
TENALIGN: Joint Tensor Alignment and Coupled
Factorization

Yunshu Wu∗, Uday Singh Saini∗, Jia Chen† and Evangelos E. Papalexakis∗
∗Computer Science and Engineering, †Electrical and Computer Engineering

University of California Riverside
Email: ywu380@ucr.edu, usain001@ucr.edu, jiac@ucr.edu, epapalex@cs.ucr.edu

Abstract—Multimodal datasets represented as tensors often-
times share some of their modes. However, even though there
may exist a one-to-one (or perhaps partial) correspondence
between the coupled modes, such correspondence/alignment may
not be given, especially when integrating datasets from disparate
sources. This is a very important problem, broadly termed as
entity alignment or matching, and subsets of the problem such
as graph matching have been extremely popular in the recent
years. In order to solve this problem, current work computes the
alignment based on existing embeddings of the data. This can be
problematic if our end goal is the joint analysis of the two datasets
into the same latent factor space: the embeddings computed
separately per dataset may yield a suboptimal alignment, and
if such an alignment is used to subsequently compute the joint
latent factors, the computation will similarly be plagued by
compounding errors incurred by the imperfect alignment. In
this work, we are the first to define and solve the problem of
joint tensor alignment and factorization into a shared latent
space. By posing this as a unified problem and solving for
both tasks simultaneously, we observe that the both alignment
and factorization tasks benefit each other resulting in superior
performance compared to two-stage approaches. We extensively
evaluate our proposed method TENALIGN and conduct a thor-
ough sensitivity and ablation analysis. We demonstrate that
TENALIGN significantly outperforms baseline approaches where
embedding and matching happen separately.

Index Terms—Tensors, Alignment, Tensor decomposition

I. INTRODUCTION

Tensors are a natural and powerful way to represent different
modalities of data inherently capturing rich and meaningful
information [1], [2]. Building upon tensor algebra, tensor
decomposition has admitted elegant theoretical analysis and
has been applied in a broad spectrum of real-world scenarios
such as speech signal processing [3], biomedical data analytics
[4], fake news detection [5], and channel estimation in wireless
communication systems [6], to name a few.

Oftentimes, different datasets share one or more modes
resulting in matrices/tensors with so-called coupled modes,
i.e., there is a one-to-one correspondence between the entities
of that coupled mode across datasets. For example, consider
two different datasets: one that records movie viewing history
for users over time, resulting in a (user, movie, time) tensor,
and another one which captures user social media activity,
resulting for instance in a (user, hashtag) tensor. In this
example, the “user” mode is coupled. We can jointly factorize
such coupled datasets [7] by essentially forcing the latent
factors that correspond to the coupled mode to be shared

across factorizations, and doing so enables the joint analysis
of all datasets and entities involved. Beyond this motivating
example, such coupled factorizations, with a popular example
of Coupled Matrix Tensor Factorization (CMTF) has been
widely and successfully applied in a number of different real-
world problems [7], [8], [9].

Ro
w

s o
f

Rows of

Latent factors of Latent factors of

Alignment
matrix

Joint latent factor

Fig. 1: Overview of the proposed method TENALIGN for joint tensor
alingment and coupled factorization.

Virtually all existing works in the coupled factorization
and literature [7], [10], [11], assume that the correspondence
between indices in the coupled mode, whether complete or par-
tial, is known and has been resolved prior to the factorization.
However, when datasets are being integrated from disparate
sources, it is very likely that such index correspondence is
unknown, and one has to first align those indices, i.e., identify
the right correspondence of coupled indices across the datasets
of interest. Recently, a variant of CMTF was proposed which
allows for known linear couplings across factors [12], and
if we have knowledge of the alignment, we can encode it
as a permutation matrix Π and perform the factorization by
assuming that the two coupled factors are related through this
linear transformation. However, if such an alignment matrix is
imperfect, the quality of the computed factors is going to be
low, since the error incurred by the imperfect transformation
will compound as the algorithm iterates to a solution.

In order to learn such an alignment across indices, we would
have to perform some form of entity alignment or matching
[13], [14]. In the literature, there is a particularly prolific
area of research which focuses on a specific instance of this

problem, where the two datasets of interest are graphs and
the alignment pertains to the nodes across those graphs [15],
[16], [17], [18], [19], [20], [21], [22]. In general, the existing
state-of-the-art graph matching frameworks take two separate
steps: (1) learning entity embeddings, and (2) searching for
the entity matching between two sets of learnt embeddings.
For example, REGAL [22] learns embeddings by xNetMF in
the first step, which makes use of both attribute and structure
information of entities, and then in the second step, conducts
soft matching. We will be using REGAL as our running
example graph matching in this paper, because of the fact
that its embedding stage is the closest conceptually to our
envisioned factorization, however, our proposed method can
benefit from any current or future advances in embedding
alignment, since, as we demonstrate, we can absorb such
methods within our proposed method.

Currently, if we wish to jointly analyze two datasets which
require alignment, we would have to first compute separate
embeddings per dataset (e.g., single tensor factorizations for
each given tensor) and then perform the alignment as a
subsequent step, much like state-of-the-art graph alignment
works [22]. However, doing so, suffers from a number of
significant drawbacks: (a) The aligned embeddings will not
going to be in the same latent factor space since they have been
computed independently, and (b) the quality of the alignment
will be suboptimal, especially if the two datasets share their
latent structure. It is important to note here that drawback
(a) could potentially be addressed by conducting a coupled
factorization post-alignment, however, as we mention above
and demonstrate in the experiments, because of the lower-
quality computed alignment, this coupled factorization will not
be able to recover the latent factors accurately.

In this paper, we jointly tackle the two tasks of alignment
and coupled factorization. To the best of our knowledge, this
work is the first to do so, and as we demonstrate in our
experimental evaluation, solving those two tasks jointly is
highly beneficial for both tasks, and substantially outperforms
approaches where embedding and alignment happen separately
in sequence. Our contributions are summarized as follows:

• Novel Problem: We are the first to formulate the problem
of joint tensor alignment and factorization, and in this pa-
per we explore two novel expressions of this problem and
we discuss the trade-offs between the two formulations.

• Flexible Algorithms: We introduce TENALIGN which
solves the two proposed formulations by deriving cus-
tom optimization algorithms. Furthermore, TENALIGN is
extremely flexible and can subsume existing and future
advances in computing alignment matrices as parts of the
optimization procedure. We demonstrate such flexibility
by leveraging REGAL’s alignment solver [22] within
TENALIGN as an example.

• Extensive Experiments: We perform extensive experi-
mental evaluation of our proposed method using synthetic
and real data and comparing against baselines where
the two tasks are solved independently. Furthermore, we
conduct detailed sensitivity analysis and ablation study.

• Reproducibility: We provide detailed derivations and
descriptions for our proposed algorithms and our ex-
perimental setup, and we demonstrate our results on
public data. Furthermore, we make our implementation
publicly available upon publication at https://github.com/
yunshuwu/TenAlign in order to promote reproducibility
and extensions of our work.

II. PROBLEM FORMULATION

We provide the necessary notation and definitions for our
work. Table I provides a summary of the notation used.

Notation Description
X, X, x, x Tensor, Matrix, vector, scalar
∥X∥F Frobenius norm of matrix X
∥x∥p ℓp-norm of vector x
A(i, :) the i-th row of matrix A
vec() Vectorization operator
◦ Outer product
⊙ Khatri-Rao product (column-wise Kronecker product)
∗ Element-wise multiplication
×n n-mode product
X(n) n-mode matricization of tensor X
X−1 Inverse of matrix X
X⊺ Transpose of matrix X

H (p) Entropy of probability distribution p

TABLE I: Notations used in matrix and tensor algebra.

Tensors are higher-order extensions of matrices, and they
are a natural way to express multimodal real world data.
The Canonical Polyadic Decomposition (CPD), also named as
PARAFAC or CANDECOMP [23], one of the most commonly
used tensor methods, models a tensor T as the sum of R outer
products where R is a pre-defined decomposition rank. Taking
a three-mode tensor as an example (higher order CPD can be
readily generalized), CPD minimizes the distance between the
input tensor T ∈ RI×J×K and the approximation of it in the
squared norm, i.e., T ≈

∑R
r=1 ar ◦br ◦cr = JA,B,CK where

ar ∈ RI , br ∈ RJ , and cr ∈ RK are the r-th column of the
factor matrices A, B and C, respectively.

A matrix and a tensor can be multiplied together using the
n-mode product, denoted by X ×1 M as an example of a 1-
mode product, where the slices along the n-th mode of the
tensor are multiplied by matrix M resulting in slices of a
new tensor. In the interest of space, we refer the reader to
existing comprehensive surveys [1], [2] for a detailed overview
of notation and definitions.
Problem Introduction Consider two tensor datasets X and Y,
where for instance X captures (user,video,time) YouTube data
and Y captures (user,product,time) Amazon data. Further as-
sume that there is a complete matching Π (for current problem
it is assumed to be complete and we defer partial matching for
future work) which is unknown to us. In optimization terms,
we can express the joint alignment and coupled factorization
below, by jointly learning the mapping Π and the latent
factors, while forcing the rows of X and Y to be expressed by
the same latent factors:

min
A,B,C,D,E,Π

∥X− JA,B,CK∥2F + ∥Y×1 Π− JA,D,EK∥2F
(1)

https://github.com/yunshuwu/TenAlign
https://github.com/yunshuwu/TenAlign

where Π is a permutation matrix and Y ×1 Π effectively
permutes the data pertaining to each row of the tensor. The
above formulation simultaneously learns a joint embedding
(where A embeds the rows to a latent space) while enforcing
that transformation on the data. We assume that both tensors
X and Y admit a joint CPD structure, which allows us to
consider that Π when multiplying the tensor in the first mode
equivalently only multiplies the factor of that mode [2].
What does the ideal Π look like? In order to define
precisely our problem, we should describe what the ideal
alignment matrix Π should look like. Strictly speaking, Π,
is a permutation matrix, which is a square matrix whose each
row and column have exactly one “1” and their rest of their
entries equal to “0”. Every “1” in that matrix is essentially
capturing the corresponding of the i-th row of tensor X and
the j-th row of tensor Y.

The permutation matrix Π has the following properties:
• Π is an orthogonal matrix, i.e., Π⊺ = Π−1.
• Πij ∈ {0, 1},∀i ∈ I, j ∈ J , element is either 0 or 1
To identify the constraints for Π, we have:
Proposition 2.1: Given an orthogonal matrix Π with all

elements non-negative, then Π is a permutation matrix.
Proof. Let us prove this by contradiction. Assume each row

has more than one positive elements, by pigeonhole principle,
there must be one component (column) which is positive at
least in two columns. Let this component be a, where at least
ai > 0 and aj > 0. By the assumption, there will be another
component b which is positive at row i, then the dot product
of a and b is not going to be zero:

a · b ≥ aibi > 0

which contradicts the orthogonality. ■
Thus, we can form the alignment matrix Π to be an orthog-

onal matrix with all elements being non-negative decimals.

III. PROPOSED METHOD

Factorizing tensors and solving directly for a permutation
matrix Π given the Π structure are computationally very hard,
therefore we investigate two linear programming relaxations of
the optimization problem.
Proposed relaxations Here for each of these two relaxations
we have a separate formulation, where L1 is a harder con-
strained problem which forces factors into a same space:

L1 = ∥X− JA,B,CK∥2F + ∥Y×1 Π− JA,D,EK∥2F (2)

and L2 is a relaxed problem which softly makes factors of
tensors X and Y to share some common components, meaning
that the space of two tensors are intersect but not the same:

L2 = ∥X− JAx,B,CK∥2F + ∥Y− JAy,D,EK∥2F
+λ ∥Ax −ΠAy∥2F

(3)

For both relaxations, the permutation matrix Π should satisfy
the following constraints:

Πij ∈ {0, 1},∀i, j, and Π·1 = 1 (row sum equal to 1), and
1⊺ ·Π = 1⊺ (column sum equal to 1), and ΠΠ⊺ = Π⊺Π = I

(orthogonality constraint), and H (Π(i, :)) < b,∀j (row-wise
entropy constraint)

By bounding the entropy of each row of Π. This way we
are forcing the entropy of each row to be small which, if we
view each row as a probability distribution that describes the
most likely alignments, we would like that distribution to be
as far from uniform as possible and as close to a deterministic
distribution as possible (with a single 1 in that row).
Trade-offs between formulations L1 and L2 Conceptually,
formulation L1 is defining a harder optimization problem
because the permutation matrix Π is directly affecting tensor
Y, compared to L2 where the permutation matrix is softly
enforced as a regularization term.

In terms of the type of latent factors that each formulation
learns, conceptually, L1 is directly enforcing the coupling
between X and Y by forcing them to be expressed by the
same factor matrix A, which is how typically CMTF-style
approaches are expressed. On the other hand, L2 is learning
two different factor matrices Ax and Ay which are softly
required to be similar under the alignment transformation. This
implies that L2 may not always give us the exact same set of
latent factors, thereby violating the typical CMTF modeling.

However, regarding this last remark, there are cases where
the two tensors may share part of their latent factors [11] (in
fact, the chemical datasets analyzed in our experiments fall
under this category), and this formulation may be able to more
flexibly capture shared and unshared latent factors.

To solve these two optimization problems, we compute
the gradient and let it be zero to update the corresponding
factor matrix. Next, let’s first discuss the calculations of the
gradient for the first formulation L1 and then followed by the
calculations of the gradient for the second formulation L2.

A. Solution for TENALIGN-L1

For formula L1, We can rewrite it by two sub-functions f11
and f12:

L1 = ∥X− JA,B,CK∥2F︸ ︷︷ ︸
f11(A,B,C)

+ ∥Y×1 Π− JA,D,EK∥2F︸ ︷︷ ︸
f12(A,D,E,Π)

(4)

Let Y′
(1), Y

′
(2) and Y′

(3) to be the one-mode matricization,
two-mode matricization and three-mode matricization of Y×1

Π, respectively.
The first order partial derivative of L1 respect to each factor

matrix is as follows:
1) For partial derivative with respect to A:

∂L1

∂A
=

∂f11
∂A

+
∂f12
∂A

=
∂

∂A
∥X(1) −A(C⊙B)⊺∥2F+

∂

∂A
∥Y′

(1) −A(E⊙D)⊺∥2F

=
∂

∂A
Tr ((X(1) −A(C⊙B)⊺)(X(1) −A(C⊙B)⊺)⊺)

+
∂

∂A
Tr ((Y′

(1) −A(E⊙D)⊺)(Y′
(1) −A(E⊙D)⊺)⊺)

= −2X(1)(C⊙B) + 2A(C⊺C ∗B⊺B)

−2Y′
(1)(E⊙D) + 2A(E⊺E ∗D⊺D)

Where in the first equality above, we obtain this representation
for the 1-mode matricization of the two tensors according to
the CPD model [2].

Let ∂L1

∂A be zero, then we have the update for matrix A:

A = (X(1)(C⊙B)+Y′
(1)(E⊙D))·(C⊺C∗B⊺B+E⊺E∗D⊺D)−1

2) For partial derivative with respect to B:

∂L1

∂B
=

∂f11
∂B

=
∂

∂B

∥∥X(2) −B(C⊙A)⊺
2
F

=
∂

∂B
Tr ((X(2) −B(C⊙A)⊺)(X(2) −B(C⊙A)⊺)⊺)

= −2X(2)(C⊙A) + 2B(C⊺C ∗A⊺A)

Let ∂L1

∂B be zero, then we have the update rule for matrix B:

B = X(2)(C⊙A) · (C⊺C ∗A⊺A)−1

3) For partial derivative with respect to C:

∂L1

∂C
=

∂f11
∂C

=
∂

∂C

∥∥X(3) −C(B⊙A)⊺
2
F

=
∂

∂C
Tr ((X(3) −C(B⊙A)⊺)(X(3) −C(B⊙A)⊺)⊺)

= −2X(3)(B⊙A) + 2C(B⊺B ∗A⊺A)

Let ∂L1

∂C be zero, then we have the update rule for matrix C:

C = X(3)(B⊙A) · (B⊺B ∗A⊺A)−1

4) For partial derivative with respect to D:

∂L1

∂D
=

∂f12
∂D

=
∂

∂D
∥Y′

(2) −D(E⊙A)⊺∥2F

=
∂

∂D
Tr ((Y′

(2)−D(E⊙A)⊺)(Y′
(2) −D(E⊙A)⊺)⊺)

= −2Y′
(2)(E⊙A) + 2D(E⊺E ∗A⊺A)

Let ∂L1

∂D be zero, then we have the update rule for matrix D:

D = Y′
(2)(E⊙A) · (E⊺E ∗A⊺A)−1

5) For partial derivative with respect to E:

∂L1

∂E
=

∂f12
∂E

=
∂

∂E
∥Y′

(3) −E(D⊙A)⊺∥2F

=
∂

∂E
Tr ((Y′

(3)−E(D⊙A)⊺)(Y′
(3) −E(D⊙A)⊺)⊺)

= −2Y′
(3)(D⊙A) + 2E(D⊺D ∗A⊺A)

Let ∂L1

∂E be zero, then we have the update rule for matrix E:

E = Y′
(3)(D⊙A) · (D⊺D ∗A⊺A)−1

6) For partial derivative with respect to Π :

∂L1

∂Π
=

∂f12
∂Π

=
∂

∂Π
∥ΠY(1) −A(E⊙D)⊺∥2F

=
∂

∂Π
Tr ((ΠY(1) −A(E⊙D)⊺)(ΠY(1) −A(E⊙D)⊺)⊺)

= 2Π ·Y(1)Y
⊺
(1) − 2(Y(1)(E⊙D)A⊺)⊺

Then we need to solve ∂L1

∂Π = 0 for Π with the following
constraints:

Π ·Y(1)Y
⊺
(1) = (Y(1)(E⊙D)A⊺)⊺

s.t. Π1 = 1, 1⊺Π = 1⊺,

Πij ∈ {0, 1}, ΠΠ⊺ = Π⊺Π = I

(5)

We find out that the orthogonality constraint of Π is too
strong such that it cannot directly be applied, thus we further
relax Equation 6 into the following problem:

min
Π

∥Π ·Y(1)Y
⊺
(1) − (Y(1)(E⊙D)A⊺)⊺∥2F

+γ1∥ΠΠ⊺ − I∥2F + γ2∥Π⊺Π− I∥2F
s.t. Π1 = 1, 1⊺Π = 1⊺, H (Π(i, :)) < b,∀j

0 ≤ Πij ≤ 1, ∀i ∈ I, j ∈ J

(6)

We use the fmincon 1 solver in Matlab to solve the above
problem.

Algorithm 1 describes the overview of our proposed
TENALIGN-L1.

Algorithm 1 Alternating Least Squares Algorithm for TENALIGN-L1

Input: Tensors X, Y
Output: Factor matrices A,B,C,D,E and Π

while not ”converged” do
A = (X(1)(C⊙B) +Y′

(1)(E⊙D)) · (C⊺C ∗B⊺B+E⊺E ∗D⊺D)−1

B = X(2)(C⊙A) · (C⊺C ∗A⊺A)−1

C = X(3)(B⊙A) · (B⊺B ∗A⊺A)−1

D = Y′
(2)(E⊙A) · (E⊺E ∗A⊺A)−1

E = Y′
(3)(D⊙A) · (D⊺D ∗A⊺A)−1

Solve Π in Eq. 6 using fmincon solver in Matlab
end while=0

B. Solution for TENALIGN-L2

For formula L2, We can rewrite it by three sub-functions
f21, f22 and f23:

L2 = ∥X− JAx,B,CK∥2F︸ ︷︷ ︸
f21(Ax,B,C)

+ ∥Y− JAy,D,EK∥2F︸ ︷︷ ︸
f22(Ay,D,E)

+λ ∥Ax −ΠAy∥2F︸ ︷︷ ︸
f23(Ax,Ay,Π)

(7)

1) For partial derivative with respect to Ax :

∂L2

∂Ax
=

∂f21
∂Ax

+
∂f23
∂Ax

=
∂

∂Ax

∥∥X(1) −Ax(C⊙B)⊺
∥∥2
F
+λ

∂

∂Ax
∥Ax −ΠAy∥2F

=
∂

∂Ax
Tr ((X(1) −Ax(C⊙B)⊺)(X(1) −Ax(C⊙B)⊺)⊺)

+
∂

∂Ax
Tr ((Ax −ΠAy)(Ax −ΠAy)

⊺)

= −2X(1)(C⊙B) + 2Ax(C
⊺C ∗B⊺B) + 2λ(Ax −ΠAy)

Let ∂L2

∂Ax
be zero, then we have the update rule for matrix Ax:

Ax = (X(1)(C⊙B) + λΠAy) · (C⊺C ∗B⊺B+ λI)−1

1https://www.mathworks.com/help/optim/ug/fmincon.html

https://www.mathworks.com/help/optim/ug/fmincon.html

2) For partial derivative with respect to B:

∂L2

∂B
=

∂f21
∂B

=
∂

∂B

∥∥X(2) −B(C⊙Ax)
⊺2
F

=
∂

∂B
Tr ((X(2) −B(C⊙Ax)

⊺)(X(2) −B(C⊙Ax)
⊺)⊺)

= −2X(2)(C⊙Ax) + 2B(C⊺C ∗Ax
⊺Ax)

Let ∂L2

∂B be zero, then we have the update rule for matrix B:

B = X(2)(C⊙Ax) · (C⊺C ∗Ax
⊺Ax)

−1

3) For partial derivative with respect to C:

∂L2

∂C
=

∂f21
∂C

=
∂

∂C

∥∥X(3) −C(B⊙Ax)
⊺2
F

=
∂

∂C
Tr ((X(3) −C(B⊙Ax)

⊺)(X(3) −C(B⊙Ax)
⊺)⊺)

= −2X(3)(B⊙Ax) + 2C(B⊺B ∗Ax
⊺Ax)

Let ∂L2

∂C be zero, then we have the update rule for matrix C:

C = X(3)(B⊙Ax) · (B⊺B ∗Ax
⊺Ax)

−1

4) For partial derivative with respect to Ay :

∂L2

∂Ay
=

∂f22
∂Ay

+
∂f23
∂Ay

=
∂

∂Ay

∥∥Y(1) −Ay(E⊙D)⊺
∥∥2
F
+ λ

∂

∂Ay
∥Ax −ΠAy∥2F

=
∂

∂Ay
Tr ((Y(1) −Ay(E⊙D)⊺)(Y(1)−Ay(E⊙D)⊺)⊺)

+
∂

∂Ay
Tr ((Ax −ΠAy)(Ax −ΠAy)

⊺)

= −2Y(1)(E⊙D) + 2Ay(E
⊺E ∗D⊺D)

+2λ(−Π⊺Ax +ΠAy)

Because we cannot get Ay directly from ∂L2

∂Ay
, update the

factor matrix Ay by gradient descent.
5) For partial derivative with respect to D:

∂L2

∂D
=

∂f22
∂D

=
∂

∂D

∥∥Y(2) −D(E⊙Ay)
⊺2
F

=
∂

∂D
Tr ((Y(2) −D(E⊙Ay)

⊺)(Y(2) −D(E⊙Ay)
⊺)⊺)

= −2Y(2)(E⊙Ay) + 2D(E⊺E ∗Ay
⊺Ay)

Let ∂L2

∂D be zero, then we have the update rule for matrix D:

D = Y′
(2)(E⊙A) · (E⊺E ∗A⊺A)−1

6) For partial derivative with respect to E:

∂L2

∂E
=

∂f22
∂E

=
∂

∂E

∥∥Y(3) −E(D⊙Ay)
⊺2
F

=
∂

∂E
Tr ((Y(3) −E(D⊙Ay)

⊺)(Y(3) −E(D⊙Ay)
⊺)⊺)

= −2Y(3)(D⊙Ay) + 2E(D⊺D ∗Ay
⊺Ay)

Let ∂L2

∂E be zero, then we have the update rule for matrix E:

E = Y(3)(D⊙Ay) · (D⊺D ∗Ay
⊺Ay)

−1

7) For partial derivative with respect to Π : To update
the value of Π, we need to solve ∥Ax −ΠAy∥2F = 0 for
Π with the following constraints in Equation 8, which softly
forces the factor matrices of X and Y to be in the same space.

∥Ax −ΠAy∥2F = 0

s.t. Π1 = 1, 1⊺Π = 1⊺,

Πij ∈ {0, 1}, ΠΠ⊺ = Π⊺Π = I

(8)

For the same reason with Algorithm 1 for L1, we relax
Equation 9 into the following problem and also solve it by
linear programming:

min
Π

∥Ax −ΠAy∥2F + γ1∥ΠΠ⊺ − I∥2F + γ2∥Π⊺Π− I∥2F
s.t. Π1 = 1, 1⊺Π = 1⊺, H (Π(i, :)) < b,∀j

0 ≤ Πij ≤ 1, ∀i ∈ I, j ∈ J
(9)

We use the fmincon 2 solver in Matlab to solve the above
problem.

The algorithm for TENALIGN-L2 is described in Algorithm
2 below.

Algorithm 2 Alternating Least Squares Algorithm for TENALIGN-L2

Input: Tensors X, Y
Output: Factor matrices Ax,B,C,Ay,D,E and Π

while not ”converged” do
Ax = (X(1)(C⊙B) + λΠAy) · (C⊺C ∗B⊺B+ λI)−1

B = X(2)(C⊙Ax) · (C⊺C ∗Ax
⊺Ax)

−1

C = X(3)(B⊙Ax) · (B⊺B ∗Ax
⊺Ax)

−1

while
∥∥Ai+1

y −Ai
y

∥∥2
F
≥ threshold do

Ai+1
y = Ai

y − α · ∂L2

∂Ay

end while
D = Y′

(2)(E⊙A) · (E⊺E ∗A⊺A)−1

E = Y(3)(D⊙Ay) · (D⊺D ∗Ay
⊺Ay)

−1

Solve Π in Eq. 9 using fmincon solver in Matlab
end while=0

For factor matrix updates in Alg.1 and Alg.2 we are using
the MTTKRP (Matricized Tensor Times Khatri-Rao Product)
operation to speed up the computations.

IV. EXPERIMENTAL EVALUATION

Here, we evaluate our proposed algorithms from the per-
spectives of accuracy, sensitivity analysis, ablation study, and
sanity check by answering the following questions:

1) Accuracy: Can our algorithms outperform the baseline
alignment methods in terms of latent factor matching and
alignment accuracy?

2) Sensitivity analysis: How sensitive are our algorithms to
important hyperparameters?

3) Ablation study: How is the performance affected by
different constraints on Π?

4) Sanity check: Here we check if each component of our
our algorithms help with the final solution.

2https://www.mathworks.com/help/optim/ug/fmincon.html

https://www.mathworks.com/help/optim/ug/fmincon.html

A. Experiment Setup and Datasets

We implement TENALIGN in Matlab and our implementa-
tion is publicly available3. In order to fully test our algorithms,
we use real-world coupled data tensors, the chemistry datasets
[11] and a large number of synthetic data tensors generated
by [12]. For all datasets, before delivering the input tensors,
we do column-wise normalization and tensor normalization.

1) Synthetic Data: For each experiment with synthetic
dataset, we run it for 100 times where each time with random
generated datasets. Tensors X and Y are built following CPD
model from already known factors, which are also used as
the true factors when measuring the factor accuracy, or called
factor matching score. Specifically, the two synthetic datasets
by [12] where both datasets’ tensors are first-mode coupled
and contain 100 pairs of tensors which are randomly drawn
from a normal distribution. The synthetic dataset 1 (namely
Syn 1) contains a tensor T1 of size 10×30×40 coupled with
a tensor T2 of size 10×70×10 and they are created by ground-
truth factor matrices with rank R = 4. The synthetic dataset
2 (namely Syn 2) contains a tensor T3 of size 15 × 30 × 40
coupled with a tensor T4 of size 15 × 70 × 10 and they are
created by ground-truth factor matrices with rank R = 5.

2) Real Data: We use real-world public chemistry datasets
(namely Chem) [11] which have know joint CPD structure
and are publicly available4. This dataset includes three datasets
coupled in the first mode, which consist of chemical samples
observed using different measurement techniques: two tensors
EEM of size 28× 13324× 8 and NMR, and one matrix LC-
MS of size 28× 168. Note that NMR contains five chemical
information, LC-MS contains four, and EEM only contains
three, this means that this coupled matrix tensor datasets
doesn’t have all components shared. Because TENALIGN
assumes all components shared, we only use tensor EEM and
matrix LC-MS which exhibit that structure [11].

3) Metrics: We measure TENALIGN-L1 and TENALIGN-
L2 with three metrics: raw accuracy measurement for align-
ment defined in Eq. 10, factor matching score, and clustering
accuracy measurement for alignment.

Raw accuracy =
No. of correctly aligned entities

No. of entities
(10)

For factor accuracy measurement, we use factor matching
score (FMS). There the learned factors Ĉi,d are tested by
how well can they match with the true factors Ci,d by FMS
function defined below [12]:

FMS =

N∏
i=1

1

Ri

Ri∑
r=1

(
Di∏
d=1

⟨Ci,d(:, r), Ĉi,d(:, r)⟩
∥Ci,d(:, r)∥2∥Ĉi,d(:, r)∥2

)
(11)

where N is the number of tensors we have in the model, and
each tensor Ti of order Di ≥ 2 has Ri components.

Typically, state-of-the-art graph alignment methods measure
alignment accuracy via a “soft”-alignment approach, where
they identify a list of potential candidates for a given node, and

3https://github.com/yunshuwu/TenAlign
4http://www.models.life.ku.dk/joda/prototype

if that list contains the correct matching node, this is counted
as a successful match [22]. The rationale behind existing works
for this is that due to node/entity similarities and correlations,
strict matching may be impossible and, thus, measuring the
accuracy in a strict manner may not paint a fair picture of
how the alignment algorithm actually performs.

In our case, we propose a similar in spirit clustering-based
accuracy measurement. We first group entities in the first mode
into k clusters, and assume that two entities can be regarded
as the same one if they are from the same cluster. Consider the
property of the row permutation matrix Πrow, if Πrow(i, j) =
p where 0 ≤ p ≤ 1, this means that the j-th row will be
moved to i-th position with probability p. For each row i of
the learned alignment matrix, compare the true matrix Π(j, i)
and the learned matrix Π̂(k, i). If j = k, row i-th is correct
aligned. If j ̸= k, only if the destinations row j and row k are
in the same cluster, then it is counted as correct alignment.
Numerically, our clustering accuracy measurement metric is
defined below

Π accuracy =
No. correctly aligned entities based on clustering

No. of entities
It’s worth to mention that when we don’t perform clustering,

i.e., each entity is in the cluster of itself, Π accuracy =
Raw accuracy. Without loss of generality, we use Π accuracy
to capture alignment performance as Raw accuracy is its
special case. In our experiments, due to space limitations,
we present (a) results for the best performing number of
clusters for each given baseline and dataset (where in some
cases, the best performance was observed without the need
for clustering), and (b) for a given dataset and algorithm
combination we demonstrate the behavior of the accuracy
measured for different numbers of clusters k.

B. TENALIGN Variants

We are testing three variants of our method: TENALIGN-L1,
TENALIGN-L2, and TENALIGN-L2-REGAL. For the latter,
we substitute our alignment method in formulation L2 with
REGAL’s alignment algorithm. This is meant to (a) demon-
strate the flexibility of TENALIGN, which can incorporate any
existing state-of-the-art alignment method, and (b) compare
the performance of this state-of-the-art alignment component
against our proposed relaxed optimization scheme.

C. Baseline Methods

Since this work is the first to perform joint tensor alignment
and coupled factorization, we were not able to identify pub-
lished baseline methods to compare against, however, we are
comparing against the following schemes which conceptually
represent different baseline methods.

• CPD-REGAL: First conduct separate CPD factorizations
to X and Y and we subsequently apply REGAL’s align-
ment [22] to the row embeddings (factor matrices) com-
puted by the CPD. This is not an iterative algorithm but
a two-step process which closely mimics state-of-the-
art approaches. This is meant to test the quality of the
alignment obtained via this two-step process.

https://github.com/yunshuwu/TenAlign
http://www.models.life.ku.dk/joda/prototype

• CPD-REGAL-LCMTF: This baseline obtains the align-
ment matrix the exact same way as CPD-REGAL and
subsequently uses that alignment matrix within a very
recent Linearly Coupled Matrix Tensor Factorization
(LCMTF) [12] algorithm. This is meant to test the quality
of the factors obtained if we were to use the “traditional”
two-step process for alignment.

D. Hyperparameter Selection

To show fair results, for each experiment we run 100
times and deliver the results. For all the algorithms, without
specification when applicable, by default we set R = 4 and
λ = 5 when testing Syn 1, R = 5, k = 3 and λ = 5 on
Syn 2, and R = 3, k = 4, and λ = 10 on Chem. We set
γ1 = γ2 = γ3 = 0.01.

E. Alignment and Factor Accuracy

We study the alignment and factor accuracy with exper-
iments on one real-world coupled chemistry datasets [11]
and another two synthetic datasets. In Fig. 4, we plot the
estimated two-dimensional probability density function (2d-
pdf) to visualize the joint distribution of FMS and Π accuracy
using seaborn.kdeplot in Python which represents the two
metrices using a continuous probability density curve in two
dimensions. In Table II, we shows the means and standard
deviation respect to Π accuracy and FMS. The results in
Fig. 4 and Table II show that our algorithms outperform
the competing alternatives in terms of higher FSM and Π
accuracy.

Dataset Method Π accuracy FMS

Syn 1
TENALIGN-L1 .616 ± .299 .735 ± .238
TENALIGN-L2 .3450 ± .2876 .9597 ± .0679

TENALIGN-L2-REGAL .2290 ± .1622 .9708 ± .0471
CPD-REGAL .1060 ± .1769 .2439 ± .0343

CPD-REGAL-LCMTF .0490 ± .0785 .5658 ± .1811

Syn 2
TENALIGN-L1 (no k) .4540 ± .2426 .5681 ± .2848

TENALIGN-L2 .5280 ± .1973 .7440 ± .2840
TENALIGN-L2-REGAL .2080 ± .1552 .7470 ± .2707

CPD-REGAL .0387 ± .0503 .1937 ± .0249
CPD-REGAL-LCMTF .0140 ± .0530 .5144 ± .1614

Chem
TENALIGN-L1 .4578 ± .2087 N/A
TENALIGN-L2 .2678 ± .0738 N/A

TENALIGN-L2-REGAL .1411 ± .0681 A/A
CPD-REGAL .0250 ± .0447 N/A

CPD-REGAL-LCMTF .0250 ± .0447 N/A

TABLE II: FMS and Π accuracy for different methods on different
datasets in the format of a ± b where a is mean and b is standard
derivation from 100 independent tests; FMS values on dataset Chem
are not available (N/A) due to the lack of ground truth latent factors;
the best performance for each dataset per metric is in bold.

F. Sensitivity Analysis

We evaluate the sensitivity of our TENALIGN L1 using dif-
ferent initialization methods and the important hyperparameter
λ in L2 which determines how close are spaces of factors of
X and Y.

1) Π Initialization:: For initlaization, we show the results
of TENALIGN-L1 to give a hint of how initialization methods
(see below) influence the performance. From the results in Fig.
4, we can show that FMS and Π accuracy are always strongly
correlated and the performance of our proposed TENALIGN-
L1 is not sensitive to the initialization.

(a) TENALIGN-L1 on Syn 1 (b) TENALIGN-L1 on Syn 2

(c) TENALIGN-L2 on Syn 1 (d) TENALIGN-L2 on Syn 2

(e) TENALIGN-L2-REGAL on Syn 1 (f) TENALIGN-L2-REGAL on Syn 2

(g) CPD-REGAL on Syn 1 (h) CPD-REGAL on Syn 2

(i) CPD-REGAL-LCMTF on Syn 1 (j) CPD-REGAL-LCMTF on Syn 2

Fig. 2: Joint distribution of FMS and Π accuracy among 100 Monte
Carlo tests from four algorithms on two datasets; our proposed
methods (top three rows) achieve higher FMS and higher Π accuracy
statistically than competing alternatives.

Different Π initialization methods:
• Init. 1: Use random decimal matrices to initialize factor

matrices and Π.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20
TenAlign-L1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10
20
30

TenAlign-L2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20 TenAlign-L2-REGAL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50 CPD+REGAL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 accuracy

0

50

C
ou

nt
s CPD+REGAL+LCMTF

Fig. 3: Histograms of Π accuracy among 100 Monte Carlo tests
from four algorithms on dataset Chem; the panels from the top
to the bottom show the results of the algorithms TENALIGN-L1,
TENALIGN-L2, TENALIGN-L2-REGAL, CPD-REGAL and CPD-
REGAL-LCMTF accordingly,; our methods outperform the state-of-
the-art.

• Init. 2: Use random decimal matrices to initialize factor
matrices and random permutaiton matrix for Π.

• Init. 3: Use random decimal matrices initialize factor
matrices and Π is initialized by first taking the first
slice of both tensor X and Y, and then using linear least
squared solver to align them.

• Init. 4: Use CPD factors of tensor X and Y as the initial
factor matrices and the same way as Init. 3 for Π.

2) Hyperparameter λ of TENALIGN-L2: The hyperparam-
eter λ in TENALIGN-L2 is designed to force factors of both
tensors X and Y into two closely intersected spaces. The larger
the λ, the closer the two spaces are. In Fig. 7, we can show that
our TENALIGN-L2 performs well in terms of various metrics
with proper λ.

3) Clustering-based accuracy sensitivity: Figure 8 shows
the behavior of the clustering-based accuracy for varying
number of clusters k TENALIGN-L1 on Syn 1. We observe
that the measured accuracy is relatively stable as the number
of clusters changes.

G. Ablation Study: Effectiveness of Constraints

Here we analyze the effect of each constraint imposed on
the Π matrix in order to determine whether all constraints
are necessary for the recovery of a highly-accurate alignment.
Figure 6 shows results for TENALIGN-L1 on dataset Syn
1 when different combinations of constraints are active. We
observe that as we add more constraints, the performance
increases, since the algorithm is more likely to identify an
alignment with high accuracy.

H. Sanity Check of L1

Here, we verify if every term of formulation L1 is necessary,
by answering the following two questions:

1) Will the learned permutation matrix Πe be of high quality
if we use ground-truth factors as input factors?

2) Will the learned factors be good if we use ground-truth
permutation matrix as input matrix?

In our experiments, a third-order tensor of size 10×30×40 is
coupled in the first mode with another third-order tensor of size
10×70×10, where both tensors have rank R = 4 and follow
normal distribution. We find out that given ground-truth factors
as input factors, the raw accuracy of the learned permutation
matrix Πe is 100%. Also, given true permutation matrix as
input Π matrix, factor matching score between learned and
true factors is about 0.99. We, thus, conclude, that every part
of the TENALIGN L1 is essential.

V. RELATED WORK

A. Coupled Tensor Factorization

Coupled tensor factorization [7], [24], [25] typically refers
to the factorization of two or more datasets which form tensors
and/or matrices into a set of latent factors that are common
for modes of the datasets that are “coupled”, i.e., they have
1-1 or partial correspondence. There have been variants of the
traditional formulation which account for some unshared latent
factors across coupled datasets [10], [11].

The closest work to our work is the recently proposed
Linearly Coupled Matrix Tensor Factorization (LCMTF) [12]
which assumes that two datasets are coupled via a known
linear transformation. However, as we demonstrate in our
experiments, if we use a fixed alignment matrix (which is
most likely going to be imperfect, unless we have access to the
optimal permutation matrix, which is not realistic), this method
will fail to recover the true factors, which further motivates our
joint alignment and coupled factorization approach.

B. Alignment Methods

There is a strong interest in the community for the special
case of the entity alignment problem, where entities are nodes
in a graph, as evidenced by a rich number of publications in the
recent years [15], [16], [17], [18], [19], [26], [27], [20], [21],
[22]. Beyond graph matching, there exist recent approaches
for general entity alignment [13], [14], [28], [29], [30].

In general, our proposed TENALIGN framework is syn-
ergistic with and not competing against the aforementioned
lines of work: any advances in performing better alignment of
entity embeddings directly benefits TENALIGN, since we can
readily substitute our relaxed alignment subproblem (as we
demonstrate experimentally by borrowing REGAL’s matching
function) and can subsume and absorb any benefits conferred
by the improved alignment method.

VI. CONCLUSIONS & FUTURE WORK

In this work we introduce TENALIGN, the first joint tensor
alignment and coupled factorization framework. We propose

(a) Init.1 (b) Init. 2 (c) Init.3 (d) Init.4

Fig. 4: Joint distribution of FMS and Π accuracy of TENALIGN-L1 on Syn 1 with different initialization strategies; the results show that FMS
and Π accuracy are always strongly correlated and the performance of our proposed TENALIGN-L1 are not sensitive to the initialization.

1

2 3

! acc. = 0.1
FMS=0.95
cnt=21

! acc. = 0.6
FMS=0.99

cnt=7

! acc. = 0.99
FMS=0.99

cnt=3

1

2 3

! acc. = 0.1
FMS=0.95
cnt=21

! acc. = 0.6
FMS=0.99

cnt=7

! acc. = 0.99
FMS=0.99

cnt=3

Omitted due to being almost 0 uniformly

Fig. 5: Number of tests out of 100 w.r.t Π accuracy and FMS
using our TENALIGN-L2 with λ = 5 on dataset Syn 2; the three
starts indicate cases when Π is low, median, and high while FMS is
constantly high.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20
no constraints

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20
constraint 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10
20

constraint 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10
20

constraints 1 and 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10
20

constraints 1 and 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 accuracy

0
10
20
30

C
ou

nt
s

constraints 1, 2, and 3

Fig. 6: Number of tests out of 100 (a.k.a., Counts) w.r.t. Π accuracy
under different combinations of constraints using our TENALIGN-L1

on dataset Syn 1; the more constraints are used the better performance
in terms of higher counts of perfect Π accuracy we achieve; all the
three constraints for our algorithm are essential.

two optimization formulations and we explore their trade-
offs, while also comparing our propose joint scheme with

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50 = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50 = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
5

10 = 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10
20 = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
01020 = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50
100 = 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20
40 = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
5

10 = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50
100 = 100

Fig. 7: Sensitivity analysis of the latent factor matching coefficient λ
in TENALIGN-L2 using dataset Syn 2; the top 3 panels are FMS for
λ = 0, 1, 100 respectively; the middle 3 panels are Π accuracy for
different λs; the bottom 3 panels are component overlapping rate for
various λs; the results show that our TENALIGN-L2 performs well
in terms of various metrics with proper λ.

0 2 4 6 8 10
k

0.2

0.4

0.6

0.8

1

1.2

 a
cc

ur
ac

y

Fig. 8: Sensitivity analysis on k using TENALIGN-L2 on Syn 2.

alterntatives from the state of the art. We demonstrate that
our joint alignment and factorization substantially outperforms
multi-step approaches where we embed, align, and coupled
factorize in the end, and where each step is independent.

In future work we will focus on exploring algorithmic

improvements in the alignment subproblem, especially as it
pertains to scalability, but also in terms of obtaining a better
solution to the optimization problem. At the same time we
will explore variations of the coupled factorization paradigm
where e.g., there are shared and individual latent factors.

VII. ACKNOWLEDGEMENTS

Research was supported by the National Science Foundation
under CAREER grant no. IIS 2046086 and CREST Center
for Multidisciplinary Research Excellence in Cyber-Physical
Infrastructure Systems (MECIS) grant no. 2112650, a UCR
Regents Faculty Fellowship, and a CISCO Faculty Research
Award. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the funding parties.

REFERENCES

[1] T. Kolda and B. Bader, “Tensor decompositions and applications,” SIAM
review, vol. 51, no. 3, 2009.

[2] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalex-
akis, and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Signal Processing Magazine.

[3] D. Nion, K. N. Mokios, N. D. Sidiropoulos, and A. Potamianos, “Batch
and adaptive parafac-based blind separation of convolutive speech mix-
tures,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 18, no. 6, pp. 1193–1207, 2009.

[4] G. Zhou, Q. Zhao, Y. Zhang, T. Adalı, S. Xie, and A. Cichocki, “Linked
component analysis from matrices to high-order tensors: Applications to
biomedical data,” Proceedings of the IEEE, vol. 104, no. 2, pp. 310–331,
2016.

[5] G. B. Guacho, S. Abdali, N. Shah, and E. E. Papalexakis, “Semi-
supervised content-based detection of misinformation via tensor em-
beddings,” in 2018 IEEE/ACM international conference on advances
in social networks analysis and mining (ASONAM). IEEE, 2018, pp.
322–325.

[6] Z. Zhou, J. Fang, L. Yang, H. Li, Z. Chen, and R. S. Blum, “Low-
rank tensor decomposition-aided channel estimation for millimeter wave
mimo-ofdm systems,” IEEE Journal on Selected Areas in Communica-
tions, vol. 35, no. 7, pp. 1524–1538, 2017.

[7] E. Acar, T. G. Kolda, and D. M. Dunlavy, “All-at-once optimiza-
tion for coupled matrix and tensor factorizations,” arXiv preprint
arXiv:1105.3422, 2011.

[8] E. Acar, M. A. Rasmussen, F. Savorani, T. Næs, and R. Bro, “Under-
standing data fusion within the framework of coupled matrix and tensor
factorizations,” Chemometrics and Intelligent Laboratory Systems, vol.
129, pp. 53–63, 2013.

[9] E. E. Papalexakis, C. Faloutsos, T. M. Mitchell, P. P. Talukdar, N. D.
Sidiropoulos, and B. Murphy, “Turbo-smt: Accelerating coupled sparse
matrix-tensor factorizations by 200x,” in Proceedings of the 2014 SIAM
International Conference on Data Mining. SIAM, 2014, pp. 118–126.

[10] E. Acar, A. J. Lawaetz, M. Rasmussen, and R. Bro, “Structure-revealing
data fusion model with applications in metabolomics,” in Engineering in
Medicine and Biology Society (EMBC), 2013 35th Annual International
Conference of the IEEE. IEEE, 2013, pp. 6023–6026.

[11] E. Acar, E. E. Papalexakis, M. A. Rasmussen, A. J. Lawaetz, M. Nilsson,
and R. Bro, “Structure-revealing data fusion,” BMC bioinformatics,
vol. 15, no. 1, p. 239, 2014.

[12] E. A. Carla Schenker, Jérémy Cohen, “An optimization framework for
regularized linearly coupled matrix-tensor factorization,” in EUSIPCO
2020 - 28th European Signal Processing Conference, Jan 2021, Virtual,
Netherlands. EUSIPCO, 2020, pp. 1–5.

[13] Y. L. Jin Wang and W. Hirota, “Machamp: a generalized entity matching
benchmark,” in Proceedings of the 30th ACM International Conference
on Information and Knowledge Management (CIKM ’21), November
1–5, 2021, Virtual Event, QLD, Australia. ACM, New York, NY, USA.
ACM, 2021, pp. 4633–4642.

[14] Y. S. A. D. Yuliang Li, Jinfeng Li and W.-C. Tan, “Deep entity matching
with pre-trained language models,” in PVLDB, 14(1): XXX-XXX, 2021.
PVLDB, 2021, pp. 4633–4642.

[15] Y. Yan, L. Liu, Y. Ban, B. Jing, and H. Tong, “Dynamic knowledge
graph alignment,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 5, 2021, pp. 4564–4572.

[16] T. Derr, H. Karimi, X. Liu, J. Xu, and J. Tang, “Deep adversarial network
alignment,” in Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, 2021, pp. 352–361.

[17] Y. Yan, S. Zhang, and H. Tong, “Bright: A bridging algorithm for
network alignment,” in Proceedings of the Web Conference 2021, 2021,
pp. 3907–3917.

[18] M. Heimann, X. Chen, F. Vahedian, and D. Koutra, “Refining network
alignment to improve matched neighborhood consistency,” in Proceed-
ings of the 2021 SIAM International Conference on Data Mining (SDM).
SIAM, 2021, pp. 172–180.

[19] S. Zhang and H. Tong, “Network alignment: recent advances and future
directions,” in Proceedings of the 29th ACM International Conference
on Information & Knowledge Management, 2020, pp. 3521–3522.

[20] K. K. Qin, F. D. Salim, Y. Ren, W. Shao, M. Heimann, and D. Koutra,
“G-crewe: Graph compression with embedding for network alignment,”
in Proceedings of the 29th ACM International Conference on Informa-
tion & Knowledge Management, 2020, pp. 1255–1264.

[21] S. Zhang, H. Tong, R. Maciejewski, and T. Eliassi-Rad, “Multilevel
network alignment,” in The World Wide Web Conference, 2019, pp.
2344–2354.

[22] M. Heimann, H. Shen, T. Safavi, and D. Koutra, “REGAL: representa-
tion learning-based graph alignment,” in Proceedings of the 27th ACM
International Conference on Information and Knowledge Management,
CIKM 2018, Torino, Italy, October 22-26, 2018. ACM, 2018, pp. 117–
126.

[23] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum
of products,” Journal of Mathematics and Physics, vol. 6, no. 1-4, pp.
164–189, 1927.

[24] B. Jeon, I. Jeon, L. Sael, and U. Kang, “Scout: Scalable coupled matrix-
tensor factorization-algorithm and discoveries,” in 2016 IEEE 32nd
International Conference on Data Engineering (ICDE). IEEE, 2016,
pp. 811–822.

[25] K. Yılmaz, A. Cemgil, and U. Simsekli, “Generalised coupled tensor fac-
torisation,” Advances in neural information processing systems, vol. 24,
2011.

[26] S. Zhang, H. Tong, Y. Xia, L. Xiong, and J. Xu, “Nettrans: Neural cross-
network transformation,” in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2020, pp. 986–996.

[27] Q. Zhu, H. Wei, B. Sisman, D. Zheng, C. Faloutsos, X. L. Dong,
and J. Han, “Collective multi-type entity alignment between knowledge
graphs,” in Proceedings of The Web Conference 2020, 2020, pp. 2241–
2252.

[28] D. Zhang, Y. Nie, S. Wu, Y. Shen, and K.-L. Tan, “Multi-context
attention for entity matching,” in Proceedings of The Web Conference
2020, 2020, pp. 2634–2640.

[29] M. Berrendorf, E. Faerman, and V. Tresp, “Active learning for entity
alignment,” in European Conference on Information Retrieval. Springer,
2021, pp. 48–62.

[30] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep,
E. Arcaute, and V. Raghavendra, “Deep learning for entity matching:
A design space exploration,” in Proceedings of the 2018 International
Conference on Management of Data, 2018, pp. 19–34.

	Introduction
	Problem Formulation
	Proposed Method
	Solution for TenAlign-L1
	 For partial derivative with respect to A
	 For partial derivative with respect to B
	 For partial derivative with respect to C
	 For partial derivative with respect to D
	 For partial derivative with respect to E
	 For partial derivative with respect to m慴栠䁢杲潵瀠7

	Solution for TenAlign-L2
	 For partial derivative with respect to m慴栠䁢杲潵瀠7Ax
	 For partial derivative with respect to B
	 For partial derivative with respect to C
	 For partial derivative with respect to m慴栠䁢杲潵瀠7Ay
	 For partial derivative with respect to D
	 For partial derivative with respect to E
	 For partial derivative with respect to m慴栠䁢杲潵瀠7

	Experimental Evaluation
	Experiment Setup and Datasets
	Synthetic Data
	Real Data
	Metrics

	TenAlign Variants
	Baseline Methods
	Hyperparameter Selection
	Alignment and Factor Accuracy
	Sensitivity Analysis
	 Initialization:
	Hyperparameter of TenAlign-L2
	Clustering-based accuracy sensitivity

	Ablation Study: Effectiveness of Constraints
	Sanity Check of L1

	Related Work
	Coupled Tensor Factorization
	Alignment Methods

	Conclusions & Future Work
	Acknowledgements
	References

