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Abstract—The singular value decomposition (SVD) factors a
matrix into three separate matrices: two (semi-)unitary matrices
whose columns are left/right singular vectors and one diagonal
matrix whose diagonal entries are singular values. Typically,
performing SVD on big matrices is taxing due to its compu-
tational complexity in the cubic order of its dimensions. With
the advances and rapid growth of deep learning techniques
in a broad spectrum of applications, a fundamental question
arises: can deep neural networks learn the singular values of a
matrix? To answer this question, we propose a novel algorithm,
namely SV-learn, to predict the singular values of a given input
matrix by leveraging the advances of neural networks. Numerical
results demonstrate that our proposed method outperforms the
competing alternatives in terms of achieving lower normalized
mean square error on singular value prediction when using real-
world datasets. Further, the predicted singular values combined
with singular vectors of an input data allow us to reconstruct
the input matrices with promising performance.

I. INTRODUCTION

The Singular Value Decomposition (SVD) and eigenvalue
decomposition are of prominent importance in broad spectrum
of real-world applications such as computer vision [1], signal
processing [2], and data science [3], [4], [5]. A key feature
of the SVD is that it is rank-revealing, which means that it
identifies the rank of a given matrix, as well as providing
us with a means for evaluating the so-called “low rank” of
a given data matrix, which would be a rank typically much
smaller than the full rank of the matrix to which we can
approximate the matrix with minimal loss of reconstruction
accuracy. The concept of that low rank is central to virtually
every attempt in using the SVD (or other matrix factorizations)
for the purposes of dimensionality reduction, either as a pre-
processing step in a analytical pipeline, or as the actual
analysis itself (e.g., by identifying latent concepts in term-
document matrices [3]). Furthermore, SVD is extremely useful
in calculating the pseudo inverse with low-cost.

As a result, the singular value profile of a matrix is an
extremely important product of the SVD, since it can char-
acterize a given matrix dataset with respect to the number
of latent patterns that it contains. Thus, in this work, we
propose a novel neural network based approach that is meant
for quick and effective prediction of the singular values of
a given matrix. Most of the existing work rely on the direct
computation of SVD or eigenvalue decomposition on a matrix
or sub-matrix. Recently, a new model was proposed in [6]

to predict the latent dimensionality of non-negative matrix
factorization using neural networks.

To the best of our knowledge, using deep neural networks
to explore the full spectrum of singular values has not been
studied yet. Our contributions include:

• Proposing a novel deep learning-based framework to
predict singular values of a matrix.

• Evaluating the effectiveness of the proposed method
through numerical tests with promising visualized and
quantified results.

II. BACKGROUND

The SVD has been applied successfully to a wide variety
of datasets, with applications in image compression [7], [8],
recommender systems [9], etc. However, the time complexity
of calculating the SVD is significant, making it difficult to
scale to extremely large datasets. This has led to work focused
on speeding it up for sparse matrices [10], [11], distributing
it across multiple machines [12], [13], and increasing its
efficiency on accelerators [14].

In this work, we leverage neural networks to help speed
up calculating an approximation of the SVD by feeding a
model a set of training data to make predictions faster. Neural
networks have been shown to be highly effective in learning
and modeling non-linear and complex relationships. In our
case, we theorize that with proper optimization and training,
we can use an neural network to predict a significant amount
of the singular values and vectors with less time complexity
than the typical SVD.

This application has a major use in big data where execution
time is extremely important. Instead of having to calculate
the SVD from scratch over all of the matrices, we can use a
shared model trained over many sample matrices to decrease
the resource usage and run times of future factorization. In
conjunction with such a model, it is possible to perform many
tasks that are dependent on the SVD, such as principal com-
ponent analysis, spectral analytics, and manifold embeddings,
much faster, especially on larger data sets.

III. PROBLEM FORMULATION AND PROPOSED METHOD



A. Problem Formulation

We tackle the problem of predicting the singular values
of two-dimensional matrices by training supervised neural
networks with matrices and their respective singular value
decomposition. To get more accurate results, our model needs
to be trained on matrices of varying ranks. There are a couple
of ways to do this, but our method involves using real data sets
and “windowing” (creating certain sized matrices by moving a
window of size m×n over the data with different dimensions)
the data to fit our model. The goal of this process is for a model
to successfully predict the singular values of any matrix of the
size that it was trained on. This can then be compared to other
methods of solving for the decomposition of a matrix such as
our SVD-LIGHT in Table 1, which uses a subset of a data
set for the singular values and vectors, or the full SVD. This
theoretically will decrease run times and resource usage for
large data sets where repetitively finding the singular values
of matrices is necessary.

Algorithm 1 SVD-LIGHT
Inputs: matrix M; k, the number of rows and columns from
M used for singular vector approximation
Outputs: submatrix’s singular vectors stored in the columns
of UC and VR; sparsified singular value matrix ΣO

Description: A method of decomposing a matrix where SVD
is applied to a smaller subset of a matrix which acts as a
form of comparison against using the full SVD and our trained
model.

1: procedure SVD-LIGHT(M, k)
2: Σ← PREDICTSVD(M)
3: MR ← SAMPLEROWS(M, k) // Randomly select k

rows of M to form a submatrix MR

4: MC ← SAMPLECOLS(M, k) // Randomly select k
columns of M to form a submatrix MC

5: UR,ΣR,V
T
R ← SVD(MR) // Perform SVD on MR

6: UC ,ΣC ,V
T
C ← SVD(MC) // Perform SVD on MC

7: diag(ΣO) = [diag(Σ)(1 : k), 0, ..., 0] // Preserve the
top k singular values of M and zero-out the remaining
ones forming the diagonal matrix ΣO

8: return UC ,ΣO,V
T
R

9: end procedure =0

B. Proposed Method

Dataset: We opt to use the CIFAR-10 dataset [15] to get
32 × 32 square matrices in order to obtain the most accurate
SVD predictions off of real data. The dataset also allows us
to easily provide visualizations for the accuracy of our pre-
dictions. We then scaled down the dimensions of each image
to create a 2D 32× 32 matrix M, which holds the gray-scale
values of the image at each pixel within the original image.
For our other data set, we opted to use the Spambase [16]
dataset, which we obtained from the UCI Machine Learning
Repository [17]. We extract 32×32 windows from the feature

Training neural regression model: Our goal with our neural network is to find the singular values of a
given matrix. After getting the singular values from the SVD, we developed a model to train on the data. From
our testing, we found that using a regression model with 2 hidden layers with 2 dropout layers worked the best
to predict our singular values. To be able to train the neural networks, they require a 1D array for each unit. To
achieve this, we flattened our original matrices, giving us a data set full of 1D arrays mf and their corresponding
1D arrays of singular values sf where f denotes the sample index. The matrices and singular values were then
fed into the neural network with mf as input and sf as the base truth. For training, we used L1 loss to adjust
the weights of the neurons. This yields a model that outputs a 1D array of singular values for mf ; the overview
of our proposed framework can be found in Fig. 1.
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Figure 1: Overview of the proposed model.

4 Experimental Evaluation

In evaluating the accuracy of the model for singular value predictions, we split the original data into training and
testing. In looking for possible sets to train and test our regression model on, it is important that we use real
data instead of artificially constructed data. This is since we get matrices of varying ranks but still with enough
significant patterns that our neural network can learn and further predict on. With the CIFAR-10 dataset [10], we
randomly selected 50, 000 images for training and 10, 000 for testing. On the Spambase [7] dataset, we randomly
chose 104, 858 and 18, 505 (about 15% of the whole dataset) matrices for training and testing, respectively.

4.1 Metrics
Below, we evaluate our proposed model in a number of di↵erent dimensions: (1) Comparison between the

real and predicted singular values, (2) Matrix reconstruction error, and (3) Visual comparison between the true
and reconstructed images.

Comparison of singular values: Our first method in validating the e↵ectiveness of our proposed model is to
directly compare the real and predicted singular values. In the testing phase, we feed in the flattened matrices

Fig. 1: Overview of the proposed model.

matrix to match dimensions of the CIFAR-10 set. We chose
as an example of tabular data. For all of the matrices from
these sets, the SVD was taken to calculate the singular values
of the data. We then saved the original matrices, along with
their singular values taken from the SVD, to use for training
our neural network.

Training neural regression model: Our goal with our
neural network is to find the singular values of a given matrix.
After getting the singular values from the SVD, we developed
a model to train on the data. From our testing, we found
that using a regression model with 2 hidden layers with 2
dropout layers worked the best to predict our singular values.
To be able to train the neural networks, they require a 1D
array for each unit. To achieve this, we flattened our original
matrices, giving us a data set full of 1D arrays mf and their
corresponding 1D arrays of singular values sf where f denotes
the sample index. The matrices and singular values were then
fed into the neural network with mf as input and sf as
the base truth. For training, we used L1 loss to adjust the
weights of the neurons. This yields a model that outputs a 1D
array of singular values for mf ; the overview of our proposed
framework can be found in Fig. 1. The purpose in doing this is
that for wider applications, users will simply need to perform
SVD operations only once for a few samples of their datasets.
They can use the model that is trained using the SVD from a
couple of samples to the entirety of their data, eliminating the
need to perform repetitive operations on similar matrices.

IV. EXPERIMENTAL EVALUATION

In evaluating the accuracy of the model for singular value
predictions, we split the original data into training and testing.
In looking for possible sets to train and test our regression
model on, it is important that we use real data instead of
artificially constructed data. This is since we get matrices of
varying ranks but still with enough significant patterns that
our neural network can learn and further predict on. With
the CIFAR-10 dataset [15], we randomly selected 50, 000
images for training and 10, 000 for testing. On the Spambase
[16] dataset, we randomly chose 104, 858 and 18, 505 (about



15% of the whole dataset) matrices for training and testing,
respectively.

A. Metrics

Below, we evaluate our proposed model in a number of
different dimensions: (1) Comparison between the real and
predicted singular values, (2) Matrix reconstruction error, and
(3) Visual comparison between the true and reconstructed
images.

Comparison of singular values: Our first method in vali-
dating the effectiveness of our proposed model is to directly
compare the real and predicted singular values. In the testing
phase, we feed in the flattened matrices to the trained neural
network receiving an array of 32 predicted singular values
for every test matrix. For a numerical comparison, we used
normalized mean squared error (NMSE) and mean absolute
error (MAE) of all the test matrices, which, for each matrix,
are defined in Eq. 1 where {σi}Ni=1 and {σ̂i}Ni=1 are the real
and estimated singular values with N representing the total
number of singular values.

NMSE =

∑N
i=1(σi − σ̂i)

2∑N
i=1 σ

2
i

, MAE =

∑N
i=1 |σi − σ̂i|

N
(1)

In Table I, the performance of our proposed method in
estimating the singular values of matrices from CIFAR-10
[15] and Spambase [16] datasets are reported. Specifically,
we present the average and standard deviation of NMSE
and MAE among all the test samples, which shows that our
neural networks can be used to accurately and consistently
predict singular values. In order to fully present our prediction
performance, we also show the error histograms in Figure 2,
which shows fairly low and consistent errors giving insight
on the accuracy of our model despite having a moderate
amount of data to train on. In the future, these values could
be improved on with a more advanced deep learning model
and more training data.

Furthermore, we conduct a direct comparison between the
true and predicted values of some randomly chosen data from
the CIFAR-10 and Spambase datasets. In Figure 3, we plot
the predicted and true singular values in a logarithmic scale
versus their indies in the top 4 panel, the predicted and true
singular values in a linear scale versus their indies in the
middle 4 panel, and the gray-scaled images in the bottom 4
panel followed by their corresponding MAE of the predicted
singular values, where each column represents the results of a
specific image sample. Clearly, our predicted singular values
are very close to the real ones, and the significant ones are
almost identical the real values indicating that the proposed
method is a good tool to predict the rank of a matrix. Similar
conclusions can be drawn from the testing results of Spambase
data in Figure 4.
Matrix reconstruction: Another method in evaluating our
algorithm is by reconstructing matrices using the predicted
singular values combined with the true singular vectors. We

Dataset NMSE MAE

CIFAR-10 [15] 1.59%± 0.89% 43.36± 11.95
Spambase [16] 4.04%± 2.89% 1.00± 2.14

TABLE I: The NMSE and MAE of the predicted singular values;
a± b where a and b are mean and standard deviation.
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Fig. 2: Error histograms of our proposed method for CIFAR-10 and
Spambase. The plot in Fig 2(a) shows a fairly normal distribution
of absolute error indicating consistency. Although the plot in Figure
2(b) is not a normal distribution like 2(a), the MAE still remains
consistent. The plot in Figure 2(c) shows low NMSE where most
errors are in the 0 − 5% range. The plot in Figure 2(d) shows the
errors ranging mainly from 0-10%, which combined with the results
in Figure 2(c) demonstrate that our method generalizes to different
types of datasets.
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Figure 3: Direct comparison of the predicted and true singular values of a CIFAR-10; see the logarithmic singular values
and the singular values in the first and second rows, respectively. We can see that our method generally approximates the
singular values well, but tends to falter by predicting 0 for smaller values.

This comes to show a feasible application such as the SVD-Light where we can utilize a much smaller amount
of data with the neural network’s approximations to yield similar results as the real SVD. It’s worth to mention
that for the randomly chosen image in Figure 5, the estimated rank is 6 as the image reconstruction error begins
to level o↵ at around 6 rows and columns out of the original 32 ⇥ 32 matrix, which matches our observation
that the image reconstruction at k = 5 is very close to that using the full rank, i.e., k = 32. The combination
of SVD-Light method and our proposed singular value estimation method act as a case study for a possible
application of data reconstruction in a faster setting.

Visual comparison: In Figure 6, we compared the reconstructed images (three image examples) using the
real, random, and network prediction singular values from our method as well as the true singular vectors; see
the results in the first three columns of Figure 6, and the SVD-Light 1 method; see the results in the last
column of Figure 6. We also used a comparison with an image-reconstruction using random singular values in
order to determine that our predicted sigma is not simply outputting random numbers and giving characteristic
data. Our results show a drastic similarity when using our model’s predictions and the real singular values for

Fig. 3: Direct comparison of the predicted and true singular values
of a CIFAR-10; see the logarithmic singular values and the singular
values in the first and second rows, respectively. We can see that our
method generally approximates the singular values well, but tends to
falter by predicting 0 for smaller values.

performed this specifically on the CIFAR-10 datasets as it
allows us to visualize the reconstructed images as well. Specif-
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Figure 4: Direct comparison of the predicted and true singular values of the Spambase dataset; see the logarithmic
singular values and the singular values in the first and second rows, respectively. We can see that our model generally
predicts the singular values accurately for the first few significant values but tends to predict 0 for more numbers than the
real SVD.
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Figure 5: Reconstruction of a CIFAR-10 [10] image using various number of singular values (a.k.a., ranks where k = 1, 2, 5
and 32) from the real and predicted singular values (a.k.a., Sigma in the figure), and the true singular vectors. The neural
net’s singular values serve as an accurate alternative especially at low ranks of 5 and up.

matrix reconstruction. There are slight di↵erences such as the darkness or contrast, though the details and overall
image are maintained when using our neural network. In comparing the random singular value and SVD-Light
reconstructions, there are worse results and unintelligible details.

Fig. 4: Direct comparison of the predicted and true singular values
of the Spambase dataset; see the logarithmic singular values and the
singular values in the first and second rows, respectively. We can
see that our model generally predicts the singular values accurately
for the first few significant values but tends to predict 0 for more
numbers than the real SVD.

ically, we plot: 1) the reconstructed images using SVD in the
top 4 panels in Figure 5, where the number of singular values
is set as k = 1, 2, 5 and 32; and 2) the reconstructed images
using the same left and right singular vectors as 1) as well as
the top k singular values obtained from our proposed method
which are shown in the bottom 4 panels of Figure 5. From
the results in Figure 5, we can see that our predicted singular
values are accurate even in low rank image reconstruction.
This comes to show a feasible application such as the SVD-
LIGHT where we can utilize a much smaller amount of data
with the neural network’s approximations to yield similar
results as the real SVD. It’s worth to mention that for the
randomly chosen image in Figure 5, the estimated rank is
6 as the image reconstruction error begins to level off at
around 6 rows and columns out of the original 32×32 matrix,
which matches our observation that the image reconstruction
at k = 5 is very close to that using the full rank, i.e., k = 32.
The combination of SVD-LIGHT method and our proposed
singular value estimation method act as a case study for a
possible application of data reconstruction in a faster setting.
Visual comparison: In Figure 6, we compared the recon-
structed images (three image examples) using the real, random,
and network prediction singular values from our method as
well as the true singular vectors; see the results in the first
three columns of Figure 6, and the SVD-LIGHT 1 method;
see the results in the last column of Figure 6. We also
used a comparison with an image-reconstruction using ran-
dom singular values in order to determine that our predicted
sigma is not simply outputting random numbers and giving
characteristic data. Our results show a drastic similarity when
using our model’s predictions and the real singular values for
matrix reconstruction. There are slight differences such as the
darkness or contrast, though the details and overall image are
maintained when using our neural network. In comparing the
random singular value and SVD-LIGHT reconstructions, there
are worse results and unintelligible details.

Overall, there is a very minimal error when using a neural
network to predict singular values. Especially with medium-
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Fig. 5: Reconstruction of a CIFAR-10 [15] image using various
number of singular values (a.k.a., ranks where k = 1, 2, 5 and
32) from the real and predicted singular values (a.k.a., Sigma in the
figure), and the true singular vectors. The neural net’s singular values
serve as an accurate alternative especially at low ranks of 5 and up.

sized datasets under 100,000 instances, these results are in-
dicative that the use of neural networks has the possibility of
being used as a practical method in reducing run-time and
handling large input datasets over the SVD.
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2
3

Figure 6: Three image reconstruction examples from the CIFAR-10 [10] dataset. The first three columns are the
reconstructed images using using real, random, and model predicted singular values and the true singular vectors. The
last column shows the results of the SVD-Light method.

Overall, there is a very minimal error when using a neural network to predict singular values. Especially with
medium-sized datasets under 100,000 instances, these results are indicative that the use of neural networks has
the possibility of being used as a practical method in reducing run-time and handling large input datasets over
the SVD.

4.2 Discussion
Our experiments cover the prediction of the singular values of matrices but do not cover the full decomposition

for the singular vectors. In the future, this same process can be applied to find these matrices to make a neural
network that is completely independent from the SVD after training. Our datasets were also not very large to the
point where our models can be applied to all di↵erent types of data. When training, we specialized our network
to correctly predict the singular values of matrices with similar properties. This can be improved by providing
much more data to train so that the application of that model is broader. The paper also focuses more on the
feasibility of using a neural network to find singular values and not exactly the time it takes for the training and
further predictions. Though, further work can focus on lowering the time and resource usage for large dataset
applications of the SVD by creating more optimized models.

5 Related Work

On the note of faster SVD methods, [6] proposes a method of using a mix of Monte Carlo (repeated random
sampling) and empirical sampling to use a subset of a large-scale matrix to approximate the SVD within an error
bound. Similar to our SVD-Light their method involves taking parts of a matrix but further decreases error
by adjusting the variance of the stratified data to meet the target accuracy, finding a more e�cient method of
sampling for the SVD. This gives an idea on how our neural network can practically decrease run-time but also
yield accurate results by decreasing the amount of data used for the decomposition for left and right singular

Fig. 6: Three image reconstruction examples from the CIFAR-10
[15] dataset. The first three columns are the reconstructed images
using using real, random, and model predicted singular values and
the true singular vectors. The last column shows the results of the
SVD-LIGHT method.

B. Discussion

Our experiments cover the prediction of the singular values
of matrices but do not cover the full decomposition for the
singular vectors. In the future, this same process can be
applied to find these matrices to make a neural network that
is completely independent from the SVD after training. Our
datasets were also not very large to the point where our models
can be applied to all different types of data. When training, we
specialized our network to correctly predict the singular values



of matrices with similar properties. This can be improved by
providing much more data to train so that the application of
that model is broader. The paper also focuses more on the
feasibility of using a neural network to find singular values
and not exactly the time it takes for the training and further
predictions. Though, further work can focus on lowering the
time and resource usage for large dataset applications of the
SVD by creating more optimized models.

V. RELATED WORK

On the note of faster SVD methods, [18] proposes a method
of using a mix of Monte Carlo (repeated random sampling)
and empirical sampling to use a subset of a large-scale matrix
to approximate the SVD within an error bound. Similar to our
SVD-LIGHT their method involves taking parts of a matrix
but further decreases error by adjusting the variance of the
stratified data to meet the target accuracy, finding a more
efficient method of sampling for the SVD. This gives an idea
on how our neural network can practically decrease run-time
but also yield accurate results by decreasing the amount of
data used for the decomposition for left and right singular
vectors while also using the model to give accurate singular
values based off the entire original matrix.

[19] and [20] propose a similar method where they use
a subset of the columns of matrices but repeat this with
using fixed and adaptive sampling schemes to decrease the er-
ror bounds when generating low-rank matrix approximations.
They add on to this work by applying the SVD on a submatrix
of a large matrix using a randomized low-rank approximation
algorithm to effectively maintain the accuracy of a large SVD
with the time complexity of a small SVD. Like SVD-LIGHT
and [18], a possible addition that our work can make to this
is using a neural network to calculate accurate singular values
based off the entire matrix while using their method to perform
the rest of the SVD. If a model can be used to predict the entire
SVD decomposition, then the complexity of using SVD can
be eliminated altogether with the [19].

VI. CONCLUSION & FUTURE WORK

While there is still a lot more work to be done in the
area, this work shows the feasibility of using a supervised
neural network to accurately predict the singular values of a
given matrix and the future application of a faster and lighter
alternative to the singular value decomposition. Throughout
our process, we explored the application of neural regression
models on visual data sets such as the CIFAR-10 [15] and
numerical sets such as UCI’s Spambase [16].

For evaluation, we utilized a mix of visual comparison in
using the CIFAR-10 data [15] and direct comparisons for the
Mean Absolute Error and Normalized Mean Squared Error
between our predicted and SVD singular values. As a result
of these tests, we found significant results giving us singular
values that were very close to what the SVD could compute.
When comparing our singular values to randomized data or
our SVD-LIGHT1, the neural network outperformed these
methods drastically, showing the feasibility of using trained

models instead of the typical SVD algorithm, with errors
between 1-5% and under 100,000 instances to train on.

Thus far, we have presented a proof-of-concept framework,
demonstrating the viability and plausibility of our original
goal. In the future, we envision that these findings will make
way for a much faster alternative and lighter alternative to the
SVD for applications in large data where the time complexity
of the SVD becomes too significant. We defer this exploration
for future work, where major interesting challenges will in-
clude ways to best represent the input data, and designing the
most appropriate architecture which may leverage the structure
of the problem in order to learn more efficiently.
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