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Abstract—In data mining, block term tensor decomposition
(BTD) is a relatively under-explored but very powerful multi-
layer factor analysis method that is ideally suited for modeling
for batch processing of data which is either low or multi-linear
rank, e.g., EEG/ECG signals, that extract ”rich” structures (>
rank − 1) from tensor data while still maintaining a lot of the
desirable properties of popular tensor decompositions methods
such as the interpretability, uniqueness, and etc. These days data,
however, is constantly changing which hinders its use for large
data. The tracking of the BTD decomposition for the dynamic
tensors is a very pivotal and challenging task due to the variability
of incoming data and lack of efficient online algorithms in terms
of accuracy, time and space.

In this paper, we fill this gap by proposing an efficient
method OnlineBTD to compute the BTD decomposition of
streaming tensor datasets containing millions of entries. In terms
of effectiveness, our proposed method shows comparable results
with the prior work, BTD, while being computationally much
more efficient. We evaluate OnlineBTD on six synthetic and
three diverse real datasets, indicatively, our proposed method
shows 10 − 60% speedup and saves 40 − 70% memory usage
over the traditional baseline methods and is capable of handling
larger tensor streams for which the classic BTD fails to run. To
the best of our knowledge, OnlineBTD is the first approach to
track streaming block term decomposition while not only being
able to provide stable decompositions but also provides better
performance in terms of efficiency and scalability.

I. INTRODUCTION

Tensor decomposition methods are very vital tool in various
applications like biomedical imaging [32], social networks
[38], and recommender systems [21] to solve various chal-
lenging problems. Tensors are higher-order matrix generaliza-
tion that can reveal more details compared to matrix data,
while maintaining most of the computational efficiencies.
Each such order of the data is an impression of the same
underlying phenomenon e.g, the formation of friendship in
social networks or the evolution of communities over time. A
main task of the tensor analysis is to decompose the multi-
modal data into its latent factors, which is widely known as
CANDECOMP/PARAFAC (CP) [3], [16] and Tucker Decom-
position [35] in the literature. The CP decomposition has found
many applications in machine learning [27], statistical learning
[4] and computational neuroscience [30] to understand brain
generated signals.

Motivating example: Given the importance of tensor anal-
ysis for large-scale data science applications, there has been
a growing interest in scaling up these methods to handle

large real-world data [39], [12], [33], [13]. However, the CP
and Tucker decomposition make a strong assumption on the
factors, namely that they are rank-1 (see def. 5). In various ap-
plication domains, like biomedical images [25], text data [11],
it is often controversial whether this assumption is satisfied for
all the modes of the problem. The low or multi-linear rank may
be a better approximation of the real-world applications [11],
[36]. For example, fetal electrocardiogram (fECG) tracking is
extremely important for evaluating fetal health and analyzing
fetal heart conditions during pregnancy. The electrical activity
of the fetal heart is recorded during labor between 38 and
41 weeks of gestation by electrodes (non-invasive) placed on
mother’s abdomen or an electrode attached to the fetal scalp
(invasive, not routinely used) while the cervix is dilated (i.e.
during delivery). This signal is produced from a small heart,
therefore the amplitude of the signal is low and quite similar
to the adult ECG, with a higher heart rate. The recorded signal
also has interference from muscle noise, motion artifacts and
etc. The fetal and maternal ECG have temporal and spectral
overlap. The separation of an accurate fetal electrocardiogram
signal from the abdominal mixed signals is complicated but
very crucial for many reasons like early detecting fetal distress
to avoid painful emergency caesarean delivery (> 9.6%) [15]
and reduce brain damage or cerebral palsy in new-born. How
to identify and separate fetal ECG over time which can signify
a potential issues from noise? How to monitor the dynamic
fetal signal behavior? In [1], the Tucker decomposition is
used for fECG extraction. Because of the fetal low-amplitude
signal compared to the mother’s heart signal, the drawback
of this method lies in the use of only the fetal periodicity
constraints to get rank-1 components. Such limitations can be
resolved by Block Term Decomposition (BTD) [9]. BTD helps
to tensorize (low multi-linear blocks) abdominal mixed signals
into separate subspaces of the mother, fetus and noise signals.
The block term decomposition writes a given tensor as a sum
of terms with a low multi-linear rank, without rank-1 being
required.

Previous Works: The Block Term Decomposition (BTD)
unifies the CP and Tucker Decomposition. The BTD frame-
work offers a coherent viewpoint on how to generalize the
basic concept of rank from matrices to tensors. The author
[19] presented an application of BTD where epileptic seizures
pattern was non-stationary, such a trilinear signal model is
insufficient. The epilepsy patients suffer from recurring un-
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Fig. 1: OnlineBTD procedure. Left: the original tensor is extended
with an extra slice (red) in the third mode. Right: the BTD of the
tensor is updated by adding a new vector (red) to the factor matrix
in the third mode and modifying the existing factor matrices (pink).

provoked seizures, which is a cause and a symptom of abrupt
upsurges. They showed the robustness of BTD against these
sudden upsurges with various model parameter settings. The
author [4] used a higher-order BTD for the first time in fMRI
analysis. Through extensive simulation, they demonstrated
its effectiveness in handling strong instances of noise. A
deterministic block term tensor decomposition (BTD) - based
Blind Source Separation [8], [30] method was proposed and
offered promising results in analyzing the atrial activity (AA)
in short fixed segments of an AF ECG signals. The paper
[10] extends the work [8] for better temporal stability. The
paper [25] proposed doubly constrained block-term tensor
decomposition to extract fetal signals from maternal abdomi-
nal signals. Recently, the paper [11] proposed ADMM based
constrained BTD method to find structures of communities
within social network data. However, these classic methods
and applications of BTD are limited to small-sized static
dense data (1K × 1K × 100) and require a large amount
of resources (time and space) to process big data. In this
era, data is growing very fast and a recipe for handling
the limitations is to adapt existing approaches using online
techniques. For example, health monitoring data like fECG
represents a large number of vibration responses measured
over time by many sensors attached at different parts of
abdomen. In such applications, a naive approach would be
to recompute the decomposition from scratch for each new
incoming data. Therefore, this would become impractical and
computationally expensive.

Challenges. For many different applications like sensor net-
work monitoring or evolving social network, the data stream is
an important model. Streaming decomposition is a challenging
task due to the following reasons. First, accuracy: high-
accuracy (competitive to decomposing the full tensor) using
significantly fewer computations than the full decomposition
calls for innovation. Second, speed: the velocity of incoming
data into the system is very high and require real-time exe-
cution. Third, space: operating on the full ambient space of
data, as the tensor is being updated online, leads to increase in
space complexity, rendering offline approaches hard to scale,
and calling for efficient methods that work on memory spaces
which are significantly smaller than the original ambient data
dimensions. Lastly, beyond rank-1 data [11]: there are certain
instances wherein rank-1 decomposition (CP or Tucker) can
not be useful, for example, EEG signals [19] needed to be
modeled as a sum of exponentially damped sinusoids and

allow the retrieval of poles by singular value decomposition.
The rank-one terms can only model components of data that
are proportional along columns and rows, and it may not be
realistic to assume this. Alternatively, it can be handled with
blocks of decomposition.

Mitigating Challenges: Motivated by the above challenges,
the objective of our work is to develop an algorithm for large
multi-aspect or multi-way data analysis that is scalable and
amenable to incremental computation for continuously incom-
ing data. In this paper, we propose a method to decompose
online or streaming tensors based on BTD decomposition.
Our goal is, given an already computed BTD decomposition,
to track the BTD decomposition of an online tensor, as it
receives streaming updates, a) efficiently, being much quicker
than recomputing the entire decomposition from scratch after
each update, and using less memory, and b) accurately,
obtaining an approximation error which is as similar to the
complete tensor decomposition as possible. Answering the
above questions, we propose OnlineBTD framework (Figure
1). Our OnlineBTD achieves the best of both worlds in terms
of accuracy, speed and memory efficiency: 1) in all cases
considered for real and synthetic data (Table V) it is faster than
a highly optimized baseline method, achieving up to 10−60%
performance improvement; 2) simultaneously, the proposed
method is more robust and scalable, since it can execute large
problem instances in a reasonable time whereas the baseline
fails due to excessive memory consumption (Figure 4).

To our best knowledge, there is no work in the literature that
deals with streaming or online Block Term Decomposition.
To fill the gap, we propose a scalable and efficient method to
find the BTD decomposition for streaming large-scale high-
order multi-aspect or temporal data and maintain comparable
accuracy. Our contributions can be summarized as:
• Novel and Efficient Algorithm: We introduce

OnlineBTD, a novel and efficient algorithm for
tracking the BTD decompositions of streaming tensors
that admits an accelerated implementation described
in Section III. We do not limit to three-mode tensors,
our algorithm can easily handle higher-order tensor
decompositions.

• Stable Decomposition: Based on the empirical analysis
(Section IV) on synthetic datasets, our algorithm produces
similar or more stable decompositions than to existing
offline approaches, as well as a better scalability.

• Real-World Utility: We performed a case study of apply-
ing OnlineBTD on the dataset by ANT-Social Network
which consists of > 1 million interactions over 41 days
and EEG signal data to understand the human body
movement.

II. BACKGROUND
A. Notations

In this Section, we provide the necessary background for
notations and tensor operations. Then, we briefly discuss the
classical method for BTD for tensor factorization. Table I
contains the symbols used throughout the paper.



Symbols Definition
X,X,x, x Tensor, Matrix, Column vector, Scalar

XT ,X−1,X† Transpose, Inverse, Pseudo-inverse
Xk shorthand for X(:, :, k) (k-th frontal slice of X)

X(n) , X(n) mode-n matricization of X, matrix X at mode-n
[Xr ],Xr set of R block matrices , rth block matrix X
‖A‖F , ‖a‖2 Frobenius norm, `2 norm
◦, •,©∗ ,⊗ Outer, Inner, Hadmard, Kronecker[20] product
�,�c Partition-wise Kronecker product and Column-wise Khatri-Rao product

bd(X) or blockdiag(X) a block diagonal representation of matrix X

TABLE I: Table of symbols and their description

B. Basic definitions

Definition 1: Tensor[20], [28]: A tensor is a higher or-
der generalization of a matrix. An N -mode tensor X ∈
RI1×I2···×IN is the outer product of N vectors, as given in
equation 1,

X = a1 ◦ a2 · · · ◦ aN (1)

essentially indexed by N variables i.e. (a1,a2 . . . ,aN ). The
outer product 3-mode tensor X of vectors (a,b, c) can be
written as xijk = aibjck for all values of the indices. We
refer the interested reader to surveys of tensor applications
[20], [28] for more details.

Definition 2: Kronecker product[28] is denoted by symbol
⊗ and the Kronecker product of two matrices A ∈ RI×L and
B ∈ RJ×L results in matrix size of (IJ×L2) and it is defined
as:

A⊗B =


a11B a12B . . . a1LB
a21B a22B . . . a2LB

...
...

...
aI1B aI2B . . . aILB

 (2)

Definition 3: Column-wise Khatri-Rao product[28] : It
is denoted by symbol �c and the column-wise Khatri-Rao
product of two matrices A ∈ RI×L and B ∈ RJ×L,
A�c B ∈ RIJ×L is defined as:

A�c B =
[
a1 ⊗ b1 a2 ⊗ b2 . . .aL ⊗ bL

]
(3)

In case of a and b are in vector form, then the Kronecker
and column-wise Khatri-Rao products are same, i.e., a⊗b =
a�c b.

Definition 4: Partition-wise Kronecker product [22], [6]
: Let A = [A1 A2 . . .AR] ∈ RI×LR and B =
[B1 B2 . . .BR] ∈ RI×LR are two partitioned matrices. The
partition-wise Kronecker product is defined by:

A�B =
[
A1 ⊗B1 A2 ⊗B2 . . . AR ⊗BR

]
(4)

Definition 5: Rank-1 A N -mode tensor is of rank-1 if it can
be strictly decomposed into the outer product of N vectors.
Therefore, we add different scaling of a sub-tensor as we
introduce more modes when reconstructing the full tensor. A
rank-1 of 3-mode tensor can be written as X = a ◦ b ◦ c.
The rank R of a tensor X is defined as the minimum number
of rank-1 tensors which are needed to produce X as their sum.

C. Classic BTD Decomposition

De Lathauwer et al. [6], [7], [9] introduced a new type
of tensor decomposition that unifies the Tucker and the CP
decomposition and referred as Block Term Decomposition
(BTD). The BTD of a 3-mode tensor X ∈ RI×J×K , shown

in figure 2, is a sum of rank-(L, M, N) terms is a represented
as:

X ≈
R∑

r=1

Gr •1 Ar •2 Br •3 Cr (5)

+… ++≈

Fig. 2: BTD -(L, M, N) for a third-order tensor X ∈ RI×J×K .

The factor matrices (A,B,C) are defined as A = [A1 A2

. . .AR] ∈ RI×LR, B = [B1 B2 . . .BR] ∈ RJ×MR and
C = [C1 C2 . . .CR] ∈ RK×NR. The small core tensors
Gr ∈ RL×M×N are full rank-(L,M,N). If R=1, then Block-
term and Tucker decompositions are same. In terms of the
standard matrix representations of X , (5) can be written as:

X
(1)
I×JK ≈ A.(blockdiag(G(1)1 . . .G(1)R )).(C�B)T

X
(2)
J×IK ≈ B.(blockdiag(G(2)1 . . .G(2)R )).(C�A)T

X
(3)
K×IJ ≈ C.(blockdiag(G(3)1 . . .G(3)R )).(B�A)T

(6)

In terms of the (IJK × 1) vector representation of X , the
decomposition can be written as:

xIJK ≈ ((C�B)�A)

(G1)LMN

. . .
(GR)LMN

 (7)

Algorithm: The direct fitting of Eq. (7) is difficult. A
various types of fitting algorithms [37], [20] have been derived
and discussed in the literature for tensor decompositions. The
most common fitting for tensor decomposition is by using ALS
(Alternating Least Squares) and approximation loss can be
written as:

LS(X,A,B,C,G) = argmin
A,B,C,G

||X−
R∑

r=1

[[Ar,Br,Cr,Gr]]||2F
(8)

The main idea behind alternating least squares (ALS) is to fix
all the factor matrices except for one, then the problem reduces
to a linear least squares which can be solved optimally. Here,
we used the ALS fitting of BTD Decomposition [9] and to
promote reproducibility, we provide clean implementation of
the method as described in Algorithm (1) in supplementary
section (A.3).

1) Uniqueness: It was provided in [7] that the BTD is
essentially unique up to scaling, permutation and the simul-
taneous post multiplication of Ar by a non-singular matrix
Fr ∈ RL×L, Ar by a non-singular matrix Gr ∈ RM×M , and
Cr by a non-singular matrix Hr ∈ RN×N , provided that Gr
is replaced by Gr •1 F−1r •2 G−1r •3 H−1r and the matrices
[A1 A2 . . .AR] and [B1 B2 . . .BR] are full column rank.

Proof of Uniqueness Suppose that the conditions a) N >
L + M − 2 and b) k

′

A + k
′

B + k
′

C ≥ 2R + 2, hold and that
we have an alternative decomposition of X , represented by
(A,B,C,D), with k

A
′ and k

B
′ maximal under the given



dimensionality constraints. A = A∆Πa∆∆a and B =
B∆Πb∆∆b, in which Π is a block permutation matrix and
∆ is a square non-singular block-diagonal matrix, compatible
with the structure of factor matrix.

It suffices to prove it for A. The result for B and C can be
obtained by switching modes. Let ω(x) denote the number of
nonzero entries of a vector x.

From [7], Lemma 5.2 (i), Upper-bound on ω
′
(xTA):

The constraint on k
A
′ implies that k

′

A
≥ k

′

A. Hence, if
ω
′
(xTA) ≤ R− k′

A
+ 1 then

ω
′
(xTA) ≤ R− k

′

A
+ 1 ≤ R− k

′

A + 1 ≤ k
′

B + k
′

C− (R+ 1)

where the last inequality corresponds to condition (a).
From [7], Lemma 5.2 (ii), Lower-bound on ω(xTA): After

columns are sampled in the column space of the corresponding
sub-matrix of B and C, lower bound is

ω
′
(xTA) ≥ min(γ, k

′

B) +min(γ, k
′

C)− γ

From [7], Lemma 5.2 (iii), Combination of the two bounds.

min(γ, k
′

B)+min(γ, k
′

C)−γ ≤ ω
′
(xTA) ≤ k

′

B+k
′

C−(R+1)

If matrix A or B or C is tall and full column rank, then its
essential uniqueness implies essential uniqueness of the overall
tensor decomposition. We call the decomposition essentially
unique when it is subject only to these trivial indeterminacies
i.e (A,B,C,D) and (A,B,C,D) are equal.

III. OUR APPROACH

In this section, we present our proposed method to track the
BTD decomposition of streaming tensor data in an incremental
setting. Initially a case of the third-order will be discussed for
simplicity of presentation. Further, we expand further to more
general conditions, where our proposed algorithm can handle
tensors with a higher modes. Formally, the problem that we
solve is the following:

Problem 1: Given (a) an existing set of BTD decom-
position i.e. Aold,Bold and Cold factor matrices, having
(Lr,Mr, Nr) latent components, that approximate tensor
Xold ∈ RI×J×K1 with Rank R at time t , (b) new
incoming slice (s) in form of tensor Xnew ∈ RI×J×K2

at any time ∆t,
Find updates of Anew,Bnew and Cnew incrementally
to approximate BTD tensor X ∈ RI×J×(K1+K2) after
appending new slice(s) at t = t1 +∆t in last mode while
maintaining a comparable accuracy with running the full
BTD decompositon on the entire updated tensor X.

A. The Principle of OnlineBTD

To address the online BTD problem, our proposed method
follows the same alternating update schema as ALS, such
that only one factor matrix is updated at one time by fixing
all others. Our proposed method is the first work to do an
online BTD algorithm, so we need to make some assumptions
that will ground the problem. Practically, all other online

decomposition (CP/Tucker) based works [39], [13], [26], [12]
presume the same thing, either implicitly or explicitly.

Assumptions:
• We assume the last mode of a tensor growing, while the

size of the other modes remain unchanged with time.
• The factor matrices Aold,Bold and Cold and core tensor
Gold for old data (Xold) at time stamp t1 is available.

• The tensor X rank R and Block rank Lr,Mr, Nr are
available where r ∈ [1, R].

1) Update Temporal Mode: Consider first the update of
factor Cnew obtained after fixing Aold, Bold and Gold, and
solving the corresponding minimization in Equ 9.

Cnew ← argmin
C

||X(3) −C.bd(G).(B�A)T ||F2 (9)

The above Equ. (9) resembles similar to solving problem
for CP [20], [39] but it is different and more challenging
problem because offline/online CP has rank-1 latent factors
(single block) for decomposition without any core tensor. In
BTD, we deals with beyond rank-1 and decomposition consists
of R number of blocks. Each block is solved with partition-
wise Kronecker product (See def. (4)) instead of column-wise
Khatri-Rao product (See def. (3)). Further Equ. (9) can be
written as:

Cnew = argmin
C

||

[
X

(3)
old

X
(3)
new

]
−
[
Crold

C̃r

]
.[G(3)r (Br ⊗Ar)T ]||F2

= argmin
C

||

[
X

(3)
old −Crold .[G

(3)
r (Br ⊗Ar)T ]

X
(3)
new − C̃r.[G(3)r (Br ⊗Ar)T ]

]
||F2

(10)
where r ∈ [1, R] and the above equation presents that the

first part is minimized with respect to Crold , since Ar, Br

and G(3)r are fixed as Arold , Brold and G(3)rold from the last
time stamp. The C̃r can be obtained after minimizing above
equation as :

C̃ = X(3)
new ∗ [Grold(Brold ⊗Arold)T ]† ∀r ∈ [1, R]

= X(3)
new ∗ (G1old .(B1old ⊗A1old)T . . .GRold

.(BRold
⊗ARold

)T )†

(11)
Observation 1: The classic Matricized Tensor Kronecker
product is expensive process because of high computations
during Kronecker product, henceforth referred as classic MT-
TKRONP. Thus the accelerated MTTKRONP is required. Con-
sider matrix A ∈ RI×L and B ∈ RJ×M and its Kronecker
product AB ∈ RIJ×LM . To speed up the process, we avoid
use of def (2) and also avoid explicit allocation of memory by
following steps:
• Reshaping matrix into 4-D array : A ∈ R1×I×1×L; B ∈
RJ×1×M×1;

• Multiplies 4-D array A and B by multiplying correspond-
ing elements; Kr = A. ∗B

• Reshape Kr as ∈ RIJ×LM and multiple its transpose
with matrix form of given core tensor.

The above method saves ≈ 30% (average) of computational
time as provided in Table II, when compared to classic



I=J,Rank Classic (sec) Accelerated (sec) Improvement
1000, 5 0.16 0.09 43%
1500, 15 0.73 0.54 26%
5000, 25 37.55 28.91 23%

TABLE II: Computational gain of accelerated vs classic MT-
TKRONP.

(product of tensor and output of kron) method available in
MATLAB [23].

The factor matrix Cnew ∈ R(K1+K2)×N is updated by
appending the projection Cold ∈ RK1×N of previous time
stamp, to C̃ ∈ RK2×N of new time stamp, i.e.,

Cnew =

[
Cold

C̃

]
=

[
Cold

X
(3)
new ∗ [Grold ∗KrTr ]†

]
(12)

where r ∈ [1, R] and the accelerated MTTKRONP is effi-
ciently calculated in linear complexity to the number of non-
zeros.

2) Update Non-Temporal Mode: We update Anew by
fixing Bold, Gold and Cnew. We set derivative of the loss LS
w.r.t. A to zero to find local minima as :

δ([X
(1)
new −Arnew

.[bd(Grold).(Crnew
⊗Brold)]T ]

δArnew

= 0 (13)

By solving above equation, we obtain:

Anew = (

[
X

(1)
old

X
(1)
new

]
∗ [Grold .(

[
Crold

C̃r

]
⊗Brold)

T ]†

= X(1)
new ∗ [Grold .(C̃r ⊗Brold)

T ]† +X
(1)
old ∗ [Grold .(Crold ⊗Brold)

T ]†

= X(1)
new ∗G† +Aold, G = [Grold(C̃r ⊗Brold)

T ]
(14)

In this way, the factor update equation consists of two parts:
the historical part; and the new data part that makes computa-
tion fast using accelerated MTTKRONP. The Anew ∈ RI×LR

is then partitioned into block matrices using corresponding
rank (i.e. L) per block.

Similarly, Bnew can be updated for mode-2 as :

Bnew = X(2)
new ∗G† + Bold, G = [Grold(C̃r ⊗Arnew

)T ]
(15)

The Bnew ∈ RJ×MR is then partitioned into block matrices
using corresponding rank (i.e. M ) per block.

3) Update core tensor: The updated core tensor is obtained
from updated factors Anew, Bnew and C̃ using following
equation:(G1)LMN

. . .
(GR)LMN

 =

(C̃1new ⊗B1new ⊗A1new)
. . .

(C̃Rnew ⊗BRnew ⊗ARnew

† .Xnew(:)

= H†.Xnew(:)
(16)

Observation 2: The above pseudo-inverse (H†) or generalized
inverse is very expensive in terms of time and space. This can
be accelerated using reverse order law [29], [5] and modified
LU Factorization (provided in Algorithm 1) and equation can
be re-written as:

L = LUmodified(H)

Gnew = (L(LTL)−1(LTL)−1LTHT )Xnew(:)
(17)

The main reason to use LU factorization over traditional
pseudo-inverse is because a back tracing error is lower[17]
as:

Eforward ≤ cond(H)× Ebackward (18)

where Eforward is forward error, Ebackward backward er-
ror and cond represents condition number of matrix. Since
condition number does not depend on an algorithm used
to solve given problem, so choosing LU algorithm gives
smaller backward error and it will lead to lower forward
error. Also, in this we are dealing with triangular matrices
(L and U), which can be solved directly by forward and
backward substitution without using the Gaussian elimination
(Gauss - Jordan) process[18] used in pseudo-inverse. The
Gnew ∈ RRLMN×1 is then partitioned into R blocks and
reshaped using corresponding rank (i.e. [L,M,N ]) per block.

Algorithm 1: Modified LU Factorization for
OnlineBTD

Input: A ∈ Rn×n

Output: Lower matrix L, Upper matrix U, Permutation matrix P
1: L = eye(n); P = L; U = A;
2: for k ← 1 to n do
3: [val m] = max(abs(U(k : n, k))); ;m = m+ k − 1
4: if m 6= k then
5: Interchange rows m and k in U and P
6: if k ≥ 2 then
7: Interchange rows m and k in L for (k − 1) columns
8: end if
9: end if

10: for j ← (k + 1) to n do
11: L(j, k) = U(j, k)/U(k, k);

U(j, :) = U(j, :)− L(j, k) ∗U(k, :);
12: end for
13: L(:, k) = L(:

, k) ∗
√

A(k, k)− L(k, 1 : k − 1) ∗ L(k, 1 : k − 1)T ;
14: end for
15: return L, U, P

Summary: For a 3-mode tensor that grows with time or at
its 3rd mode, we propose an efficient algorithm for tracking
its BTD decomposition on the fly. We name this algorithm as
OnlineBTD, comprising the following two stages:

1) Initialization stage (Algorithm (1) in supplementary
section (A.3)): in case factors from old tensor Xold are not
available, then we obtain its BTD decomposition as (A,B,C
and G)

2) Update stage (Algorithm 2): for each new incoming data
Xnew, it is processed as:
• For the temporal mode 3, C is updated using Equ. (12)
• For non-temporal modes 1 and 2, A and B is updated

using Equ. (14) and Equ. (15), respectively.
• For core-tensor, G is updated using Equ. (16) and accel-

erated using Equ. (17).
B. Extending to Higher order tensors

We now show how our approach is extended to higher-order
cases. Consider N-mode tensor Xold ∈ RI1×I2×···×K1 . The



Algorithm 2: OnlineBTD Update Framework
Input: Xnew ∈ RI1×I2×···×IN−1×K2 , old data factors

(A(1),A(2), . . . ,A(N−1),A(N)),D , Rank R and L.
Output: Updated factor matrices

(A(1),A(2), . . . ,A(N−1),A(N),D),
1: Update temporal modes of tensor X as:

A(N) ←

[
A

(N)
old

X
(N)
new ∗ [Grold .(⊗

N−1
i=1 A(i))T ]†

]
∀r ∈ [1, R]

2: for n← 1 to N − 1 do
3: Update other modes of tensor X as: A(i) ← X

(i)
new ∗

[Grold(⊗
N
i 6=nA

(i)
r )T ]† +A

(i)
old ∀i ∈ [1, N ] ∀r ∈ [1, R]

4: end for
5: Update core tensor using Xnew

D←

⊗N
i=1A

(i)
1

. . .

⊗N
i=1A

(i)
R

† ∗Xnew(:) ∀i ∈ [1, N ] ∀r ∈ [1, R]

6: return Updated (A(1),A(2), . . . ,A(N−1),A(N),D)

factor matrices are (A
(1)
old,A

(2)
old, . . . ,A

(N−1)
old ,A

(N)
old ) for BTD

decomposition with N th mode as new incoming data. A new
tensor Xnew ∈ RI1×I2×···×K2 is added to Xold to form new
tensor of RI1×I2×···×K where K = K1 + K2. The subscript
i 6= n indicated the nth matrix is not included in the operation.

The Temporal mode can be updated as :

A(N) =

[
A

(N)
old

A
(N)
new

]
=

[
A

(N)
old

X
(N)
new ∗ [Grold .(⊗

N−1
i=1 A(i))T ]†

]
(19)

The Non-Temporal modes can be updated as:

A(i) = X(i)
new ∗ [Grold(⊗N

i 6=nA
(i)
r )T ]† + A

(i)
old

= X(i)
new ∗ [Grold(Kr(n)r )T ]† + A

(i)
old

(20)

where i ∈ [1, N−1] and we denote the Kronecker(Kr) product
of the first (N- 1) but the nth loading matrices, (⊗N

i 6=nA
(i)
r )

as Kr(n)r .
The core tensor of BTD decomposition can be updated as:

D =

⊗N
i=1A

(i)
1

. . .

⊗N
i=1A

(i)
R


†

∗Xnew(:) (21)

Avoid duplicate Kronecker product: To avoid duplicate
Kronecker product in above calculations, we use a dynamic
programming method adapted from [39] to compute all the
Kronecker products in one run as shown in Figure (3).

Fig. 3: Kronecker products for
the 5th-order.

The process uses intermediate
results to avoid duplicate Kro-
necker product. The method
goes through the factor matrix
from both sides, until it reaches
the results of first and last Kro-
necker product in a block and
repeats the process for all the

blocks.
Accelerated computation summary: we accelerate com-

putation in OnlineBTD via a) using accelerated MTTKRONP

Dataset Statistics (K: Thousands M: Millions)
I = J K [L,M,N] Batch

I 100 500 [5, 6, 7] 50
II 250 1K [5, 6, 7] 50
III 1K 1K [5, 6, 7] 10
IV 1K 10K [5, 6, 7] 10
V 1K 100K [3, 4, 5] 10
VI 1K 1M [3, 4, 5] 10

TABLE III: Details for the synthetic datasets.
Dataset I J K [L,M,N] Batch

ANT-Network [31] 822 822 41 [3, 3, 3] 10
EU Core [38] 1004 1004 526 [8, 8, 8] 10

EEG Signal [32] 109 896 20K [5, 5, 5] 20

TABLE IV: Details for the real datasets.

instead of classic MTTKRONP, b) using modified-LU factor-
ization instead of classic pesudo-inverse, and c) by avoiding
duplicate Kronecker product for higher order tensors. Finally,
by putting everything together, we obtain the general version
of our OnlineBTD algorithm, as presented in Algorithm 2.

IV. EMPIRICAL ANALYSIS

We design experiments to answer the following questions:
(Q1) How fast, accurate and memory efficient are updates in
OnlineBTD compared to classic BTD algorithm? (Q2) How
does the running time of OnlineBTD increase as tensor data
grow (in time mode)? (Q3) What is the influence of parameters
on OnlineBTD? (Q4) How OnlineBTD used in real-world
scenarios?

A. Experimental Setup

1) Synthetic Data: We provide the datasets used for eval-
uation in Table III. For all synthetic data we use rank R = 3.
In the entries of factor matrix A, B and C Gaussian noise is
added such that the signal-to-noise ratio is 10dB.

2) Real Data: We provide the datasets used for evalua-
tion in Table IV. Rank determination in the experiments is
performed with the aid of the Core Consistency Diagnostic
(CorConDia) method [2], [27] and the triangle method ,im-
plemented by Tensorlab 3.0[37].
• EU-Core[38]: consists of e-mail data from a large Euro-

pean research institution over 526 days.
• Ant Social Network[31]: This dataset consists of infor-

mation of all social interaction among ants, their behavior
and spatial movement from all ants in six colonies over
41 days.

• EEG Signal[32]: This dataset includes 109 subjects who
performed 14 experimental different motor/imagery tasks
while 64-channel EEG were recorded using the BCI2000
system.

3) Baseline method: In this experiment, two baselines have
been used as the competitors to evaluate the performance.
• BTD-ALS : an implementation of standard ALS fitting

algorithm BTD. Implementation of BTD-ALS is not pro-
vided in Tensorlab [37]. Hence, we provide an efficient
implementation of BTD-ALS to promote reproducibility.

• BTD-NLS [37] : an implementation of standard NLS
fitting algorithm BTD with noisy initialization.



Note that there is no method in literature for online or incre-
mental BTD tensors. Hence, we compare our proposed method
against algorithms that decompose full tensor. Also, extending
BTD-NLS to online settings is challenging and requires further
research both to find the best fit and to interpret the role of
the independent variables used in various inherit methods. It
faces difficulties in fitting due to the narrow boundaries on the
model and less flexibility.

4) Evaluation Metrics: We evaluate OnlineBTD and the
baselines using three criteria: 1) approximation loss, 2)
CPU time in second, and 3) memory usage in Megabytes.
These measures provide a quantitative way to compare the
performance of our method. For all criterion, lower is better.

B. Experimental Results

1) Accurate, Fast and Memory Efficient: First, as shown
in Table V, we remark that OnlineBTD is both more memory-
efficient and faster than the baseline methods and at the same
time to a large extent comparable in terms of accuracy. In
particular, the baseline methods fail to execute in the large
problems i.e. SYN-III to SYN-VI for given target rank due to
out of memory problems during the formation of core tensor G.
This improvement stems from the fact that baseline methods
attempt to decompose in full tensor, whereas OnlineBTD can
do the same in streaming mode or on the fly, thus having
higher immunity to large data volumes in short time intervals
and small memory space with comparable accuracy.

For OnlineBTD we use 1 − 10% of the time-stamp data
in each dataset as existing old tensor data. The results for
qualitative measure for data are provided in Table V. For
each of the tensor data, the best performance is shown in
bold. All state-of-art methods address the issue very well
for small datasets. Compared with BTD-ALS and BTD-NLS,
OnlineBTD gives lower or similar approximation loss and
reduce the mean CPU running time by up to avg. 45% times
for big tensor data. For all datasets, BTD-NLS’s loss is lower
than all methods. But it is able to handle up to 1K×1K×100
size only. Most importantly, however, OnlineBTD performed
very well on SYN-V and SYN-VI datasets, arguably the
hardest of the six synthetic datasets we examined where none
of the baselines was able to run efficiently (under 48-72 hours).
It significantly saved 10 − 60% of computation time and
saved 40−80% memory space compared to baseline methods
as shown in Table V. Hence, OnlineBTD is comparable to
state-of-art methods for the small datasets and outperformed
them for the large datasets. These results answer Q1 as the
OnlineBTD has better qualitative measures to other methods.

2) Scalability Evaluation: To evaluate the scalability of
our method, firstly, a dense tensor X of small slice size
I = J = 100 but longer 3rd dimension (K ∈ [102 − 108]) is
created. Its first 1− 10% timestamps of data is used for Xold

and each method’s running time for processing batch of 100
data slices at each timestamp is measured. We decomposed
it using fixed target rank R = 3 and fixed block rank
L = M = N = 5. The baseline approach consumes more
time as we increase the K. The baseline method runs up to

109 non-zero elements or 105 slices and runs out of memory
for further data. However, our proposed method, successfully
decomposed the tensor in reasonable time as shown in Figure
4. Overall, our method achieves up to 27% (average) speed-
up regarding the time required and average 76% gain over
memory saving. This answers our Q2. In terms of batch size,
it is observed that the time consumed by our method is linearly
increasing as the batch size grows. However, their slopes
vary with different rank used. The analysis is included in the
supplementary section (B) due to the limitation of space here.
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Fig. 4: CPU time (sec) and Memory (MB) used for processing slices
to tensor X incrementing in its time mode. The time and space
consumption increases linearly. The mean approximation error is
≤10% for all experiments. #nnz: Number of non-zero elements.

3) Sensitivity of OnlineBTD: We extensively evaluate
sensitivity of OnlineBTD w.r.t. target rank R, block rank
(L,M,N) and noise added during initialization process. For
all experiments, we use tensor X ∈ R250×250×105 and batch
size of 10 slices at a time.

Sensitivity w.r.t tensor rank-R: We fixed the block rank
(L = 5,M = 6, N = 7) with initialization factor noise
is fixed at 10dB.The number of blocks play an important
role in OnlineBTD. We see in Figure 5 (a) that increasing
number of blocks result in decrease of approximation error
of reconstructed tensor. The CPU Time and Memory (MB) is
linearly (slope 1.03) increased as shown in figure 5 (b) and 5
(c).
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Fig. 5: The average approximation error, time and memory usage for
varying target rank ’R’ on different datasets.

Sensitivity w.r.t block rank (L,M,N): To evaluate the
impact of block rank - (L,M,N), we fixed tensor rank R = 5
and noise added to 10dB. We can see that with higher values
of the (L,M,N), approximation error is improved as shown
in Figure 6 (a) and become saturated when original block rank
is achieved. Higher the block size, more memory and time is
required to compute them as shown in figure 6.

4) Comparison to Online Tucker and Online CP: We
also evaluate OnlineBTD performance in terms of computation
time with other CP and Tucker online methods as given below:
• Online Tucker Decomposition [34]: STA is a streaming

tensor analysis method, which provides a fast, stream-



SYN Approximation Loss CPU Time (sec) Memory Usage (MBytes)
BTD-ALS BTD-NLS OnlineBTD BTD-ALS BTD-NLS OnlineBTD BTD-ALS BTD-NLS OnlineBTD

I 0.12± 0.01 0.04± 0.03 0.07± 0.02 79.62± 4.5 12.7± 3.1 13.36± 6.31 7.725± 0.01 14.7± 0.02 4.23± 0.01
II 0.16± 0.04 0.09± 0.03 0.09± 0.01 466.91± 23.6 325.3± 34.9 106.99± 12.61 157.2± 0.01 219.4± 4.5 32.70± 0.05
III [OoM] [OoM] 0.11± 0.01 [OoM] [OoM] 831.52± 43.82 [OoM] [OoM] 315.11± 0.01
IV [OoM] [OoM] 0.13± 0.06 [OoM] [OoM] 2858.45± 59.45 [OoM] [OoM] 314.21± 0.01
V [OoM] [OoM] 0.16± 0.03 [OoM] [OoM] 7665.23± 89.81 [OoM] [OoM] 316.45± 0.01
VI [OoM] [OoM] 0.39± 0.11 [OoM] [OoM] 89349.62± 253.06 [OoM] [OoM] 312.21± 0.01

TABLE V: Experimental results for approximation error, CPU Time in seconds and Memory Used in MB for synthetic tensor. We see that
OnlineBTD gives stable decomposition in reasonable time and space as compared to classic BTD method. The boldface means the best
results.

R REAL Approximation Loss CPU Time (sec) Memory Usage (MBytes)
BTD-ALS BTD-NLS OnlineBTD BTD-ALS BTD-NLS OnlineBTD BTD-ALS BTD-NLS OnlineBTD

5

A 0.36± 0.13 0.34± 0.14 0.37± 0.13 385.51± 67.52 432.47± 46.89 127.32± 13.31 353.35± 0.01 211.34± 0.02 45.37± 0.01
B [OoM] [OoM] 0.31± 0.09 [OoM] [OoM] 742.08± 65.37 [OoM] [OoM] 312.34± 0.01
C [OoM] [OoM] 0.34± 0.03 [OoM] [OoM] 4834.3± 169.42 [OoM] [OoM] 572.7± 0.01

1
0

A 0.22± 0.11 0.21± 0.09 0.23± 0.02 593.1± 53.5 602.4± 77.34 283.45± 43.47 490.3± 0.03 381.59± 0.01 90.43± 0.01
B [OoM] [OoM] 0.23± 0.14 [OoM] [OoM] 1267.4± 121.3 [OoM] [OoM] 583.4± 0.01
C [OoM] [OoM] 0.27± 0.05 [OoM] [OoM] 8639.7± 392.36 [OoM] [OoM] 845.5± 0.01

TABLE VI: A ← ANT-Network; B ← EU-Core; C ← EEG Signals dataset. The average and standard deviation of memory usage and
time metric comparison on real world dataset using two different target for five random initialization. For EU-Core and EEG signal datasets,
baselines are unable to create intermediate core tensor. The baseline method has less approximation loss as compared to our proposed method.
However, the time and memory saving (> 50%) with OnlineBTD is significant.
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Fig. 6: The average approximation error, CPU time in seconds
and memory usage in MBytes for varying block rank - (L,M,N)
of X with original L = M = N = 10. As the rank increases,
lower approximation error is achieved. Increase in time and memory
consumption is expected behaviour.
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Fig. 7: The CPU time in seconds and approximation loss for
CP/Tucker/BTD online tensor decomposition.

ing approximation method that continuously track the
changes of projection matrices using the online PCA
technique.

• Online CP Decomposition [14]: OCTen is a
compression-based online parallel implementation
for the CP decomposition.

Here, we use dense tensor X of slice size I = J = 1000
but longer 3rd dimension (K ∈ [102 − 108]) for evaluation.
For CP and Tucker decomposition, we use rank R = 10 and
for OnlineBTD we use L = 10 and R = 1. We see in Figure
7, OnlineBTD performance is better than OCTen, however,
STA outperforms the all the methods. In terms of Fitness,
OnlineBTD is better (> 35%) than all the baseline methods.

C. Effectiveness on Real-world data

We evaluate the performance of OnlineBTD approach for
the real datasets as well. The empirical results are given in
Table (VI).

1) Ant Social Network: Here, we discuss the usefulness
of OnlineBTD towards extracting meaningful communities or
clusters of ants from Ant Social Network[31] data. It is well
known fact that ants live in highly organized societies with a
specific division of labor among workers, such as cleaning the
nest, caring for the eggs, or foraging, but little is known or re-
searched about how these division of labor are generated. This
network consists of more than 1 million interactions within 41
days between 822 ants. The challenge in community detection
of such large data is to capture the functional behavioral based
on spatial and temporal distribution of interactions. Therefore,
there is a serious need to learn more useful representation.

Qualitative Analysis: For this case study, we decompose
tensor in batch of 10 days to extract communities. We observed
that the ant organization in this dataset is type Pleometrosis
where multiple egg laying queen create there own colonies
within organization. There are three communities [24] namely
nurse (N), cleaner (C) and forager (F) present in each colony.
We compute F1-score to evaluate the communities quality.

We focus our analysis on communities within each colony
of ants in this dataset. The word ”ant colony” refers to
groups of workers, fertile individuals, and brood that non-
aggressively stay together and work jointly. Our proposed
method helped us to track temporal changes among the groups
by performing community detection analyses on the batches
of 10-day periods. Figure 8(e) shows behavioral trajectories
of three communities of ants over the 41 days. We observed
that ants exhibit preferred behavioral trajectory i.e. move from
nursing (located near the queen) to cleaning (move throughout
the colony) to foraging (moving in and out of the colony)
as they age. The most common transition among them was
from cleaner to forager. Conceptually, those ants share similar
behaviour in terms of movement and work load. As a result, it
becomes a very important challenge to accurately cluster them.
Nevertheless, OnlineBTD tracked the behaviour changes very
well and achieves significantly good performance in terms of
F1 − score i.e ≈ 0.79 as compared to baseline (max F1-
Score ≈ 0.63). The communities of colony 1 for day 11,
21, 31 and 41 is shown in Figure 8(a)-(d). The heatmap
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Fig. 8: (a)-(d) Community detection results of colony 1 on days 11, 21, 31 and 41 of the experiment; (e) The community profiling of the
each ant for every 10-day period for all colonies. Blue: nurse community; green: cleaning community; red: foraging community. Ants that
disappeared because they are lost or dead are indicated in yellow; (f)-(h) Spatial distribution of nurses, cleaners, and foragers.

(Figure 8(f)-(h)) provides spatial distribution of community
interactions. As any of the baseline does not have capability
to capture this temporal behaviour efficiently, our proposed
method gives advantage to decompose the data in streaming
fashion in reasonable time.

2) EU-Core [38]: : This is a temporal network dataset of
communication via. emails between students, professor and
staff members of the research institution during October 2003
to May 2005 (18 months) of 42 departments. EU-Core consists
of multiple strongly connected communities corresponding to
many instances of communication within department. How-
ever, we also find numerous re-occurred groups which indicate
communication across departments. Interestingly, we note that
between Oct,2004 -Jan,2005 one community of researchers
established a continuous communication consisting of 80−85
researchers who interacted each month from the same depart-
ment. Suddenly, some members disappeared during Dec’04
and again in Jan’05 communication resumed back normally
as shown in Figure 9. We believe that this may reflect the
days of the week of Christmas and New year holidays.
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Fig. 9: A community activity profile of EU-Core.

3) EEG Signals [32]: : The challenge in movement detec-
tion of EEG signal data is to capture behaviour regarding the
spatio-temporal representations of raw streams. EEG signals
usually consist of various noises e.g. cardiac signal. Apart
from the systems noises, such as power line interference etc.
EEG signals consist from some unavoidable noises like eye
blinks, heart beat and muscle activity, all harm to collecting
high signal-to-noise ratio EEG signals. It is difficult to make
sure that the subjects concentrate on the performing tasks
during the whole experiment period. The offline tensor decom-

position model assumes that the subject maintains the same
spectral structure and topography within the observed window.

Fig. 10: EEG Electrode map.

However, these are typically
characterised by evolving
repetitive sharp waves. Our
proposed method allows more
variability and more interaction
between the factors in order to
capture such non-stationarities.
We find that frontal electrode
lobes i.e F2 through F8 and
front polar electrode lobes FP1

and FP2 gives the better separations results to differentiate
the motor movements tasks between eye open and eye closed.
The parietal (P3, P4), central (C3, C4) and occipital (O1,
O2) electrode lobes as shown in Figure 10 gives results at
temporal scales for open and close left or right fist. This
movement capturing over temporal mode is beneficial to
users with severe disabilities.

The results in Table VI and above qualitative analysis shows
the effectiveness of the decomposition and confirms that the
OnlineBTD can be used for various types of data analysis and
this answers Q4.

Reproducibility: To promote reproducibility, we make our
MATLAB implementation publicly available at Link1.

V. CONCLUSIONS AND FUTURE WORK
We proposed OnlineBTD, a novel online method to learn

Block Term Decomposition (BTD). The performance of the
proposed method is assessed via experiments on six synthetic
as well as three real-world networks. We summarize our
contribution as:
• The proposed framework effectively identify the beyond

rank-1 latent factors of incoming slice(s) to achieve online
block term tensor decompositions. To further enhance the
capability, we also tailor our general framework towards
higher-order online tensors.

1http://www.cs.ucr.edu/∼egujr001/ucr/madlab/src/OnlineBTD.zip

 http://www.cs.ucr.edu/~egujr001/ucr/madlab/src/OnlineBTD.zip


• Through experimental evaluation on multiple datasets, we
show that OnlineBTD provides stable decompositions and
have significant improvement in terms of run time and
memory usage.

• Utility: we provide a clean and effective implementation
of BTD-ALS and all accelerated supporting implementa-
tions along with OnlineBTD source code.

There is still room for improving our method. One direction is
to explore online BTD for NLS (Non-Linear Square). Another
direction is to further extend it for more general dynamic
tensors that may be changed on any modes so that our method
can be more suitable for applications such as computer vision.
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