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Example. A sporting event has a road cycling race and a mountain biking race. The US team has 10 road

cyclists and 9 mountain bikers. This includes 3 team members who participate in both events. How many

members are on the team?

We can express this in a set terminology, as follows. Let R and M denote the sets of road cyclists and

mountain bikers. Thus we have |R| = 10, |M | = 9, and |R ∩M | = 3. We want to compute the cardinality of

the union, |R ∪M |.

The idea is this: if we compute the sum |R|+ |M |, then the members who ride both types of bikes would

be counted twice in this sum. Thus we can get the correct count by subtracting the size of the intersection,

which gives us the formula

|R ∪M | = |R|+ |M | − |R ∩M |.

Plugging in the numbers, we obtain that the team has |R ∪M | = 10 + 9− 3 = 16 members.

Example. Let us now try to extend this idea to three sets. Let’s say we have finite sets R, M and B and

that we know the cardinalities of the three sets and all intersections, that is the cardinalities of all sets R, M ,

B, R ∩M , R ∩B, M ∩B and R ∩M ∩B. We want to compute the cardinality of their union, R ∪M ∪B.

As the first approximation, let’s compute |R|+ |M |+ |B|. In this formula all elements that belong to only

one set are counted just once, but we over-count elements that below to two or three sets. So we subtract the

size of all intersections, giving us |R|+ |M |+ |B| − |R ∩M | − |R ∩B| − |M ∩B|. This will correct the count

for elements that belong to exactly two sets. But those that belong to all three have their count equal to 0.

We can then correct it again, by adding the intersection of all three sets, giving us the final formula:

|R ∪M ∪B| = |R|+ |M |+ |B| − |R ∩M | − |R ∩B| − |M ∩B|+ |R ∩M ∩B|.

We can generalize it to an arbitrary number k of sets, by following the same idea: starting with the sum

of the cardinalities of individual sets, subtracting the cardinalities of pairwise intersections, then adding the

cardinalities of all triple intersections, and so on. This gives us the following theorem.

Theorem 1 ( Inclusion-Exclusion ) For any finite sets S1, S2, ..., Sk, we have
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Example. For four sets S1, S2, S3, S4, we get

|S1 ∪ S2 ∪ S3 ∪ S4| = |S1|+ |S2|+ |S3|+ |S4|
−|S1 ∩ S2| − |S1 ∩ S3| − |S1 ∩ S4| − |S2 ∩ S3| − |S2 ∩ S4| − |S3 ∩ S4|

+|S1 ∩ S2 ∩ S3|+ |S1 ∩ S2 ∩ S4|+ |S1 ∩ S3 ∩ S4|+ |S2 ∩ S3 ∩ S4|
−|S1 ∩ S2 ∩ S3 ∩ S4|.

0.1 Application to Computing Euler’s Totient Function

Define φ(n) to be the Euler’s totient function, defined as the number of integers in {1, 2, ..., n} that are

relatively prime to n. We now want to derive a formula for φ(n).

Example. For n = 9 we get φ(9) = 6, because among numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 there are 6 numbers that

are relatively prime to 9: 1, 2, 4, 5, 7, 8.

We start by looking at numbers with a few prime factors. If n = p itself is prime, then all numbers

1, 2, ..., p− 1 are relatively prime to p, so φ(p) = p− 1. Note that we can write it as φ(p) = p(1− 1/p). Why

would we write it in this funny form? We’ll see soon ...

More generally, suppose that n is a power of a prime, say n = pb. Only the multiples of p are not relatively

prime to n, namely the numbers p, 2p, 3p, ..., (pb−1)p, and there are pb−1 of them. So

φ(n) = n− pb−1 = n(1− 1/p).

This looks just like the formula we had for the case when n was a prime, no?

So let now n = pq, where p, q are different primes. The numbers that have a common factor with n are

all multiples of p and all multiples of q. We have q multiples of p among 1, 2, ..., n and p multiples of p, with

n = pq counted in both sets. This gives us p+ q − 1 numbers that are not relatively prime to n. Subtracting

this from n, we get

φ(n) = n− (p+ q − 1)

= pq − p− q + 1

= (p− 1)(q − 1)

= n(1− 1/p)(1− 1/q)

where the last expression is obtained by factoring p out of p− 1 and q out of q − 1. Note that this is exactly

the same function that we used in the RSA.

The formulas we obtained so far suggest that there may be a way to express φ(n) using prime factors of

n, by multiplying n by all expressions 1 − 1/p, where p is a prime factor of n. It turns out that this indeed

works, as spelled out in the next theorem.

Theorem 2 Let p1, p2, ..., pk be all different prime factors of n. Then

φ(n) = n ·
k∏
i=1

(
1− 1

pi

)
.

Proof: (Sketch) The general strategy of the proof is to first compute how many numbers among 1, 2, ..., n

are not relatively prime to n. Once we compute this number, we will subtract it from n, which will give us

how many of these numbers are relatively prime to n. This is exactly the value φ(n) that we are seeking.



For each i, denote by Si the set of numbers in this set that are multiples of pi. Then
⋃k
i=1 Si is exactly

the set of numbers in {1, 2, ..., n} that are not relatively prime to n. We can compute the cardinality of this

union using Inclusion-Exclusion:∣∣∣ k⋃
i=1

Si

∣∣∣ =

k∑
j=1

(−1)j+1
∑

l1<l2<...<lj

∣∣Sl1 ∩ Sl2 ∩ ... ∩ Slj ∣∣
We now need to figure out how to compute the cardinalities of sets Sl1 ∩ Sl2 ∩ ... ∩ Slj .

Let’s start with a simple case: what is the cardinality of just one set, say Sa? Recall that this set has all

multiples of pa, namely the numbers pa, 2pa, ..., (n/pa)pa, so there are n/pa of them, that is |Sa| = n/pa.

OK, that was easy. Now let’s compute the cardinality of a pairwise intersection, say Sa ∩ Sb. This set

contains the numbers that are multiples of pa and multiples of pb. But a number z is a multiple of two

different primes pa, pb if and only if z a multiple of their product papb. (This follows from the uniqueness

of factorization.) So Sa ∩ Sb is exactly the set of papb among the numbers 1, 2, ..., n, and there are exactly

n/(papb) of them, that is |Sa ∩ Sb| = n/papb.

Generalizing this, we conclude that the cardinality of Sl1 ∩ Sl2 ∩ ... ∩ Slj is n/(pl1pl2 ...plj ), which, after

plugging into formula (1) above and factoring out n, gives us

∣∣∣ k⋃
i=1

Si

∣∣∣ = n ·
k∑
j=1

(−1)j+1
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1

pl1pl2 ...plj
. (1)

We actually want to compute how many numbers are relatively prime to n, that is the cardinality of the

complement of
⋃k
i=1 Si, so after subtracting it from n and simplifying, will give

φ(n) = n−
∣∣∣ k⋃
i=1

Si

∣∣∣ = n ·
[
1−

k∑
j=1

(−1)j+1
∑
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1

pl1pl2 ...plj

]
. (2)

To finish off, we note that for any numbers x1, ..., xk, we have

(1− x1)(1− x2)...(1− xk) = 1−
k∑
j=1

(−1)j+1
∑

l1<l2<...<lj

xl1xl2 ...xlj . (3)

The theorem follows by taking xa = 1/pa, for all a = 1, 2, ..., k, in the above identity, and plugging it into

equation (2). 2

0.2 Computing the Number of Integer Partitions

Integer partitions. We need to equip the US cycling team with 13 bicycles. All bicycles are identical,

except possibly for color. Each bicycle can be painted in one of three colors: beige, scarlet and ultramarine.

How may ways are there to do that?

Denoting by b, s and u the numbers of bicycles of each color, this gives us an equation

b+ s+ u = 13, where 0 ≤ b, s, u ≤ 13.

So our goal is to compute the number of solutions (b, s, u) of this equation.

Each solution (b, s, u) of this equation is called a partition of 13. More precisely, it’s sometimes called

an ordered partition, since we treat here solutions that have the same numbers but in a different order as



different. (In unordered partitions, for example, (5, 4, 4) and (4, 5, 4) would be considered the same partition,

as it partitions 13 into two 4’s and one 5.) But we will simply use the term “partition” here.

To compute the partitions of 13, we do the following trick: draw 13 points on a line. Add two more

points, so that we have the total of 15. Then mark two points. Let b be the number of points before the first

mark, s the number of points between the marks, and u the number of points after the second mark. Then

b + s + u = 13. Further, any solution of the system above can be obtained in this way. So there is a 1-1

correspondence between the solutions of the linear system above and the markings. Since we mark two points

out of 15, the number of partitions of 13 is

S =

(
15

2

)
= 105.

We can generalize this idea to any number of variables:

Theorem 3 The number of solutions of x1 + x2 + ...+ xk = m, where 0 ≤ xi ≤ m for all i, is
(
m+k−1
k−1

)
.

Partitions with lower bounds. We now consider our equation, but with an additional constraint that

b ≥ 5, that is

b+ s+ u = 13, where 5 ≤ b ≤ 13 and 0 ≤ s, u ≤ 13.

This is not hard to handle. The intuition is, b contributes 5 or more to both sides, so we can subtract 5 from

both sides of the equation and obtain an equation without lower bounds. More precisely, we can write b as

b = b′ + 5, where b′ ≥ 0. Substituting, our equation reduces to

b′ + s+ u = 8, where

0 ≤ b′, s, u ≤ 8.

There is a 1-1 correspondence between the solutions of the two equations, by mapping b to b′. So the number

of solutions is

S(b ≥ 5) =

(
10

2

)
= 45.

We can in fact extend it to any number of lower bounds, getting the following theorem:

Theorem 4 Let a1, ..., an be non-negative integers such that A =
∑k
i=1 ai ≤ m. The number of solutions of

x1 + x2 + ...+ xk = m, where ai ≤ xi ≤ m for all i, is
(
m−A+k−1

k−1
)
.

Or’s of Lower Bounds. The next question we look at is this: How many solutions will the equation

b+ s+ u = 13 have if either b ≥ 5 or s ≥ 6 or u ≥ 7? This can be represented as a sum of sets of solutions, so

to compute the number, we can use the inclusion-exclusion principle:

S(b ≥ 5∨ s ≥ 6∨u ≥ 7) = S(b ≥ 5) + S(s ≥ 6) + S(u ≥ 7)

− S(b ≥ 5∧ s ≥ 6)− S(b ≥ 5∧u ≥ 7)− S(s ≥ 6∧u ≥ 7)

+ S(b ≥ 5∧ s ≥ 6∧u ≥ 7)

=

(
10

2

)
+

(
9

2

)
+

(
8

2

)
−
(

4

2

)
−
(

3

2

)
−
(

2

2

)
+ 0

= 45 + 36 + 28− 6− 3− 1 = 99.



Partitions with upper bounds. Finally, let us compute the number of solutions of b + s + u = 13 for

0 ≤ b ≤ 4, 0 ≤ s ≤ 5 and 0 ≤ u ≤ 6. Note that this set is exactly the complement of the set of solutions we

just calculated, so we get

S(b ≤ 4∧ s ≤ 5∧u ≤ 6) = S − S(b ≥ 5∨ s ≥ 6∨u ≥ 7) = 105− 99 = 6.

Just in case, let’s verify. Enumerating all partitions of 13 that satisfy 0 ≤ b ≤ 4, 0 ≤ s ≤ 5 and 0 ≤ u ≤ 6, we

obtain the following partitions:

b 4 4 4 3 3 2

s 5 4 3 5 4 5

u 4 5 6 5 6 6

So we have indeed 6 partitions.

0.3 Other Examples

Example 1. Suppose we have three sets, X, Y , Z with the following properties:

|X| = 128, |Y | = 108, |Z| = 114

|X ∩ Y | = |X ∩ Y ∩ Z|+ 22

|X ∩ Z| = |X ∩ Y ∩ Z|+ 6

|Y ∩ Z| = |X ∩ Y ∩ Z|+ 2

|X ∪ Y ∪ Z| = 2|X ∩ Y ∩ Z|

Determine the number of elements in X ∪ Y ∪ Z.

To solve this problem, we apply the inclusion-exclusion principle, which implies that

|X ∪ Y ∪ Z| = |X|+ |Y |+ |Z| − |X ∩ Y | − |X ∩ Z| − |Y ∩ Z|+ |X ∩ Y ∩ Z|.

Let |X ∩ Y ∩Z| = x. So we have |X ∩ Y | = x+ 22, |X ∩Z| = x+ 6, |Y ∩Z| = x+ 2, and |X ∪ Y ∪Z| = 2 · x.

Plugging these into the above equation, we get

2 · x = 128 + 108 + 114− (x+ 22)− (x+ 6)− (x+ 2) + x.

The solution is x = 80. Thus |A ∪B ∪ C| = 2 · x = 160.

Example 2. Little Red Riding Hood is assembling a fruit basket for her sick grandmother. The basket will

contain 26 fruit, including apples, bananas, mangos and strawberries (and no other fruit). The basket must

contain

• at least 6 apples,

• at least 4 bananas,

• at least 5 mangos, and

• at least 3 and not more than 5 strawberries.



Determine the number of ways to assemble the fruit basked.

The number we seek is the number of integer solutions of

a+ b+m+ s = 26

6 ≤ a
4 ≤ b
5 ≤ m
3 ≤ s ≤ 5

After substitutions, this simplifies to computing the number of non-negative integer solutions of

a+ b+m+ s = 8

s ≤ 2

Let S be the number of all solutions, S(s ≤ 2) the number of solutions with s ≤ 2 and S(s ≥ 3) the number

of solutions with s ≥ 3. We now calculate S(s ≤ 2) as follows

S(s ≤ 2) = S − S(s ≥ 3) =

(
8 + 3

3

)
−
(

8− 3 + 3

3

)
= 165− 56 = 109.

Example 3. Determine the number of permutations of 0, 1, ..., 9 that do not contain any of the following

consecutive sequences of digits: 012, 2345, 89. For example, permutation 5123976048 satisfies this condition,

but permutation 5123897604 does not, because it contains 89.

It will help to introduce some notation. For a sequence α, let Pα be the number of permutations that

contain α. Similarly, for two sequences α, β, let Pα,β be the number of permutations that contain both α and

β. Analogously we define Pα,β,γ , etc.

Before we attack our problem, let’s try to figure out how to compute P012. A näıve way to approach this

would be this: in any permutation of 0, 1, ..., 9, the sequence 012 can appear in 8 locations, and the remaining

digits can be permuted in 7! ways. This gives us that P012 = 8 · 7! = 8!.

But there is a more elegant way to compute P012: Since 012 need to appear consecutively, we can think of

this sequence as one block
�� ��012 . Then P012 is the number of permutations of 8 objects, including seven digits

3, 4, ..., 9 and our block
�� ��012 , so we get P012 = 8!.

We can apply the same trick to compute P012,2345 or P012,89. A permutation contains both 012 and 2345

if and only if it contains one sequence 012345 (because 012 and 2345 overlap on digit 2). To compute the

number of such permutations, we note that this is equivalent to permuting 5 objects, so P012,2345 = 5!. For

P012,89, we have two blocks
�� ��012 and

�� ��89 , plus 5 remaining digits, so P012,89 = 7!. Etc, etc.

Okay, now let’s get back to our original question. Instead of computing the number of permutations

without any sequence 012, 2345, 89, we will compute the cardinality of the complement of this set, namely

those that contain at least one of these sequences. Let P be this quantity. We can express P as the cardinality

of a union of sets, so applying the principle of inclusion-exclusion, the number of such sequences is

P = P012 + P2345 + P89 − P012,2345 − P012,89 − P2345,89 + P012,2345,89

= 8! + 7! + 9!− 5!− 7!− 6! + 4!

= 8! + 9!− 5!− 6! + 4!



Then the number of permutations that do not contain any of 012, 2345, 89, is the number of all permutations

minus P , that is

10!− P = 10!− 8!− 9! + 5! + 6!− 4! = 3226416.

And that’s the final answer.


