
Asymptotic Notation Basics (Updated April 16, 2013)

In computer science it is often difficult to precisely measure certain quantities, and even when they can
be measured accurately their exact values are not essential. Accurate, but simple looking approximations
could be more useful than complex exact formulas.

A typical example is that of a running time of an algorithm. The actual running time depends on the
implementation, the compiler, on the machine, and on the conditions under which the program is executed.
Thus it is simply not possible to tell what is the running time of an algorithm based only on its description.
But in fact the exact formula is not even necessary. For example, if an algorithm makes 4n3 + 3n+ 7 steps
on inputs of length n, for large values of n the terms 3n and 7 are insignificant. It makes more sense to
say that the running time is approximately 4n3. In fact, it makes sense to even ignore the constant 4,
since this constant is implementation- and platform-dependent. So we can say that the running time will be
proportional to n3. In other words, it will be roughly cn3, for some constant c. This observation motivates
the definition of asymptotic notation.

Definition. For two functions f(x) and g(x), we say that f(x) is of order g(x), and write f(x) = O(g(x)),
if there are constants c and x0 such that |f(x)| ≤ cg(x) for all x ≥ x0.

In all useful contexts the functions we will deal with will be non-negative, in which case we can ignore the
absolute value (we will in fact do this in most examples). Occasionally though we may encounter functions
that may take some negative values for small values of x, so we need to take this into account in the definition.
Note that the above definition forces g(x) to be non-negative if x is large enough.

Example 1. We show that 7x + 20 = O(x). Indeed, say, for x ≥ 10 we have 7x + 20 ≤ 7x + 2x ≤ 9x, so
the above definition applies with x0 = 10 and c = 9.

But these choices are not unique. We could as well say that for x ≥ 20 we have 7x+ 20 ≤ 7x+ x ≤ 8x,
etc.

Example 2. Let’s show now that 2n3 + 6n2 − 2 = O(n3). We have 2n3 + 6n2 − 2 ≤ 2n3 + 6n3 = 8n3 for
n ≥ 0, so we can conclude that 2n3 + 6n2 − 2 = O(n3).

Example 3. As a first more exciting example, we’ll look at the harmonic numbers:

H(n) =

n∑
i=1

1

i
= 1 +

1

2
+

1

3
+ ...+

1

n
.

This function grows with n, but how fast? We claim that its growth rate is the same as that of logarithmic
functions, that is H(n) = O(log n).

Let’s now prove it. The idea of the proof is to divide the sequence 1, 1/2, 1/3, .. into about log n blocks,
so that the sum of each block is between 1

2 and 1. More specifically, we divide the sequence 1, 1/2, 1/3, ...
into blocks

1
1

2
+

1

3

1

4
+

1

5
+

1

6
+

1

7
. . .

1

2i
+

1

2i + 1
+ ...+

1

2i+1 − 1
. . .

1

2k
+

1

2k + 1
+ ...+

1

n

where k is chosen to be the integer such that 2k ≤ n < 2k+1. (Thus k = blog nc.) So, for any i except k,
the i-th block starts at 1/2i and ends right before 1/2i+1. The last block is exceptional, since it ends at 1/n
which could be smaller than 1/(2k+1 − 1).

Thus the sum of the i-th block (except the last) is

1

2j
+

1

2j + 1
+

1

2j + 2
...+

1

2j+1 − 1

In this sum, each term is at most 1/2j and is greater than 1/2j+1. This block starts at the 2j-th term and
ends right before 2j+1-st term, so it has 2j+1 − 2j = 2j terms. Therefore the sum of this block is at most

1

2j · 1
2j = 1 and at least 2j · 1

2j+1 = 1
2 . (Except the last block’s sum, which is at most 1 but could be less than

1
2 .)

Putting it all together, we proceed as follows. We have k + 1 blocks, with each block adding to at most
1, so Hn ≤ (k + 1) · 1 ≤ log n + 1. On the other hand, all blocks except last add up to at least 1

2 , so
Hn ≥ k · 12 ≥

1
2 (log n− 1). Summarizing, we have proved the following theorem.

Theorem 0.1 1
2 (log n− 1) ≤ Hn ≤ log n+ 1, for all positive integers n.

How can we express this using the big-Oh notation? Bounding Hn from above, we get that for n ≥ 2,
Hn ≤ log n+1 ≤ log n+log n = 2 log n. So Hn ≤ 2 log n for n ≥ 2, and we can conclude that Hn = O(log n).

Much better estimates are known for Hn. It is known that Hn ∼ lnn + γ, where γ ≈ 0.57 is called
Euler’s constant. More precisely, the difference Hn − lnn converges to γ with n→∞. We can express this
better approximation using the big-Oh notation as well, by using the big-Oh notation for the approximation
error rather than to the function itself: Hn = lnn + O(1). An even more accurate approximation is
Hn = lnn+ γ +O(1/n), as it shows that the approximation error Hn − lnn− γ vanishes when n→∞.

Example 4. The asymptotic notation has not been invented by computer scientists – it has been used
in mathematics for over a 100 years, for describing approximation errors using various expansions (like
Taylor series), and in number theory, to estimate the growth of some functions. Consider for example the
following question: for a number n, how many prime numbers are between 2 and n? This value is denoted
π(n). It is known that π(n) = O(n/ log n). In fact, more accurate estimates for π(n) exist; for example
π(n) = n/ lnn+O(n/ log2 n). This result is often called the Prime Number Theorem.

Example 5. We now consider an example that involves sequences defined by recurrence equations. Suppose
we have a sequence {ai} defined by a0 = 3, a1 = 8, an = 2an−1 + an−2. We claim that an = O(2.75n).

In order to prove this, we show by induction that an ≤ 3(2.75)n. Indeed, in the base cases, a0 = 3 =
3(2.75)0 and a1 = 8 < 3(2.75)1. In the inductive step, assume the claim holds for numbers less than n. For
n, by the inductive assumption, we get

an = 2an−1 + an−2

≤ 2 · 3(2.75)n−1 + 3(2.75)n−2

≤ 3(2.75)n−2(2 · 2.75 + 1)

≤ 3(2.75)n−2(2.75)2

≤ 3(2.75)n,

and thus the claim holds for n as well. Therefore it holds for all values of n.

Example 6. Ok, now let’s talk about algorithms. What’s the running time of the algorithm below?

Algorithm WhatsMyRunTime1 (n : integer)
for i← 1 to 6n do z← 2z − 1
for i← 1 to 2n2 do

for j ← 1 to n+ 1 do z← z2 − z

The first loop makes 6n iterations, the second double loop makes 2n2 · (n + 1) = 2n3 + 2n2 iterations,
for the total of 2n3 + 2n2 + 6n iterations. For n ≥ 1 this is at most 2n3 + 2n3 + 6n3 ≤ 10n3, so the running
time is O(n3).

2

Reference functions. The main reason for using the asymptotic notation is that it allows us to estimate
a complicated or difficult to determine function in terms of a simple looking function, for example:

197n5 + 13n3 − n2 + 21 = O(n5).

So when we write f(n) = O(g(n)), we typically use some simple functions g(n), whose behavior is well-
understood. Thus, although it would be perfectly correct to write

n5 = O(197n5 + 13n3 − n2 + 21),

it would also be completely pointless, as n5 is a much simpler function than 197n5 + 13n3 − n2 + 21.
These are four types of functions that are most commonly used in the big-O notation: 1, log n, nb, cn,

where b > 0 and c > 1. Occasionally powers of logarithms are used as well, that is functions loga n, for
a > 0. In almost all applications, the asymptotic values are expressed in terms of these functions. For a
warmup, we first compare functions n and 2n.

Claim: 2n ≥ n+ 1 for all integers n ≥ 1.

Indeed, this can be easily shown by induction. For n = 1, both sides are equal 2. For n > 1, assume the
claim holds, that is 2n ≥ n + 1. Then 2n+1 = 2 · 2n ≥ 2(n + 1) ≥ n + 2. By the principle of induction, the
claim holds.

This claim can be generalized to real numbers x, that is 2x ≥ x + 1 for all real numbers x ≥ 1. To see
this, note first that it holds for x = 1. The derivative of the right-hand side is 1. The derivative of the
left-hand side is (2x)′ = 2xln 2 > 1 for x ≥ 1. So the left-hand side grows faster than the right-hand side,
and the inequality follows.

As a conclusion, by taking logarithms of both sides, we also get that n > log n for n ≥ 1. So we have
n = O(2n) and log n = O(n).

Logarithms. Consider first logarithmic functions, f(n) = logr n, where r > 1. We know that any p > 1

logr n =
logp n

logp r
=

1

logp r
logp n.

What this formula implies is that all logarithmic functions are within a constant factor of each other, so for
the purpose of asymptotic notation it does not matter what base we use. In particular, we can as well use
base 2. So we have logr n = O(log n) for all r > 1.

Polynomials. Polynomials are among the most common functions that appear in the analysis of algo-
rithms. So we deal with polynomial functions first.

Theorem 0.2 Let f(x) =
∑k

i=0 aix
i. Then f(x) = O(xk).

Proof: Let A = max |ai|, be the maximum absolute value of the coefficient in f(x). We can estimate
f(x) as follows. For x ≥ 1 we have

f(x) = akx
k + ak−1x

k−1 + ...+ a1x+ a0

≤ A(xk + xk−1 + ...+ x+ 1)

≤ A(k + 1)xk.

Thus f(x) ≤ cxk for c = A(k + 1) and x ≥ 1. The theorem follows. 2

Theorem 0.3 For all a, b > 0 and c > 1, we have: (a) 1 = O(loga n). (b) loga n = O(nb). (c) nb = O(cn).

3

Proof: Part (a) is obvious. We’ll skip the proof of (b). We will now prove part (c). Take d = c1/b. Since
c > 1 and b > 0, we have d > 1. We then have

n ≤ 1 + d+ d2 + ...+ dn−1

=
dn − 1

d− 1
≤ Adn,

where A = 1/(d − 1). The first inequality follows from d > 1 (which implies that di > 1 for all i). The
middle equation uses the summation of the geometric sequences, and the in the last inequality we simply
dropped the −1 in the numerator.

Now, recall that d = c1/b. The derivation above implies then that n ≤ Ac(1/b)n, which is equivalent
(raising both sides to the power of b) to nb ≤ Bcn for B = Ab. We conclude that nb = O(cn), as claimed in
(c). 2

In particular, for example, we have n100 = O(1.0000001n). The left-hand side is a fast-growing polyno-
mial. The right-hand side is a slow-growing exponential function. Still, eventually, the second function will
overtake the first one.

Combinations of functions. Many functions can be expressed as sums or products of other more ele-
mentary functions. To determine the growth rate of some functions, we can often do this by finding the
growth rate of some of their components and using the theorem below.

Theorem 0.4 Suppose that f1(x) = O(g1(x)) and f2(x) = O(g2(x)). Then
(a) f1(x) + f2(x) = O(max(g1(x), g2(x))). In fact, we also have f1(x) + f2(x) = O(g1(x) + g2(x)).
(b) f1(x)f2(x) = O(g1(x)g2(x)).

As a corollary, we get the following: if f1(x), f2(x) = O(g(x)) then f1(x) + f2(x) = O(g(x)) as well.
Proofs and examples in the book.

Exercise 1: Prove that the O-relation is transitive, in the following sense: if f(x) = O(g(x)) and g(x) =
O(h(x)) then f(x) = O(h(x)).

Exercise 2: We showed that all logarithms have the same rate of growth. What about exponential functions?
More specifically, for any a, b > 1, is it always true that ax = O(bx)? Justify your answer.

Example 7. Determine the asymptotic value of function f(n) = 5n2 log6 n+ n3 log n+ 2
√
n+ 1. We can

ignore all constant coefficients. Then we eliminate low order terms one by one. First, we can discard 1,
because 1 = O(n3 log n). Next, let’s look at

√
n. We have

√
n = n1/2 = O(n3), so

√
n = O(n3 log n) as well.

Finally, we compare n2 log6 n and n3 log n. Since log5 n = O(n), multiplying both sides by n2 log n we get
n2 log6 n = O(n3 log n). Putting it all together, we get f(n) = O(n3 log n).

Example 8. Determine the asymptotic value of function f(n) = 7n52n + 3n. Again, we can ignore the
constant coefficients. Comparing the two terms, the intuition is that 3n grows much much faster than 2n,
even if we multiply 2n by a polynomial. For a rigorous proof, divide both terms by 2n, getting

n52n/2n = n5 and

3n/2n = (1.5)n.

We know that n5 = O(1.5n). Now, multiplying it back by 2n, we obtain n52n = O(3n). Therefore f(n) =
O(3n).

4

Big-Ω and Θ notations. Notation f(x) = O(g(x)) means that f(x) does not grow faster than g(x),
but it could be the case that f(x) actually grows slower. For example, we have n2 + 3n + 1 = O(n3), or
n2 + 3n + 1 = O(2n), etc. But these bounds are “wasteful”, because we also have n2 + 3n + 1 = O(n2),
which is a more accurate and, in fact, the best possible estimate. This motivates the introduction of other
notations for asymptotic growth of functions.

Definition. We say that f(x) is Ω(g(x)), and write f(x) = Ω(g(x)), if there are constants C and k such
that |f(x)| ≥ C|g(x)| for all x > k.

We have f(x) = O(g(x)) if and only if g(x) = Ω(f(x)). (Easy exercise.)
We write f(x) = Θ(g(x)) if f(x) = O(g(x)) and at the same time f(x) = Ω(g(x)). Thus the Θ-notation

provides the “exact” (asymptotic) estimate for function growth.
In other words, f(x) = Θ(g(x)) if there are constants C1, C2, and k such that C1|g(x)| ≤ f(x) ≤ C2|g(x)|

for all x > k.
See examples in the book.

Example 9. Consider function f(n) = 3n2+2n−7. We start with an upper bound: f(n) = 3n2+2n−7 ≤
3n2 + 2n2 = 5n2, so f(n) = O(n2). Next, we get a lower-bound estimate. For n ≥ 4 we have 2n ≥ 7, so
f(n) = 3n2 + 2n − 7 ≥ 3n2. Therefore f(n) = Ω(n2). Putting these two bounds together, we obtain that
f(n) = Θ(n2).

Example 10. Consider harmonic numbers again, Hn = 1 + 1
2 + ...+ 1

n . We proved earlier an upper bound
Hn ≤ log n+ 1, which implies Hn = O(log n).

But we also have a lower bound Hn ≥ 1
2 log n − 1

2 . Notice that 1
4 log n ≥ 1

2 for n ≥ 4. So for n ≥ 4
we can estimate Hn as follows: Hn ≥ 1

2 log n − 1
2 = 1

4 log n + (1
4 log n − 1

2) ≥ 1
4 log n. This implies that

Hn = Ω(log n), and we can thus conclude that Hn = Θ(log n).

Example 11. Let us consider again an algorithm consisting of a number of loops. Our goal is to determine
its running time, using the asymptotic notation Θ. In the previous example, Algorithm WhatsMyRun-
Time1, the running time was O(n3), and in fact this was the best estimate, so the running time was actually
Θ(n3).

To make it more concrete, let us determine the number of words (rather than the running time) printed
by the following pseudo-code:

Algorithm HowManyHellos (n : integer)
for i← 1 to 6n do print(“HELLO”)
for i← 1 to 4n+ 1 do

for j ← 1 to 3i+ 2 do print(“HELLO”)

The first loop will print 6n words, that’s easy. What about the second nested loop? Unlike in Algo-
rithm WhatsMyRunTime1, we cannot simply multiply the ranges of the two loops, because the number
of iterations in the inner loop depends on i; it changes from one iteration to next. For any given i, it will
print 3i + 2 words. Therefore we can write the total number of words using the summation notation as
6n+

∑4n+1
i=1 (3i+ 2). Simplifying, and using the formula for the sum of an arithmetic sequence, we get

6n+

4n+1∑
i=1

(3i+ 2) = 6n+

4n+1∑
i=1

(3i) +

4n+1∑
i=1

2

= 6n+ 3

4n+1∑
i=1

i+ 2(4n+ 1)

= 6n+ 3(4n+ 1)(4n+ 2)/2 + 2(4n+ 1)

= 24n2 + 32n+ 5 = Θ(n2).

5

