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Abstract
Glitches are non-Gaussian noise transients that plague the
ground-based gravitational wave detectors like the Laser
Interferometer Gravitational-Wave Observatory (LIGO). As
they appear in the detector’s main channel, they can mask or
mimic real gravitational wave signals resulting in false alarms
in the detection pipelines. Given their high rate of occurrence
compared to astrophysical signals, it is vital to examine these
glitches and probe their origin in the detector’s environment
and instruments. LIGO maintains O(105) auxiliary electron-
ics channels to monitor the detector’s state, some of which
may bear witness to these noise transients. Thus, automati-
cally correlating glitches in the main channel with loud tran-
sient signals in these auxiliary channels can aid LIGO instru-
ment specialists to find and fix sources of these noise tran-
sients and improve the detector. In this paper, we present a
proof-of-concept application of Non-negative Matrix Factor-
ization (NMF) and CP/PARAFAC tensor decomposition for
co-clustering glitches in auxiliary channels space and find
candidate channels that witness presence of glitches in the
main channel.

1 Introduction
The ground-based gravitational-wave (GW) detectors like
advanced LIGO (Aasi et al. 2015) have successfully reached
the state-of-the-art sensitivity needed to detect astrophys-
ical signals. Given their exquisite sensitivity, these detec-
tors are plagued by various sources of terrestrial noise tran-
sients which affect the searches for GWs. Glitches are non-
Gaussian noise transients appearing in the main channel of
the detector which measures the amount of strain, h(t), pro-
duced by a passing gravitational wave. Their origins are en-
vironmental and instrumental in nature. These noise tran-
sients stand out from the expected stationary Gaussian noise
as transient power excesses which trigger search pipelines
leading to false alarms and, along with the stationary noise,
limit the detector’s sensitivity. Hence, glitch characteriza-
tion is a crucial problem and has been studied at LIGO in
two important ways viz. glitch’s morphology in the main
channel and coincident glitches across auxiliary channels.
Glitches have complex morphologies and vary in duration
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and frequency. Therefore, LIGO scientists have been study-
ing the glitches based on the morphological differences evi-
dent in time-frequency spectrogram representations of these
glitches. Several different classes of glitches have been iden-
tified (Zevin et al. 2017) and given their diversity and abun-
dance, machine learning approaches have been used to auto-
matically classify glitch spectrograms into distinct groups
using image classification techniques (George, Shen, and
Huerta 2017).

Apart from the main channel which measures the strain
h(t), LIGO maintains O(105) auxiliary channels to record
the state of the instrument and its environment using a wide
variety of sensors, some of which are used in calibration of
the detector. Some of these auxiliary channels may witness
noise sources which couple to the main channel and pro-
duce a transient power excess causing a glitch. Finding cor-
relations between glitches in the main channel and excess
power events in the auxiliary channels is therefore useful
in determining the origins of these glitches. This paper fo-
cuses on the task of glitch analysis using auxiliary channels.
There have been several efforts at LIGO that use these aux-
iliary channels for glitch analysis. Notably, iDQ (Essick et
al. 2020) is a low-latency glitch prediction pipeline which
uses auxiliary channels information to train a binary classi-
fier to compute the probability of presence of glitches in the
main channel. Similarly, (Cavaglia, Staats, and Gill 2018)
use auxiliary channel information and binary classification
as a tool to study 2 sets of well-understood glitches from the
first two observing runs of LIGO. They find a set of channels
that witness these glitches and infer the probable mechanical
couplings which produce them. Our contribution is an un-
supervised exploratory analysis of glitches in the auxiliary
channels feature space using non-negative matrix factoriza-
tion (NMF) and CP/PARAFAC tensor factorization.

2 Background
Noise coupling into the instrument’s main channel(s) is a
typical issue in big scientific experiments that push the limits
of technology towards ground-breaking discoveries. LIGO’s
main data product is the strain, h(t) - the relative change in
the interferometer’s arm lengths induced by a passing GW.
The stretching and squeezing of spacetime by a passing GW



physically changes the interferometer’s arm length which
causes the laser beams to interfere leading to a power ex-
cess to occur and a signal is measured at the output photo-
diode. It is to be noted that transient terrestrial disturbances
originating in the environment or the instrument can also
cause a brief power excess and result in a signal being reg-
istered at the output photo-diode. This coupling of noise
into the main channel, h(t), is, in essence, a glitch. Aux-
iliary channels record the measurements from a wide vari-
ety of sensors that are deployed around the interferometer.
The O(105) recorded auxiliary channels include a lot of re-
dundancy. LIGO instrument specialists use a subset of the
auxiliary channels as safe channels to monitor and mitigate
noise sources. LIGO data analysts also use these auxiliary
channels as veto generators to remove time segments con-
taminated with glitches and generate clean segments of h(t)
that are used for GW searches. Thus, as described in (Es-
sick, Blackburn, and Katsavounidis 2013) it is useful to de-
termine important auxiliary channels which can act as veto
generators. Given the large number of auxiliary channels
only some of which may witness a glitch, it is conducive
to use machine learning based techniques to find correlation
between the main and auxiliary channel power excesses.

3 Analysis
The task at hand is to cluster glitches in a chosen time in-
terval as per their auxiliary channels characteristics. In this
paper, we formulate this task as a soft co-clustering which is
discussed in brief in Section 3.3. As a result of co-clustering,
we can obtain a small subset of important channels that are
indicative of presence of glitches in h(t).

h(t) the main channel sensitive to GWs
A safe auxiliary channels selected for analysis
ai(t) ith auxiliary channel ∈ A
G glitches in h(t)
tg time of a h(t) glitch ∈ G
F number of frequency bins
S selected channels that witness glitches
[(tstart), (tend)] time interval chosen for analysis

Table 1: Terminology

3.1 Data Collection
A trigger refers to a power excess in h(t) and any a(t)
detected by an event trigger generator (ETG) like Omi-
cron (Robinet 2016) which runs continually in real-time at
LIGO during its operational runs. Ergo, glitches are sim-
ply loud triggers in h(t) that are not astrophysical in ori-
gin. Omicron also infers properties of the generated triggers
viz. GPS timestamp, signal-to-noise ratio (SNR), peak fre-
quency, bandwidth, amplitude, duration, phase, etc. Thus,
each trigger is represented by a list of its properties.

In this analysis, the threshold for loud triggers in h(t) is
set at peak SNR ≥ 7.5 following the example of Gravity
Spy which only registers triggers with peak SNR ≥ 7.5 as
glitches in their catalog. We use a list of safe auxiliary chan-
nels maintained by LIGO’s Detector Characterization group.

We can do a systematic trigger collection inspired by
(Cavaglia, Staats, and Gill 2018) as follows:

1. Obtain a set, G, of loud triggers, i.e. trigger with peak
SNR > 7.5, that occurred in h(t) between tstart and tend.

2. For all tg ∈ G, find triggers from a set, A, of safe
auxiliary channels in a window around each tg .
windowstart = tg − (α ∗∆tg)− (β ∗∆tg)
windowend = tg + ((1− α) ∗∆tg) + (β ∗∆tg)
where, tg ∈ G is the peak SNR time of the glitch trigger.
∆tg is duration in seconds for which the glitch trigger
lasted in h(t). α, β are window parameters to center
the glitch trigger around its peak SNR. In this analysis
α = 0.5, β = 0.

If no trigger is present in the window, a default null trigger
is stored for that channel corresponding to that tg . In case of
multiple triggers in the window, we pick the loudest trigger.
Note that we do not impose any SNR threshold on the aux-
iliary channels trigger selection, therefore the lower bound
on SNR threshold is 5.5 which is the default provided by
Omicron.

3.2 Feature Engineering
Matrix Construction: A feature matrix M ∈ R|G|×|A| en-
codes the presence or absence of a loud trigger in all auxil-
iary channels for every glitch in G weighted by peak SNR.
Each |A|-length row of M corresponds to a glitch and each
element Mi,j is the peak SNR of ith trigger in jth auxiliary
channel if trigger present, zero otherwise.
Tensor Construction: A tensor in this context is a multidi-
mensional array. The tensor encodes - 1) presence or ab-
sence of a loud trigger in all auxiliary channel for every
glitch in G weighted by peak SNR, 2) if present, the peak
frequency of the trigger in an auxiliary channel. In order to
encode these 2 pieces of information, we create a 3-mode
tensor X ∈ R|G|×|A|×|F |. Since peak frequency is a con-
tinuous quantity, we discretize it into frequency bins. Thus,
each element Xi,j,k is the peak SNR of ith trigger in jth
auxiliary channel having peak frequency that falls in the kth
frequency bin if trigger present, zero otherwise.

3.3 Co-clustering glitches and channels
Consider the traditional clustering problem where, a data
matrix D ∈ Rm×n has m data-points (or observations) each
of which has n features. Clustering methods, like K-means
partition the data-points to discover subsets such that data-
points in a cluster are similar to each other and distinct from
data-points in other subsets. Co-clustering refers to simulta-
neous clustering of multiple modes of the data. In case of the
2 mode data matrix D described above, co-clustering parti-
tions along the rows as well as the columns to find subsets.
Co-clustering can be formulated as a multi-linear decompo-
sition as described in (Papalexakis and Sidiropoulos 2011)
such that Dm×n ≈ [Rm×kCk×n] where k is referred to as
the rank of the decomposition. In this paper, to co-cluster the
2-mode data matrix M ∈ R|G|×|A|, we use Non-negative
Matrix Factorization and for the 3-mode data tensor X ∈
R|G|×|A|×|F |, we use non-negative CP/PARAFAC factoriza-
tion. The choice of NMF and non-negative CP/PARAFAC is
dictated by the non-negative values (the SNRs of the trig-



gers) in M and X. Imposing the non-negativity constraint
can potentially yield more interpretable factors that prove
useful in selected specific channels.
Non-negative Matrix Factorization (NMF): The formula-
tion of NMF is stated as follows. Given M ∈ R|G|×|A|+ and
desired number of components (rank) k << min(|G|, |A|),
find W ∈ R|G|×k+ and H ∈ Rk×|A|

+ such that M ≈ WH.
In our case, each row of W and HT is a k-length latent
space representation of triggers and channels respectively.
For computation of NMF, we used the implementation from
Scikit-Learn library available for Python.
Non-negative Tensor Factorization: CP/PARAFAC tensor
factorization of X ∈ R|G|×|A|×|F | is expressed as a sum
of outer products of R rank-1 tensors called components
or factors. These components can be arranged as 3 factor
matrices viz. U|G|×r, V|A|×r, and W|F |×r corresponding to
each mode of X, each with r columns. Formally stated as,

X ≈
R∑

r=1

ur ◦ vr ◦ wr, where ur, vr and wr are the rth col-

umn in factor matrices U, V and W respectively. The true
rank R of the tensor is defined as the minimum number of
rank-1 components required to exactly reconstruct the origi-
nal tensor. However, a low-rank approximation of the tensor
is of interest to our analysis since a low-rank approxima-
tion can capture latent patterns across the modes of the ten-
sor. In our case, the factor matrix U|G|×r and V|G|×r hold
the r-length latent space representations of the glitch trig-
gers and channels respectively. For the computation of the
CP/PARAFAC decomposition we used the implementation
of the Alternating Least Squares method in Tensorly (Kos-
saifi et al. 2019). Additionally, we impose non-negativity
constraint on the factors.

4 Results
Witnessing glitches in the main channel: For this analy-
sis, we chose time intervals in the second half of the third
observing run of LIGO (referred to as O3b by the com-
munity) (Tse et al. 2019). Specifically, the training inter-
val spans from November 1 to November 4, 2019 and the
validation interval spans from November 5 to November 6,
2019. There are 987 loud triggers in the training interval
and 382 loud triggers in the validation interval at the LIGO
Hanford observatory. We used 845 safe auxiliary channels
obtained from a list maintained by the Detector Charac-
terization group at LIGO. We perform NMF on M and
CP/PARAFAC on X constructed using loud triggers in the
training interval and examine the co-clusters obtained. The
latent space representations of the channels (HT in NMF and
V in CP/PARAFAC) are then used to obtain a small set of
channels, S, to test as witnesses of occurrence of glitches
during the validation interval. More specifically, each |A|-
length vector in HT or V encodes the contribution of sub-
set of channels to the corresponding subset of glitches. We
pick the channel corresponding to the maximum magnitude
value in the vector and add it to S. For each channel si ∈ S,
if there is a glitch in h(t) and there is a corresponding trig-
ger in si in a window around the glitch, we say si witnessed

channel % glitches witnessed
H1-PEM-EY MAG EBAY SEIRACK X DQ 85.86

H1-IMC-PZT YAW OUT DQ 81.15
H1-PEM-EX ADC 0 17 OUT DQ 79.31

H1-IMC-MC2 YAW OUT DQ 78.53
H1-PEM-EX MAG EBAY SEIRACK X DQ 77.22

H1-PEM-EX ADC 0 19 OUT DQ 76.96
H1-PEM-VAULT MAG 1030X195Y COIL Y DQ 74.86
H1-PEM-VAULT MAG 1030X195Y COIL X DQ 71.98

H1-PEM-CS MAG EBAY SUSRACK Y DQ 60.73
H1-PEM-EX MAG EBAY SUSRACK Y DQ 59.16

Table 2: Percentage of h(t) glitches witnessed by a set of unique
channels selected using NMF with rank 20 (only channels that wit-
nessed more than half the actual glitches are shown here)

channel % glitches witnessed
H1-PEM-EY MAG EBAY SEIRACK Z DQ 87.43
H1-PEM-EY MAG EBAY SEIRACK X DQ 85.86

H1-IMC-PZT YAW OUT DQ 81.15
H1-IMC-PZT PIT OUT DQ 80.62

H1-PEM-EX ADC 0 17 OUT DQ 79.31
H1-IMC-MC2 YAW OUT DQ 78.53

H1-PEM-EX MAG EBAY SEIRACK X DQ 77.22
H1-PEM-VAULT MAG 1030X195Y COIL Y DQ 74.86
H1-PEM-VAULT MAG 1030X195Y COIL X DQ 71.98

H1-LSC-SRCL OUT DQ 64.13
H1-PEM-CS MAG EBAY SUSRACK Y DQ 60.73

Table 3: Percentage of h(t) glitches witnessed by a set of unique
channels selected using CP/PARAFAC with rank 20 (only channels
that witnessed more than half the actual glitches are shown here)

the glitch. For each channel si ∈ S, we count the number
of glitches in h(t) that it witnessed during the validation in-
terval. Tables 2 and 3 show the percentage of glitches wit-
nessed in the validation interval by channels selected using
NMF and CP/PARAFAC with rank 20 respectively. In both
NMF and CP/PARAFAC models across different ranks, the
top channels witnessed ∼80% of the glitches that occurred
in the validation interval.
Clustering glitches: Since, the |G|-length vectors in W and
U are latent representations of glitches and indicators of
glitch clusters, given some ground-truth labels like the Grav-
ity Spy catalog, we can examine whether we find homoge-
neous clusters for the different Gravity Spy classes in the
auxiliary channels space. More specifically, we quantify ho-
mogeneity of the clusters found by NMF and CP/PARAFAC
with respect to the Gravity Spy classes. To that effect, we
count the number of occurrences of glitches belonging to
each Gravity Spy class in the top k values of each |G|-length
vector in W and U and aggregate this quantity across all fac-
tors. For example, homogeneity of a co-clustering instance
of NMF with rank r is defined as 1

r

∑r
i=1

1
Ni

whereNi is the
number of unique labels in top k of ith factor i.e. column in
W. Here, k is adaptively chosen to be 90% of the norm of the
factor. Thus if we find highly homogeneous auxiliary chan-
nels space clusters for the Gravity Spy classes, this quantity
is close to 1.

Figures 1 shows the average homogeneity across dif-
ferent factorization ranks using NMF and non-negative
CP/PARAFAC respectively. This preliminary analysis sug-
gests that the overall low homogeneity is probably sugges-
tive of the fact that not all Gravity Spy classes have a simple,



Figure 1: Average homogeneity across 10 runs w.r.t. Gravity Spy
classes in clusters found by NMF and CP/PARAFAC across differ-
ent ranks using training interval data.

consistent structure in the auxiliary channels space despite
the visual shape similarities in h(t) signal.

5 Conclusions and Future Directions
In this paper, we provide proof-of-concept LIGO glitch anal-
ysis using auxiliary channels information. We show that
non-negative matrix factorization and CP/PARAFAC tensor
factorization are able co-clusters glitches from a training
time interval in the auxiliary channels space and produce a
small subset of safe auxiliary channels some of which wit-
nessed ∼80% of the glitches in a validation time interval.

Although this preliminary analysis shows the selected
channels witness ∼80% of the glitches, as we mention in
Section 3.1, we do not impose any threshold on auxiliary
channels SNR. It is highly possible that there are spurious
correlations between glitches in main channel and relatively
low SNR triggers in the selected auxiliary channels. Al-
though, this paper does not define them as such, using these
selected channels as standalone veto generators results in
high number of false positives at low SNR thresholds. This
is crucial when determining whether a given channel is a
good veto generator or not. For every trigger present in a
selected veto generator channel candidate, we predict that
there is a glitch in h(t) and remove a segment of h(t) to
eliminate the glitch. The characteristics of a good veto gen-
erator channel are that it has high efficiency -number of ac-
tual h(t) glitches predicted- and low dead-time -amount of
data removed from h(t). High number of false positives re-
sults in a large amount of dead-time.

We reserve further investigation on the selection of appro-
priate SNR thresholds for auxiliary channels to decrease the
false positives for extensions of this work in the future.
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