
May 26, 2023 22:54 ws-book9x6 Book Title output page 1

Contents

1. Machine Learning for Complex Instrument Design and

Optimization 1

1.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Machine Learning Challenges and Requirements . . . . . . 4

1.4 Optimizing Instrument Operational Performance . . . . . 7

1.4.1 Effect of noise transients on gravitational-wave

searches . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.2 Effect of control failures on gravitational-wave de-

tector duty cycle . . . . . . . . . . . . . . . . . . . 12

1.4.3 Public Datasets . . . . . . . . . . . . . . . . . . . 14

1.5 Optimizing Instrument Design . . . . . . . . . . . . . . . . 15

1.5.1 Current simulation & optimization tools . . . . . . 15

1.5.2 Generative models for instrument simulation . . . 16

1.5.3 Public Datasets . . . . . . . . . . . . . . . . . . . 18

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Bibliography 23

1



May 26, 2023 22:54 ws-book9x6 Book Title output page 1

Chapter 1

Machine Learning for Complex
Instrument Design and Optimization
Barry C. Barish, Jonathan Richardson, Evangelos E. Papalexakis,

Rutuja Gurav (University of California, Riverside)

Fig. 1.1 Inside the control room of the Laser Interferometer Gravitational Observatory

(LIGO) in Livingston, Louisiana. Image credit: Amber Stuver/Wikimedia Commons

[URL].

1.1 Abstract

In modern experimental physics, particle accelerators and gravitational-

wave observatories enable a wide-range of research at the frontiers of sci-

ence. These instruments are highly complex consisting of many interact-

ing systems which can face significant operational challenges. Apart from

the experiment’s main data product, a lot of data about the experimental

apparatus and its environment is recorded. Machine learning techniques

can analyze this big data at scale and find useful insights into operational

faults potentially improving the instrument’s performance and achieving

1
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the design goals. Speaking of design, machine learning can also accel-

erate/augment the expensive physics simulations used during the design

phase of such large-scale instruments.

1.2 Introduction

In the era of large-scale scientific experiments, big data management and

high performance computing have become indispensible for the fast stor-

age, retrieval, and analysis of the vast amounts of data generated. At

the same time, there has been a growing interest in using advanced ma-

chine learning (ML) techniques for data analysis to make scientific discov-

eries. However, the potential of ML to accelerate scientific discovery is

not limited to the analysis of an experiment’s main data products. Fron-

tier experimental apparatuses like the Large Hadron Collider (LHC), Laser

Interferometer Gravitational-Wave Observatory (LIGO) and Electron-Ion

Collider (EIC) are highly complex instruments with hundreds of degrees of

freedom stabilized by cross-coupled feedback servos and with thousands of

auxiliary sensors. The 4 km long detectors of LIGO, for example, consist

of six coupled laser cavities formed by dozens of mirrors suspended from

quadruple-stage pendula and mounted on active seismic isolation platforms.

LIGO’s main data product is the strain 1 which is used by astrophysicists

to search for gravitational-wave signals. In addition to the main strain

channel, each LIGO detector records over 10,000 channels monitoring the

operation of each subsystem and the seismic, acoustic, and electromagnetic

environment (for an overview of LIGO’s environmental monitoring system,

see [25]). The complexity of large scientific instruments, with their vast

quantities of auxiliary data, presents an emerging opportunity to use ML

more broadly to learn about the instrument itself.

Leveraging ML tools to diagnose performance limitations, such as poorly

understood instrumental noise or control instabilities, and to identify more

optimal designs could lead to big scientific returns through improved sen-

sitivity, operational up-time, and data quality. As one example, nonlinear,

or nonstationary, noise couplings of mostly unknown origin now limit the

Advanced LIGO detectors in several ways. In particular, most of the detec-

tor noise in a band of key scientific interest, 20–60 Hz, remains unidentified

altogether. The unidentified excess noise is shown in the left panel of Fig-

1Strain is the fractional space change across a 4 km long arm of the interferometer
relative to the total length of the arm.
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Fig. 1.2 Left: Noise floor of the LIGO Hanford gravitational-wave detector during the

O3 observing run (red), compared to the budgeted detector noise (blue). As shown, most
of the noise in the 20–60 Hz band remains unidentified. Right: Projected improvement

in the observable volume of Universe for equal-mass binary black hole mergers, as a

function of the total mass (in the source frame) of the binary, if this excess noise were
identified and fully mitigated.

ure 1.2, indicated by the shaded region. The right panel of Figure 1.2 show

the impact of this noise on a key astrophysical metric. As shown, identify-

ing and mitigating this noise would significantly enlarge both the volume of

universe and the astrophysical mass range accessible to gravitational-wave

science, including enabling observations of mergers of the most massive

stellar-origin black holes.

The unidentified excess noise in the LIGO detectors is believed to orig-

inate through nonlinear mechanisms because it does not exhibit high co-

herence with any of the multitude of auxiliary signals. For this reason, it

has proven very difficult to pinpoint the origins of nonlinear noise in Ad-

vanced LIGO using traditional (linear time-invariant) system identification

techniques. However, such challenges are far from being specific to LIGO.

In fact, they are common to complex actively controlled instruments, with

another example being particle accelerators. In accelerators, ML can be

used to optimize the performance of colliding beams, reduce beam losses,

and steer the beam.

Developing new tools and approaches for understanding instrumental

noise, as well as other operational anomalies, is thus critical to the future

of complex instruments such as LIGO, the LHC, and the EIC. New unsuper-

vised ML methods to model and analyze the multitude of auxiliary signals

recorded in the detectors, over extended periods of time, offer an emerg-
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ing opportunity to generate actionable insights that will guide instrument

commissioning efforts and future design decisions. Previous applications of

ML in complex systems like LIGO [for a through review, see][]Cuoco:2020

or accelerators [7], overwhelming employ a supervised learning paradigm,

where the desired input-output behavior of a system is known and is be-

ing approximated by a ML model (e.g., estimating the masses of the two

colliding black holes in an observed gravitational wave). In many of the

problems encountered within complex instrument operations, such super-

vision is scarce or non-existent, calling for the development of novel ML

methods to tackle them. Similar challenges also arise in the operation of

large complex systems in general [18], so advances in this area will open op-

portunities for unsupervised and explainable knowledge discovery at-large.

In the remainder of this chapter, we first discuss the key challenges

and requirements for developing unsupervised learning models for complex

instruments. This section also introduces ML terminology and concepts

on which the later sections of this chapter will rely. We then discuss the

potential of ML as a tool for diagnosing and optimizing the operational

performance of an experimental apparatus, using the LIGO detectors as

an illustrative case study. Finally, we discuss the prospect of using ML

for instrument design, with applications to optimizing existing accelerators

like the LHC as well as the ground-up design of future frontier accelerators

such as the EIC2.

1.3 Machine Learning Challenges and Requirements

In adapting or developing new ML methods for complex instrument oper-

ations management and design, there are a number of fundamental chal-

lenges that must be addressed. Below we provide a brief overview of those

challenges. Although they are presented in a serial and independent man-

ner, typically a combination of them manifests in any problem we may

encounter.

Weak or limited supervision Supervision is a key aspect of machine

learning, and the paradigm of supervised learning is, most likely, the one

to which most readers would have already been exposed: there is an abun-

dance of (input data, desired output) pairs (e.g., an image and its associ-

ated label), and the task is to learn a model that maps a representation

2Find more information about the EIC here - https://www.bnl.gov/eic/

https://www.bnl.gov/eic/
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of the input to the desired label in a manner that generalizes to unseen

inputs. However, a vast number of problems in the context of instrument

diagnostics and design are not afforded the amount of human annotations

necessary to train such models. For instance, when predicting operational

failures, the annotations that would be most desirable would be ones which

would characterize the parts of the instrument which are responsible for

the failure. Unfortunately, this presents a Catch-22, since those annota-

tions are the knowledge which we seek to extract from our application of

machine learning. In such a case, we may resort to proxy data which can

be obtained cheaply, do not require extensive human annotation, and may

help us train models which can shed some light on the ultimate intractable

task. We may use the presence or absence of instrument failure as a coarse

label that indicates normal or abnormal operation, in hopes that the model

that is able to successfully predict such a coarse label is capturing useful

information that can enable exploratory analysis to further characterize

such a failure. Finally, this challenge is compounded by the fact that, even

though the amounts of data generated by an instrument are massive, typ-

ically when creating ML-friendly datasets from which a model can learn

meaningful and generalizable patterns there is significant cleaning, down-

selecting of channels and time periods, and other forms of pre-processing

involved, which result in substantially reduced sizes for available curated

datasets. This makes learning more challenging.

Explainable models Machine learning models which are tasked with

mapping input feature representations (e.g., sensor readings that monitor

the state of the instrument for a certain time window) to a desired pre-

diction (e.g., failure at time tf) can take many different forms, all the way

from classification trees and parametric equations to deep neural networks.

As we mentioned above, a fundamental requirement for any such model is

to generalize well to unseen examples. However, this is only one of the di-

mensions in which one can examine machine learning models. A dimension

that is vital to many problems encountered in the context of this chapter

is explainability, which measures the degree to which a human can readily

understand the reasoning behind the model’s decision and attribute such

decision to different parts of the input data (in our running example, such

attribution could be highlighting different sensors and temporal windows

as bearing most of the weight of the prediction of a failure). Simple linear

models or tree-based models lend themselves directly to such explanations

(a linear model assigns different weights to inputs, and a tree can provide
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a set of rules based on the inputs which led to the decision). As machine

learning models move towards highly-overparametrized deep neural net-

works, the ability to generalize successfully increases. However, the ability

to provide such explanations and attributions to the input becomes in-

creasingly more challenging. Thus, there is an active research area within

machine learning which is concerned with different paradigms and meth-

ods of explainability, ranging from readily explainable models to models

for which only post-hoc explanations can be provided [13]. In our context,

any such form of explanation can be crucially important: coupled with the

challenge of weak supervision described above, imbuing explainability to

a model tasked with predicting an auxiliary target (e.g., whether a failure

occurred) can shine light on parts of the data which can then be further

examined systematically by domain experts. In this way, we may gain in-

sight into potential physical mechanisms that can be responsible for the

observed outcome (e.g., instrument failure).

Theory/physics-guided models A major promise of modern deep

learning models is their purported ability to capture arbitrarily non-linear

functions between input and output. However, such a statement, generic

as it is, highly depends on a vast number of factors and problem parame-

ters, such as the amount and quality of data available to us, the inherent

hardness of the predictive task at hand, and the quality of the supervision,

just to name a few. As a result, this promise is not always realized, and

in practice successfully training a model that reaches that ideal requires

copious amounts of experimentation with different hyperparameters and

design choices. Thus, an emerging area in machine learning research is the

one of theory-guided, or physics-guided, modeling [16]. It aims to leverage

well-understood information from a particular scientific domain of interest,

incorporating that in the design or the training of the model such that

models which are consistent with what theory dictates are preferred over

models that are inconsistent (with a varying degree of strictness, depending

on how such guidance is incorporated). Doing so may imbue stability and

efficiency in how the model is able to perform and generalize, thus making

such guided approaches very appealing. In our scenarios, one may envision

identifying parts of the instrument whose operation is well-understood and

potentially expressed by precise equations, and enforcing consistency of the

trained model with respect to those equations. The intended by-product

of this action is that the model learned will capture phenomena (both doc-

umented and unknown) in the data with higher fidelity, even though full
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a-priori modeling of all phenomena may be infeasible or impossible.

Human (expert)-in-the-loop & active learning The typical view of

supervision in machine learning considers the process of obtaining human

annotations as an offline, slow, and tedious process. However, an emerging

trend in machine learning is to blur the boundaries between those two pro-

cesses by introducing “human-in-the-loop” frameworks, where a model is

being continually refined according to human feedback. Key challenges in

doing so include the determination of when and how often to solicit feed-

back, the form of the feedback itself (e.g., it may be easier for a human

labeler to identify whether or not two data points are of the same type

than to provide a type for a single data point [20]), and in what ways the

model should adapt to the new feedback provided by the human. Human-

in-the-loop analytics and learning, albeit an active and emerging field, is

related closely with ideas previously developed within the field of infor-

mation retrieval (studying and developing algorithms for efficient search

and retrieval of information) and the area of relevance feedback [29]. Fur-

thermore, parts of the desiderata in a human-in-the-loop framework are

also the subject of the area of active learning [30], where the objective is

to solicit new annotations for a limited number of data points such that

the new model’s performance is maximized. Active learning has found ap-

plications to science problems, such as anomaly detection in astronomy

[15]. In realizing an end-to-end human-in-the-loop framework, however,

more advances are necessary in a number of areas including scalability and

visualization/human-computer interaction [8, 37, 35].

1.4 Optimizing Instrument Operational Performance

Optimal instrument performance is critical for achieving the scientific goals

of a large-scale experiment. However, the complexity of large instruments

often makes it difficult to identify the root cause of errors encountered

during operation. Normal operation typically involves controlling many

coupled degrees of freedom simultaneously, with a multitude of potential

points of failure and entry for noise. Using instrumental data to identify

poor operating conditions and diagnose errors thus requires monitoring

many interacting subsystems. Even so, modeling of the instrument, or

even individual subsystems, often fails to capture enough realistic detail

to reproduce operational errors because (1) the number of possible failure

modes is vast and unknown and (2) the state of the instrument and all of
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its subcomponents, at any moment, is also not fully known. Thus, the best

prospect for uncovering root causes of anomalous operation or failures lies

in mining time series from the large number of diagnostic channels3, various

subsets of which may be non-trivially correlated, for interesting patterns.

Among patterns of interest are the so called anomalies, they are outliers

in the data that potentially hint towards processes that might be disrupting

nominal operation of the instrument. In [7], the authors present a use-case

of modern particle accelerators, a poster child for a large-scale complex

instrument and cite that various anomaly detection techniques have been

used at the LHC for identifying bad readings from beam position moni-

tors and to assist in automated collimator alignment[34]. A key challenge

for human operators is selecting a small subset of relevant channels for in-

vestigation from a vast number of channels which record the dynamics of

the instrument. In this section, we broadly describe two machine learning

pipelines to aid the diagnosis of two types of operational issues - 1. tran-

sient noise and 2. control failures. We will first briefly introduce these

operational issues and then present detailed real-world examples of these

issues encountered in a state-of-the-art complex instrument: ground-based

gravitational wave detectors.

Transient noise can contaminate the main data product of an experi-

ment and thus lower its quality. For an active instrument like a particle

accelerator this means repeating the experimental run which is costly but

possible. For a passive observatory, like the ground-based gravitational-

wave detectors at LIGO, such transient noise can lead to missing part or

whole of a unique astrophysical event that is impossible to observe again.

Figure 1.4 shows the now-famous example of a loud noise transient corrupt-

ing a portion of the signal from the first ever binary neutron start merger

detected by LIGO. Thus, it is critical to understand sources of such noise

to potentially eliminate it with upgrades. Using archived data and machine

learning methods, we can identify witnesses to noise artifacts by looking for

correlations between transients in a set of diagnostic channels3. A subset

of these diagnostic channels termed as witness channels can then be used

to categorize, locate and potentially eliminate the root cause of a certain

noise transients.

3A set of channels used for performing instrument diagnostics, primarily consisting
of sensor readout or other quantities related to instrument control.
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Control failures render the instrument unable to operate in a nominal

state and thus reduces duty-cycle. This operational issue has a relatively

larger impact than the transient noise issue as no science data can be pro-

duced while the instrument is recovering. Diagnosing causes of control fail-

ures is crucial to mitigate future adverse events. Such failures are relatively

easy to mitigate as they are occurring in real-time but a key task is to predict

an impending failure. We can address this task with machine learning by

using data preceding failure events from a set of diagnostic channels to iden-

tify precursors to these failure events. In [9], the authors explore the use of

a deep neural networks 4 for predicting operational failures at a particle ac-

celerator facility by modeling precursors to a failure from a set of diagnostic

channels3. Limited Supervision [1.3]: The machine learning problem is for-

mulated as a binary classification task where data-points corresponding to

failures (positive class) and nominal behaviour (negative class) can be auto-

matically labelled without manual human effort. Explainable Models [1.3]:

Since deep neural networks are often black-box models, the authors em-

ploy an explanation technique, Layer-wise Relevance Propagation [2], to

highlight a subset of diagnostic channels3 that are relevant to failures.

Before presenting real-world examples of the two aforementioned opera-

tional issues in context of our complex instrument of choice, LIGO, let us

walk through the generic machine learning pipeline (shown in Figure 1.3

(top row)). Raw data from a data archive is processed with a domain

expert’s guidance to create a task-specific dataset . This task-specific

dataset is then used to train an appropriate machine learning model .

The model’s performance is tested on a holdout set of data-points that are

not part the model’s training for generalization ability - a key expectation

from any machine learning model. Finally, the validation of the model

output is done using domain expert-defined tests which are often necessary

for the downstream application of the model.

1.4.1 Effect of noise transients on gravitational-wave

searches

For LIGO’s online astrophysical search pipelines, one class of nonlinear

noise artifact is particularly problematic: Transient noise bursts, of largely

unknown origin, known as noise glitches [3] [4]. Multiple glitches occur

4A class of supervised machine learning models that are particularly good at learning
complex, non-linear functions of the input that map it to the prediction target.
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Fig. 1.3 Top row: A generic Machine Learning pipeline typically has 4 stages starting

at task-specific dataset creation to validation of the modeling output. Middle row:
End-to-end pipeline for finding witnesses to noise transients that can potentially help

diagnose sources of noise relies on selecting transient events of interest from the main

channel and finding coincidences in a set of diagnostic channels. Bottom row: End-to-
end pipeline for finding precursors of control failure events relies on isolating data from

a set of witness channels preceding such events as outliers.

during a typical hour of observation. Glitches contaminate the astro-

physical data streams (see, for example, Fig. 1.4), confusing burst-source

gravitational-wave searches and hindering the timely issuance of real-time

alerts for electromagnetic follow-up. By introducing a long non-Gaussian

tail in the instrumental noise background, glitches also raise the statistical

threshold for detecting true astrophysical events. Reducing the frequency

of glitches will improve detection rates for all types of events, but most

especially for high-mass binary black hole mergers, whose signal-to-noise

ratio is the poorest.

In [14], we use matrix and tensor factorization [19] to automatically

identify relevant subsets from the set of diagnostic channels that are be-

lieved to be potential witnesses to glitches present in LIGO data in a 5-day

period from the third observing run. Figure 1.3 (middle row) shows an end-
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Fig. 1.4 Time-frequency representation of the gravitational-wave event GW170817, as

observed by the LIGO Livingston detector. Moments before merger, a noise glitch 1,000

times louder than the gravitational-wave signal occurred. Image reproduced courtesy of
LIGO/Caltech/MIT.

to-end pipeline for this task. We select a set of diagnostic channels and a

set of glitches from LIGO’s main channel where gravitational-waves are ob-

served. We then construct the task-specific dataset in form of a 3-mode

tensor 5 where mode-1 corresponds to the glitches in the main channel,

mode-2 corresponds to diagnostic channels selected for this analysis and

mode-3 corresponds to features (e.g. duration, peak frequency, bandwidth,

signal-to-noise ratio, etc.) of the glitches found in the diagnostic channels

that are coincident with the main channel glitches within a short window

around a main channel glitch. This tensor essentially encodes the presence

or absence of a glitch in a diagnostic channel “coincident” with a glitch

in the main channel. The machine learning model of choice is tensor

factorization. We factorize this tensor into N factors and obtain factor ma-

trices corresponding to the latent space representations of each mode. We

use the factor matrix corresponding to the “diagnostic channels” mode to

select N channels (one per factor), see Figure 1.5. We validate the chan-

nels thus selected as potential witnesses to the main channel glitches in

the dataset by examining the true positive rate6 and false positive rate7 of

each selected witness channel for increasing values of signal-to-noise (SNR)

5In the context of machine learning, a tensor is a multidimensional array.
6Number of times there was a coincident glitch in a selected witness channel and the

main channel divided by the number of total glitches in the witness channel
7Number of times there was a glitch in a selected witness channel but no coincident

glitch in the main channel divided by the number of total glitches in the witness channel
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Fig. 1.5 Finding witness channels to noise transients: Witness Selection Fac-

tors corresponding to diagnostic channels of a n = 5 component tensor factorization of
channels×events×features tensor that encodes presence or absence of coincident noise

transients in diagnostic channels. They show high magnitude values in a factor for a few

out of the approx. 900 channels used for this analysis. For example, Factor 1 shows a
high magnitude value for channel #40 which is then selected as a witness.

thresholds, see Figure 1.6. The channels deemed good veto candidates by

this validation step can then be considered for downstream applications

like, for example, using the channel to veto and remove data segments from

the main channel before searching for gravitational-wave signals.

1.4.2 Effect of control failures on gravitational-wave detec-

tor duty cycle

Achieving resonance in the full LIGO system is a complex process [see,

e.g.,][]Staley:2014 typically requiring 30 minutes to complete. Control fail-

ure occurs when a disturbance, either internal or external, causes the laser

cavities to become “unlocked” from their resonant operating points. This

type of control failure is termed as lock loss. Due to the frequency of

lock losses, all three LIGO-Virgo detectors (LIGO Livingston, LIGO Han-
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different channels selected using factors of the channels×events×features tensor show
differing true vs false positive characteristics. Left: The selected channel has a high false

positive rate at increasing SNR thresholds compared to the true positive rate suggesting

that it might just be an inherently noisier diagnostic channel and thus cannot be used to
veto science data segments for downstream gravitational-wave search pipelines as it will

result in large loss of science data. Right: There is a sharp drop-off in false positive rate

of the selected channel above SNR threshold of 25 while the true positive rate remains
relatively stable. We can use this selected channel to veto coincident noise transients in

the science data.

ford, and Virgo) were running at the same time only about 50% of the

time during the third observing run. The majority of lock losses have no

readily identifiable environmental cause Rollins:2017, so may too be trig-

gered by non-Gaussian noise events. Identifying and eliminating triggers

of lock loss could potentially make a big improvement in the fraction of

calendar time all three detectors are data taking, increasing the number

of triple-coincident gravitational-wave detections. Observations by multi-

ple detectors with different antenna patterns are critical for precise sky

localization, as needed for targeted electromagnetic follow-up of potential

multi-messenger events.
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Figure 1.3 (bottom row) shows a pipeline that formulates the prob-

lem of diagnosing control failures as an anomaly detection task where the

task-specific dataset is constructed by obtaining data preceding control

failures from a set of diagnostic channels. We also obtain data during

nominal operation periods from these channels. Thus, we do not need any

explicit supervision as we have automatic ground-truth (labels) for the data-

points in our dataset as either failure or nominal events. We hypothesize

that data preceding failure events in a subset of channels will have anomalies

which might be precursors to the failures. The machine learning model

of choice here is an unsupervised, tree-based Outlier Detection algorithm

called Isolation Forest [21] that partitions the dataset using a tree struc-

ture and isolates anomalies as outliers. We validated the events deemed as

anomalies by the algorithm by comparing them against the ground-truth,

see Figure 1.7.

There are some key challenges worth highlighting in the machine learn-

ing pipelines described in Section 1.3.1 and 1.3.2. Firstly, we assume a

preprocessing step of creating the task-specific datasets from the massive

amounts of raw, archived time series data. This step has an inevitable

need of domain expertise as there can be potentially tens of thousands of

diagnostic channels to choose from only a subset of which may be relevant

to the task and these channels are often sampled at different rates captur-

ing various phenomenon occurring at different time and frequency scales.

Beyond the selection of a set of diagnostic channels for any given analy-

sis, the “features” engineered from the raw data-streams can be explicitly

hand-crafted to be semantically meaningful to the domain-expert or they

can be implicitly learned by the machine learning model. Implicit feature

representations of our data, like the ones learned by black-box models like

deep neural networks, reduce the burden of hand-crafting good enough fea-

tures but make the output of our pipelines less interpretable. Moreover, at

the end of the pipeline we also seek expert guidance for creating validation

tests that examine the utility of the machine learning model’s output for

downstream diagnostic applications.

1.4.3 Public Datasets

Most real-world complex instruments have large quantities of raw archival

operational data, as described in this section, that is not readily available to

be used for training machine learning models. Therefore, machine learning
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applications use smaller benchmark datasets curated from the data archive

or create synthetic datasets for proof-of-concept.

Following are some LIGO-specific public datasets available for machine

learning in complex instruments diagnostics.

(1) LIGO Gravity Spy: This dataset, as described in [36], consists of

time-frequency spectrogram images of various noise transients in the

main data product of LIGO. The machine learning task is to classify

these images into a set of classes using state-of-the-art deep learning

models like convolutional neural networks. The sample dataset is avail-

able here - https://zenodo.org/record/1476551#.YjoQ-3XMKV5

(2) LIGO diagnostic channels dataset: This is a multivariate time-

series dataset consisting of a 3-hour period centered on a real

gravitational-wave event, GW170814, from approx. 1,000 LIGO di-

agnostic channels. This dataset can be used for identifying noise tran-

sients witness channels as described in this section or for subtract-

ing noise from the main data product. The dataset can be found

at the Gravitational Wave Open Science Center webpage - https:

//www.gw-openscience.org/auxiliary/GW170814/

1.5 Optimizing Instrument Design

A fundamental requirement in instrument design is the ability to accu-

rately and efficiently simulate different scenarios for a variety of instrument

configurations, in pursuit of configurations which optimize a certain target

physical quantity. In this section, we first provide a brief overview of the

traditional simulation and optimization pipeline, and subsequently we re-

view an emerging machine learning breakthrough which has the potential

to revolutionize instrument design.

1.5.1 Current simulation & optimization tools

Traditionally, the instrument design pipeline is roughly divided into two

parts, simulation, where the behavior of an instrument (or one of its com-

ponents) is estimated by software, and optimization, where the designer

seeks to identify the best combination of parameters that satisfies a set of

requirements for the component in question.

Simulation Simulation is the process of estimating the response of an

instrument or one of its components through software, thus eliminating the

https://zenodo.org/record/1476551#.YjoQ-3XMKV5
https://www.gw-openscience.org/auxiliary/GW170814/
https://www.gw-openscience.org/auxiliary/GW170814/


May 26, 2023 22:54 ws-book9x6 Book Title output page 16

16 Book Title

need to fabricate and physically experiment with that component. Such

simulators have been widely used by both accelerators [1] and gravitational

wave detectors [10]. Typically, during simulation, the user/designer speci-

fies a thorough description of the component that is being simulated, and

provides as input the environmental conditions (e.g., a certain event of in-

terest) for which the component’s response is needed. In turn, the simulator

computes the response of that component, usually by numerically solving

for the equations which govern that component’s response. Finally, the

last step in the pipeline takes as input the response/state of the compo-

nent, and outputs a reconstruction of a quantity of interest, which is used

as an evaluation metric (e.g., energy).

Optimization During a single run of the simulator, the parameters of

the design to be simulated are user-defined. However, manually iterating

over different designs in pursuit for one or more designs which satisfy the

chosen criteria can be extremely inefficient and incomplete. To that end,

in addition to simulators, effective design uses optimizers which are given

a user-specified objective to optimize for (e.g., energy) and their goal is to

effectively navigate the search space of designs and identify one or more

that achieve the optimal objective. Ocelot [32] is such a general-purpose

optimization tool which has been very popular in accelerator design. In-

terestingly, there are connections between optimization tools in instrument

design and tools used in modern machine learning to fine-tune the design

parameters (also called hyperparameters) of a large model, such as Bayesian

Optimization [24, 33].

1.5.2 Generative models for instrument simulation

Despite the existence of efficient optimizers, whose goal is to minimize the

number of times the simulation must be run, simulation in itself is a very

computationally intensive and slow process. Furthermore, in order for a

simulation to be accurate, it is typically restricted to very specific com-

ponents of a larger instrument. As a result, simulating an instrument

end-to-end would require the combination of a large number of special-

ized simulators, which are not necessarily designed to be compatible with

each other. Thus, such an endeavor may be technically challenging or even

intractable.

On the other hand, machine learning models, and especially deep neural

networks, can be used as cheap, generic nonlinear function approximators.
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They have been studied for “data analysis” of an instrument’s main data

products (e.g., using deep neural networks to quickly estimate astrophysical

parameters of a gravitational wave signal in real time, instead of carrying

out the exact numerical calculations [11]). However, an emerging trend

in instrument design is to replace traditional simulators with deep learn-

ing models, specifically leveraging recent advances in generative adversarial

networks (GANs) [12]

A GAN is a machine learning model that itself consists of two sub-

models, the generator and the discriminator. Typically those two models

are neural network based, so the term “network” is commonly used when

referring to them. The generator takes as input a vector, typically drawn

at random from a Gaussian distribution, and it is tasked with outputting a

data point (e.g., an image or the output of an instrument simulator) that

is “realistic.” The discriminator, on the other hand, takes two inputs: a

“real” data point (e.g., an actual image in our dataset or an actual output

of an instrument simulator) and a generated data point (the output of the

generator), and its task is to determine which data point is real and which

is fake. During training, those two networks are engaged in a two-player

game, where, as the generator gets better at producing realistic outputs,

the discriminator improves its ability to detect fake data, and vice-versa.

At the end of the training process, the generator will ideally produce data

indistinguishable from “real” data, while effectively providing a means of

sampling from the distribution of “real” data.

The most well-known use case and success story of GANs is in the gen-

eration of images and videos that look extremely realistic [17]. However,

the success of GANs extends far beyond this use case, with successful appli-

cations in drug discovery [23] and material design [6]. Very recently, there

have been successful attempts at using GANs for the simulation of complex

scientific instruments, as applied specifically to the simulation of accelera-

tor calorimeters [27, 28, 26]. Figure 1.8 provides an illustrative example.

These recent attempts clearly demonstrate the feasibility and potential of

harnessing the power of GANs for complex instrument design.

Despite early success on the calorimeter application, broad application

of GANs to the problem of instrument simulation and design poses fas-

cinating interdisciplinary research challenges. Those challenges pertain to

ensuring that the generated data are of high quality, both as it pertains to

how realistic they are as well as to the diversity of generated data points

(a known mode of failure for GANs is memorizations of the training set

or generation of very similar data points) [31]. Advances in the following
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areas, outlined in Sec. 1.3, can pave the way for tackling those challenges:

(a) Physics-guided models: In order to ensure that the Generator will

obey physical constraints and laws governing the instrument that it models,

a physics-guided approach can incorporate this information in the design

or training stages of the model. In Paganini et al. [28], the proposed GAN

takes such a physics-guided approach, by modifying the loss function that

is being optimized during training.

(b) Limited supervision: Training data for the GAN come from very ex-

pensive simulations. Thus, it may be infeasible to create very large training

data sets, a challenge which may amplify issues such as the memorization

of the training set by the GAN. Thus, designing solutions that work with

limited supervision is imperative.

(c) Expert-in-the-loop: A big advantage of applying GANs to instru-

ment simulation is that the definition of “realistic” is objective and can

be analytically measured. This is in contrast to the original application of

GANs, where judging the realism of a generated face or natural image can

be subjective. However, when judging the diversity of generated data, the

involvement of human experts can be crucial.

In addition to the immediate efficiency gains of substituting an inef-

ficient simulator with a highly-efficient neural network, a major promise

of machine learning driven instrument design is flexibility and modularity:

once every component of an instrument can be efficiently simulated by a

neural network, this can facilitate the simulation of increasingly larger por-

tions of an instrument, ideally all the way to end-to-end simulation and

design.

1.5.3 Public Datasets

Three datasets used in [5] for simulating particle showers using GANs at

the ATLAS detector at the LHC are hosted here - https://opendata.

cern.ch/record/15012

1.6 Conclusion

Instruments at the frontiers of science are becoming increasingly complex

and data-intensive. There is a need for intelligent automation to tame

this complexity, increase reliability and push the limits of these technolog-

ical marvels to make new scientific discoveries. This chapter explored the

emerging application of machine learning for complex instrument opera-

https://opendata.cern.ch/record/15012
https://opendata.cern.ch/record/15012
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tions management and design. The current state of the art demonstrates

very promising results, with machine learning methods empowering early

detection of failures, diagnosing noise sources, and enabling the flexible sim-

ulation of different components of an instrument—tasks which may have

previously been extremely tedious or downright impossible to do well by

hand. There exist a number of fundamental challenges within machine

learning research to successfully apply these techniques to solving issues

of complex instruments, like the need for explainable and theory-guided

modeling. Successful application of these techniques can pave the way for

a new generation of complex instruments.
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Fig. 1.7 Finding witness channels of control failures: (Note: The figure above shows

a 2-dimensional projection of the m-dimensional data (m >> 2) using t-Distributed
Stochastic Neighbor Embedding (t-SNE) [22] that tries to preserve distances in the

higher dimensional space for the purpose of visualization only). We obtain k features
from segments of data preceding 2 types of control failures (red and blue) from a set of n

diagnostic channels (m = k×n). To complete the dataset we also sample data segments

during nominal operation (green). The outlier detection algorithm is fully unsupervised
and does not use the ground-truth labels for the events in the dataset (failure or nominal)

to isolate certain events as outliers (circled in black). We can see that instances of data

preceding control failures (red, blue) are identified as outliers. The diameter of the black
circle in this plot corresponds to an outlier score (larger score = bigger outlier) and this

score can potentially be used as a threshold for reducing false positives (nominal events

that are identified as outliers but with a relatively smaller outlier score).
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instance, the mean per-layer cell variations only show ∼4%
and ∼1% discrepancy in the first two layers, respectively
where most energy is deposited for e=γ. This level of
agreement is promising, but it is important to analyze more
than the mean energy pattern to fully study the strengths
and weaknesses of the proposed approach.
The CaloGAN-generated samples are checked for

adequate diversity and lack of direct memorization of
the GEANT4 samples used for training. The nearest (by
Euclidean distance) GEANT4 image is found for each of a
random selection of CaloGAN images in order to verify the
desired characteristics (Fig. 2). The samples show strong
inter- and intraclass diversity and no evidence of memori-
zation since the closest images do not look exactly the same.

Shower shape description.—Geometrically and physi-
cally motivated shower shape variables [32] are used as
further validation and introspection into the capabilities of
CaloGAN to adequately model and capture nonlinear func-
tional representations of the simulated data distribution
(Fig. 3). In fact, it is desirable for CaloGAN to recover the
target distribution of these 1D statistics.
The network is not shown any shower shape variables

(only pixel values) at training time—therefore, it is encour-
aging to note that CaloGAN recovers the simulated data
distribution for a variety of shower shapes across the three
particle types. However, certain features of some distribu-
tions are not well described. This is a challenge for the
future and will likely require improvements to the archi-
tecture and training procedure. Longer trainings of higher
capacity architectures have shown promise in rectifying
some of these issues.
Examining 1D statistics does not probe correlations

between shower shapes or higher dimensional aspects of
the probability distribution. One way to examine the full
shower phase space is to study classification performance,
as described in the next section.
Classification as a performance proxy.—When training a

six-layer, fully connected classification model on the 504-
dimensional pixel space of the concatenated representation
of shower energy depositions across all calorimeter layers,
no major classification degradation is observed for out-of-
domain learning when trained on the full simulation, i.e.,
when the network is trained on GEANT4 samples but
evaluated on CaloGAN samples. Specifically, although the
classification accuracy always reaches 99% when evaluating
performance on CaloGAN showers—which points to an
overdifferentiation among particle types in the CaloGAN data
set—in both eþ − γ and eþ − πþ discrimination tasks, the
evaluation of the network trained on GEANT4 images results
in no accuracy decrease in the former task (∼70%), and only
a 2% decrease in the latter (∼97% versus ≳99% accuracy),
when compared to the classifier tested on CaloGAN samples.
The stability of the accuracy metric implies that CaloGAN
succeeds at representing at least as much variation among
showers initiated by different particles as is necessary to
classify them using the same features in GEANT4. Training
on CaloGAN and testing on GEANT4 does show significant
degradation, indicating that the GAN is inventing new class-
dependent features or underrepresenting class-independent
features. While percent-level variations may be important for
some applications, using classification as a generator diag-
nostic is an important tool for exposing the modeling of
interclass shower variations.
Computational performance.—Directly generating

deposited energy per calorimeter cell rather than particle
dynamics renders the model’s time-complexity invariant to
nominal energy, whereas GEANT4 shower simulation run-
time increases significantly with higher energy. Therefore,
CaloGAN affords sizable simulation-time speedups com-
pared to GEANT4. All benchmarks are performed on Intel
Xeon® 2.6 GHz processors for CPU time and a single

FIG. 1. Average γ GEANT4 shower (top row), and average γ
CaloGAN shower (bottom row), with progressive calorimeter
depth (from left to right).

FIG. 2. Five randomly selected γ showers per calorimeter layer
from GEANT4 (top rows) and their five nearest neighbors (by
Euclidean distance) from a set of CaloGAN candidates.
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Fig. 1.8 Top row: An illustration of the “traditional” simulation pipeline

Middle row: Illustration of a Generative Adversarial Network (GAN): The Generator

Network is taking as input random noise and additional information about the state
to be simulated and generates “fake” data. The Discriminator Network takes as input

“real” data (as simulated by a traditional simulator such as geant4) and “fake” data

generated by the Generator, and determines which data point is fake or real.
Bottom row: In the ML-based simulation pipeline, the simulator is replaced by the

GAN Generator and a “Reconstruction” neural network is replacing the analytical re-

construction process, which transforms the simulation output to a quantity of interest
(e.g., energy). (Data figures show simulated and generated calorimeter showers and are
adapted from [28]).



May 26, 2023 22:54 ws-book9x6 Book Title output page 22



May 26, 2023 22:54 ws-book9x6 Book Title output page 23

Bibliography

[1] Sea Agostinelli et al. “GEANT4—a simulation toolkit”. In: Nuclear instru-
ments and methods in physics research section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment 506.3 (2003), pp. 250–303.

[2] Sebastian Bach et al. “On pixel-wise explanations for non-linear classifier
decisions by layer-wise relevance propagation”. In: PloS one 10.7 (2015),
e0130140.

[3] L Blackburn et al. “The LSC glitch group: monitoring noise transients
during the fifth LIGO science run”. In: Classical and Quantum Gravity
25.18 (Sept. 2008), p. 184004. doi: 10.1088/0264-9381/25/18/184004.
url: https://doi.org/10.1088/0264-9381/25/18/184004.

[4] M Cabero et al. “Blip glitches in Advanced LIGO data”. In: Classical and
Quantum Gravity 36.15 (July 2019), p. 155010. doi: 10.1088/1361-6382/
ab2e14. url: https://doi.org/10.1088/1361-6382/ab2e14.

[5] ATLAS collaboration et al. “AtlFast3: the next generation of fast simulation
in ATLAS”. In: arXiv preprint arXiv:2109.02551 (2021).

[6] Yabo Dan et al. “Generative adversarial networks (GAN) based efficient
sampling of chemical composition space for inverse design of inorganic ma-
terials”. In: npj Computational Materials 6.1 (2020), pp. 1–7.

[7] Auralee Edelen et al. “Opportunities in machine learning for particle ac-
celerators”. In: arXiv preprint arXiv:1811.03172 (2018). url: https://

arxiv.org/pdf/1811.03172.pdf.
[8] Alex Endert et al. “The human is the loop: new directions for visual ana-

lytics”. In: Journal of intelligent information systems 43.3 (2014), pp. 411–
435.

[9] Lukas Felsberger et al. “Explainable Deep Learning for Fault Prognostics
in Complex Systems: A Particle Accelerator Use-Case”. In: International
Cross-Domain Conference for Machine Learning and Knowledge Extrac-
tion. Springer. 2020, pp. 139–158.

[10] Andreas Freise, Daniel Brown, and Charlotte Bond. “Finesse, fre-
quency domain INterferomEter simulation softwarE”. In: arXiv preprint
arXiv:1306.2973 (2013).

23

https://doi.org/10.1088/0264-9381/25/18/184004
https://doi.org/10.1088/0264-9381/25/18/184004
https://doi.org/10.1088/1361-6382/ab2e14
https://doi.org/10.1088/1361-6382/ab2e14
https://doi.org/10.1088/1361-6382/ab2e14
https://arxiv.org/pdf/1811.03172.pdf
https://arxiv.org/pdf/1811.03172.pdf


May 26, 2023 22:54 ws-book9x6 Book Title output page 24

24 Book Title

[11] Daniel George and Eliu Antonio Huerta. “Deep Learning for real-time grav-
itational wave detection and parameter estimation: Results with Advanced
LIGO data”. In: Physics Letters B 778 (2018), pp. 64–70.

[12] Ian Goodfellow et al. “Generative adversarial networks”. In: Communica-
tions of the ACM 63.11 (2020), pp. 139–144.

[13] Riccardo Guidotti et al. “A survey of methods for explaining black box
models”. In: ACM computing surveys (CSUR) 51.5 (2018), pp. 1–42.

[14] Rutuja Gurav et al. “Unsupervised matrix and tensor factorization for
LIGO glitch identification using auxiliary channels”. In: AAAI 2020 Fall
Symposium on Physics-Guided AI to Accelerate Scientific Discovery. 2020.

[15] Emille EO Ishida et al. “Active Anomaly Detection for time-domain dis-
coveries”. In: arXiv e-prints (2019), arXiv–1909.

[16] Anuj Karpatne et al. “Theory-guided data science: A new paradigm for
scientific discovery from data”. In: IEEE Transactions on knowledge and
data engineering 29.10 (2017), pp. 2318–2331.

[17] Tero Karras, Samuli Laine, and Timo Aila. “A style-based generator ar-
chitecture for generative adversarial networks”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019,
pp. 4401–4410.

[18] Samir Khan and Takehisa Yairi. “A review on the application of deep learn-
ing in system health management”. In: Mechanical Systems and Signal Pro-
cessing 107 (2018), pp. 241–265. url: https://www.sciencedirect.com/
science/article/pii/S0888327017306064.

[19] Tamara G Kolda and Brett W Bader. “Tensor decompositions and appli-
cations”. In: SIAM review 51.3 (2009), pp. 455–500.

[20] Ramya Korlakai Vinayak and Babak Hassibi. “Crowdsourced clustering:
Querying edges vs triangles”. In: Advances in Neural Information Process-
ing Systems 29 (2016), pp. 1316–1324.

[21] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation forest”. In: 2008
eighth ieee international conference on data mining. IEEE. 2008, pp. 413–
422.

[22] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-
SNE”. In: Journal of Machine Learning Research 9.86 (2008), pp. 2579–
2605. url: http://jmlr.org/papers/v9/vandermaaten08a.html.

[23]  Lukasz Maziarka et al. “Mol-CycleGAN: a generative model for molecular
optimization”. In: Journal of Cheminformatics 12.1 (2020), pp. 1–18.

[24] Mitchell McIntire et al. “Bayesian optimization of FEL performance at
LCLS”. In: Proceedings of the 7th International Particle Accelerator Con-
ference. 2016.

[25] P Nguyen et al. “Environmental noise in Advanced LIGO detectors”. In:
Classical and Quantum Gravity 38.14 (June 2021), p. 145001. doi: 10.1088/
1361-6382/ac011a. url: https://doi.org/10.1088/1361-6382/ac011a.

[26] ATLAS PUB Note. “Fast simulation of the ATLAS calorimeter system with
Generative Adversarial Networks”. In: (2020).

[27] Luke de Oliveira, Michela Paganini, and Benjamin Nachman. “Learning
particle physics by example: location-aware generative adversarial networks

https://www.sciencedirect.com/science/article/pii/S0888327017306064
https://www.sciencedirect.com/science/article/pii/S0888327017306064
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1088/1361-6382/ac011a
https://doi.org/10.1088/1361-6382/ac011a
https://doi.org/10.1088/1361-6382/ac011a


May 26, 2023 22:54 ws-book9x6 Book Title output page 25

Bibliography 25

for physics synthesis”. In: Computing and Software for Big Science 1.1
(2017), pp. 1–24.

[28] Michela Paganini, Luke de Oliveira, and Benjamin Nachman. “Accelerating
science with generative adversarial networks: an application to 3D particle
showers in multilayer calorimeters”. In: Physical review letters 120.4 (2018),
p. 042003.

[29] Gerard Salton and Chris Buckley. “Improving retrieval performance by
relevance feedback”. In: Journal of the American society for information
science 41.4 (1990), pp. 288–297.

[30] Burr Settles. “Active learning literature survey”. In: (2009).
[31] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. “How good

is my GAN?” In: Proceedings of the European Conference on Computer
Vision (ECCV). 2018, pp. 213–229.

[32] Sergey Tomin et al. “On-line Optimization of European XFEL with
OCELOT”. In: Proc. 16th Int. Conf. on Accelerator and Large Experimen-
tal Control Systems (ICALEPCS’17). 2017, pp. 1038–1042.

[33] Ryan Turner et al. “Bayesian optimization is superior to random search for
machine learning hyperparameter tuning: Analysis of the black-box opti-
mization challenge 2020”. In: arXiv preprint arXiv:2104.10201 (2021).

[34] Gianluca Valentino et al. “Anomaly detection for beam loss maps in the
Large Hadron Collider”. In: Journal of Physics: Conference Series. Vol. 874.
1. IOP Publishing. 2017, p. 012002.

[35] Doris Xin et al. “Accelerating human-in-the-loop machine learning: Chal-
lenges and opportunities”. In: Proceedings of the second workshop on data
management for end-to-end machine learning. 2018, pp. 1–4.

[36] Michael Zevin et al. “Gravity Spy: integrating advanced LIGO detector
characterization, machine learning, and citizen science”. In: Classical and
quantum gravity 34.6 (2017), p. 064003.

[37] Yutao Zhang et al. “Name Disambiguation in AMiner: Clustering, Mainte-
nance, and Human in the Loop.” In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2018,
pp. 1002–1011.


	Machine Learning for Complex Instrument Design and Optimization
	Abstract
	Introduction
	Machine Learning Challenges and Requirements
	Optimizing Instrument Operational Performance
	Effect of noise transients on gravitational-wave searches
	Effect of control failures on gravitational-wave detector duty cycle
	Public Datasets

	Optimizing Instrument Design
	Current simulation & optimization tools
	Generative models for instrument simulation
	Public Datasets

	Conclusion

	Bibliography

