of the results
of generic parsers. Apart from the title (which is essential
for obvious reasons), the number of citations and the year
of publication are useful in determining the weight of each
publication (and keywords present in it). Highly cited and
more recent papers carry higher weight, because they are
indicative of expertise and current interests, respectively.

B. The Profiling Algorithm

The proposed algorithm comprises the following steps:

1) Extract a (large) set of raw terms from the list of
submitted paper titles and the publication history of
all reviewers in a joint manner. This set is the set
of index terms of size 𝑇 . We used KEA [9] for
this initial extraction. For each reviewer, we produce
weights for each publication according to citation
count and timeliness. These weights are used for the
KEA internal TF/IDF term weights. The easiest way
to do this in KEA is via replication.

2) Form the Reviewer-by-Term matrix R of size 𝑅× 𝑇 ,
where 𝑅 is the number of reviewers. Form the Paper-
by-Term matrix P of size 𝑃 × 𝑇 , where 𝑃 is the
number of submitted papers. Both matrices are binary,
where a value of 1 in the (𝑖, 𝑗) element denotes that
the 𝑖-th reviewer or paper is matched by the 𝑗-th term.

3) Create the data matrix M as the concatenation

M =

[
R
P

]

4) Factor M in a lower rank 𝑘 as

M ≈ AB𝑇

using double-sided (bilinear) SMR with non-negativity
constraints.

5) Reconstruct the data matrix as

M̂ = AB𝑇

and extract R̂ and P̂.
6) From R̂ take the highest scoring terms for each

reviewer. Then, filter out all terms that don’t appear on
submitted paper titles. The resulting list is the final set
of index terms, with cardinality orders of magnitude
lower than the initial index term set.

7) Build the new profile vectors for all papers and review-
ers using only the set of index terms produced in the
previous step. Here it is possible that some reviewer(s)
or paper(s) end up with nil profiles over the restricted
set. In such cases, we obtain the similarity matrix of
each entity (P̂P̂

𝑇
for the submitted papers and R̂R̂

𝑇

for the reviewers) and substitute any empty profiles
with the most similar non-empty profile.

By concatenating R,P, we treat reviewers and submitted
papers jointly, aiming to extract terms that represent best

both sets of entities. The low rank approximation of the data
matrix compacts the noisy high-dimensional term space to
a low dimensional topic/concept latent space. Note that the
latent grouping of similar terms to a topic remains even after
we expand the profile vectors to the original dimension in
step 5. In step 6 we take full advantage of non-negativity
and the inherent sparsity of reviewer and paper profiles to
reduce noise in the results - this is a key difference relative
to classical LSI or non-negative matrix factorization.

Note that we used submitted paper titles instead of the full
texts in step 1. Even though full texts are available to the
TPC chair, we focus on the titles because they have been
chosen by the authors to convey the distilled ‘essence’ of
the paper. Experienced authors will likely do better filtering
than any machine, hence we chose to trust authors in this
regard. Everything discussed in this paper, however, can also
be applied to abstract or even full text indexing.

IV. EXPERIMENTAL RESULTS

We used data from two recent IEEE conferences to
validate and benchmark our approach. Each dataset included
a list of reviewer names and a list of submitted papers titles.
In both cases, a domain expert with considerable TPC chair
experience was asked to evaluate the results, as detailed in
the sequel.

A. Precision

Using the first dataset, we executed the proposed algo-
rithm for 3 different configurations of the GSM/KEA stage,
chosen to extract

∙ 10 terms per reviewer & 5 terms per paper → 𝑇 =
1251;

∙ 20 terms per reviewer & 5 terms per paper → 𝑇 =
1844;

∙ 30 terms per reviewer & 5 terms per paper → 𝑇 =
2431.

We also executed a variation of the same algorithm, using
non-negative matrix factorization (NMF) [3], which is nowa-
days widely used in text mining, in place of our non-negative
SMR with a double sparsity penalty. This is designed to
assess what SMR can offer over NMF in our context. In the
case of NMF, we inserted an additional step of sorting and
thresholding the intermediate profile vectors at step 6 of the
algorithm, because these tend to be dense and very noisy.

We asked the domain expert to mark the terms produced
by each algorithm as relevant or irrelevant. Then we com-
puted the precision of each set of terms, according to the
following formula:

Precision =
∣Relevant ∩ Retrieved∣

∣Retrieved∣ (4)

where ∣⋅∣ denotes cardinality, ’Relevant’ is the set of relevant
terms and ’Retrieved’ is the complete set of extracted terms.

1217

Table I
PRECISION FOR NON-NEGATIVE MATRIX FACTORIZATION

𝑇 = 1251
𝑘 = 20 𝑘 = 30 𝑘 = 40

precision 0.58065 0.51613 0.47170

𝑇 = 1844
𝑘 = 20 𝑘 = 30 𝑘 = 40

precision 0.5 0.42857 0.42309

𝑇 = 2431
𝑘 = 20 𝑘 = 30 𝑘 = 40

precision 0.6 0.59091 0.53846

In table I, we report precision as a function of approxi-
mation rank 𝑘 for NMF and all three values of 𝑇 .

In table II, we report precision as a function of approx-
imation rank and 𝜆 for non-negative SMR with a double
sparsity penalty. Recall that 𝜆 controls sparsity - the higher
𝜆 is the fewer entries are non-zero. For each combination
of 𝑇 and 𝜆, we also report the average number of non zero
coefficients in the resulting profiles. The latter is denoted as
∕= 0 and can be viewed as a measure of sparsity.

Table II
PRECISION FOR SPARSE MATRIX REGRESSION

𝑇 = 1251

𝑘 = 20 𝑘 = 30 𝑘 = 40

𝜆 = 0.1
precision 0.34615 0.30189 0.31373

∕= 0 51 44 45

𝜆 = 0.3
precision 0.44731 0.35714 0.35714

∕= 0 32 30 31

𝜆 = 0.6
precision 0.84615 0.64 0.64

∕= 0 19 19 21

𝜆 = 0.9
precision 0.8 0.8 0.8

∕= 0 10 11 12

𝑇 = 1844

𝑘 = 20 𝑘 = 30 𝑘 = 40

𝜆 = 0.1
precision 0.22222 0.21260 0.21138

∕= 0 225 198 160

𝜆 = 0.6
precision 0.4 0.44828 0.44828

∕= 0 70 66 50

𝜆 = 0.9
precision 0.38095 0.44 0.44444

∕= 0 50 47 49

𝜆 = 1.3
precision 0.46667 0.52632 0.5

∕= 0 18 20 21

𝑇 = 2431

𝑘 = 20 𝑘 = 30 𝑘 = 40

𝜆 = 0.6
precision 0.52778 0.53846 0.525

∕= 0 100 93 82

𝜆 = 0.9
precision 0.6 0.58065 0.52941

∕= 0 51 57 47

𝜆 = 1.3
precision 0.64706 0.57143 0.57143

∕= 0 28 30 31

𝜆 = 1.6
precision 0.57143 0.52941 0.5

∕= 0 19 23 26

The results are plotted in figures 1-4. Figures 1-3 illustrate
the precision of SMR as reported in table II. Figure 4 is a
comparison between NMF and SMR for 𝑙𝑎𝑚𝑏𝑑𝑎 set to the
value that yields the highest precision for each 𝑇 .

B. Evaluation of review assignment

Apart from assessing the precision of the proposed algo-
rithm, we also evaluated the quality of the optimized review
assignment produced using a variation of [6] with affinity

scores computed by taking the inner product of the resulting
reviewer and paper profiles. For this we used the second
dataset, from a relatively smaller workshop.

In order to have a baseline, the following back-of-the-
envelope calculation is useful. Consider the case of a random
reviewer assignment. To make the point, assume that each
assignment consists of only 4 papers per reviewer, and each
reviewer’s expertise covers 1

7 -th of the broad scientific field
of the conference. Let us also agree that a bad assignment
is when at least 3 out of 4 papers assigned to the reviewer
are outside the reviewer’s expertise. Then the probability of
a bad random assignment is

𝑃𝑟{bad} =

(
4

3

)
1

7

(
6

7

)3

+

(
6

7

)4

≈ 0.9 (5)

This is in fact rather optimistic, because the probability of
bad assignment grows with the number of assigned papers.

A good assignment is one that the TPC chair would
normally do manually; a very good assignment is one above
the average that a reviewer would expect from the TPC
chair. The call was again made by the domain expert.
The number of submitted papers was 78 and the number
of registered reviewers was 64. The number of initially
extracted terms was 𝑇 = 2288. We used SMR with 𝜆 = 0.1
and 𝑘 = 20. The number of very good assignments was 24,
the number of good assignments was 22, and the number of
bad assignments was 18. This yields 𝑃𝑟{𝑏𝑎𝑑} = 0.2812 for
the fully automated solution, as opposed to 0.9 for random
assignment - not bad, but how does the automated solution
compare to a manual expert assignment?

In parallel to the above experiment, we also asked authors
and reviewers to produce their own custom profiles from a
carefully selected list of keywords drawn from past editions
of conferences and workshops in the same area. Then the
resulting profiles were used to compute inner products,
yielding affinity measures which were subsequently used
to optimize the review assignment. The resulting assign-
ment was again graded by the domain expert, yielding
a probability of bad assignment equal to 0.047. This is
considerably better than that of the fully automated solution,
but it requires careful planning ahead of the conference, and
cooperation / diligence on the part of authors and (more
importantly) reviewers - which are hard to ensure. In a
(laborious) fully manual assignment by the domain expert,
the number of bad assignments turned out to be 7 out of
64 - in between the aforementioned assignments. The fully
automatic assignment can be relatively easily improved by
manual swapping, thus getting close to optimal results at a
fraction of the effort.

V. CONCLUSIONS

Our results suggest that SMR (more specifically, non-
negative two-sided SMR with a double sparsity penalty)

1218

outperforms NMF in our present context, where both non-
negativity and sparsity are meaningful constraints. There are
reasons to believe that this advantage will also manifest
in other applications of latent semantic indexing where it
is reasonable to assume sparsity - e.g., customer-product
or student-course profiling. The computational complexity
of SMR is 𝒪((𝑅 + 𝑃)𝑇𝑘2) per iteration, whereas the
computational complexity of NMF is 𝒪((𝑅 + 𝑃)𝑇𝑘) per
iteration. The difference should not matter much, because 𝑘
is usually small.

REFERENCES

[1] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal
of the American society for Information Science, vol. 41,
no. 6, pp. 391–407, 1990.

[2] Google scholar: http://scholar.google.com/

[3] D. Lee and H. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755,
pp. 788–791, 1999.

[4] Publish or perish: http://www.harzing.com/pop.htm

[5] I.D. Schizas, G.B. Giannakis, and N.D. Sidiropoulos, “Ex-
ploiting Covariance-domain Sparsity for Dimensionality Re-
duction,” in Proc. of 3rd Intl. Workshop on Comp. Advances
in Multi-Sensor Adapt. Proc., Aruba, Dec. 13-16, 2009.

[6] C.J. Taylor, “On the optimal assignment of conference papers
to reviewers,” University of Pennsylvania, Dept. of Comp. &
Information Sci. Tech. Report No. MS-CIS-08-30, 2008.

[7] R. Tibshirani, “Regression shrinkage and selection via the
lasso,” Journal of the Royal Statistical Society. Series B
(Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[8] F. Wang, B. Chen, and Z. Miao, “A survey on reviewer
assignment problem,” Lecture Notes in Computer Science,
vol. 5027, pp. 718–727, 2008.

[9] I. Witten, G. Paynter, E. Frank, C. Gutwin, and C. Nevill-
Manning, “KEA: Practical automatic keyphrase extraction,”
in Proceedings of the fourth ACM conference on Digital
libraries, pp. 254–255, ACM New York, NY, USA, 1999.

20 25 30 35 40

0.4

0.5

0.6

0.7

0.8

0.9

1

k̂

P
re

ci
si

on

Precision vs k̂ vs λ for Sparse Matrix Regression (T=1251)

λ=0.1

λ=0.3

λ=0.6

λ=0.9

Figure 1. Precision vs 𝑘 for SMR (𝑇 = 1251)

20 25 30 35 40
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

k̂

P
re

ci
si

on

Precision vs k̂ vs λ for Sparse Matrix Regression (T=1844)

λ=0.1

λ=0.6

λ=0.9

λ=1.3

Figure 2. Precision vs 𝑘 for SMR (𝑇 = 1844)

20 25 30 35 40
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

k̂

P
re

ci
si

on

Precision vs k̂ vs λ for Sparse Matrix Regression (T=2431)

λ=0.1

λ=0.9

λ=1.3

λ=1.6

Figure 3. Precision vs 𝑘 for SMR (𝑇 = 2431)

20 25 30 35 40
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

k̂

P
re

ci
si

on

Precision vs k̂ for NMF and SMR

NMF, T=1251
NMF, T=1844
NMF, T=2431

SMR, T=1251, λ=0.6

SMR, T=1844, λ=1.3

SMR, T=2431, λ=1.3

Figure 4. Comparison of NMF & SMR

1219

