
Krzysztof Brzȩczyszczykiewicz SID 834322002

Venkataratnam Narasimha Rattaiah SID 854377890

CS 111 ASSIGNMENT 127
due Friday, February 13

Problem 1: Consider a sequence defined recursively as a0 = 4, a1 = 9, and an = an−1 + 3an−2 for
n ≥ 2. Prove that an = O(2.5n).

Solution 1: We first prove by induction that an ≤ 4(2.5)n is true.

Base step: In the base step we verify the inequality for n = 0, 1. For n = 0 we have a0 = 4 and
4(2.5)0 = 4, so a0 ≤ 4(2.5)0. For n = 1 we have a1 = 9 and 4(2.5)1 = 10, so a1 ≤ 4(2.5)1.

Inductive step: The inductive hypothesis is that an ≤ 4(2.5)n is true for n = 0, 1, ..., k, where k ≥ 1.
To complete the inductive step, we need to show that ak+1 ≤ 4(2.5)k+1.

Since ak ≤ 4(2.5)k and ak−1 ≤ 4(2.5)k−1 holds, we have

ak+1 = ak + 3ak−1

≤ 4(2.5)k + 3 · 4(2.5)k−1

≤ 4(2.5)k−1(2.5 + 3)

≤ 4(2.5)k−1(2.5)2

≤ 4(2.5)k+1.

That is, we have shown that if the inductive hypothesis is true, then ak+1 ≤ 4(2.5)k+1 is also true.
This complete the inductive step.

We thus have an ≤ 4(2.5)n| for all n ≥ 0. Therefore an = O(2.5n), completing the proof.

Problem 2: Suppose we have three sets, A1, A2, A3 with the following properties:

(a) |A2| = 2|A1|, |A3| = 4|A1|,

(b) |A1 ∩A2| = 2, |A1 ∩A3| = 2, |A2 ∩A3| = 5,

(c) |A1 ∩A2 ∩A3| = 1

(d) |A1 ∪A2 ∪A3| = 27.

Use the inclusion-exclusion formula to determine the number of elements in A1 ∪ A1 ∪ A3. Show
your work.

Solution 2: We have

|A1 ∪A2 ∪A3| = |A1|+ |A2|+ |A3| − |A1 ∩A2| − |A1 ∩A3| − |A2 ∩A3|+ |A1 ∩A2 ∩A3|
27 = |A1|+ |A2|+ |A3| − 2− 2− 5 + 1

|A1|+ |A2|+ |A3| = 35

|A2| = 2|A1|
|A3| = 4|A1|

1

By solving the above equations, we get the cardinalities of A1, A2 and A3:

|A1| = 5

|A2| = 10

|A3| = 20

Problem 3: We are given an array A[0, ..., n−1] that contains distinct numbers sorted in increasing
order, that is A[i] < A[i + 1] for all i = 0, ..., n − 2. Consider the algorithm below, described in
pseudo-code

1 i <- 0;

2 j <- 0;

3 count <- 0;

4 while i < n do

5 while 2*A[j] < A[i]

6 do j <- j+1;

7 if 2*A[j] = A[i]

8 then count <- count+1;

9 i <- i+1;

10 print(count);

Explain what value is computed by this algorithm and give an asymptotic running time for this
algorithm. Justify your answer.

Solution 3: (b) If all the numbers are non-negative, then this program computes the number of
those i for which A[i]/2 is also in the array. (Equivalently, it’s the number of j’s for which 2A[j] is
in the array.) The correctness follows from the fact that the entries in A[] are strictly increasing.
A more detailed explanation follows.

The formal proof can be carried out using mathematical induction. We claim that for each i,
after the internal while loop stops, j is the smallest index for which A[i] ≤ 2A[j].

Indeed, for i = 0 we will end up with j = 0, which satisfies the claim. For the inductive step,
suppose that this is true for some i. Then the smallest j′ for which A[i + 1] ≤ 2A[j′] is at least as
large as j and cannot be greater than i + 1. This means that the internal while loop will correctly
find this j′ because it tries all these values in increasing order and stops when it finds the first one
that satisfies this condition. Thus the claim above holds.

The program starts with count = 0. Fo each i, if A[i]/2 is in the array, say at location j, then
j is the first index for which 2A[j] ≥ A[i], in which case the program will increase count. This
shows that the program computes the number of indices i for which A[i]/2 is in the array.

We emphasize that the above argument assumes that all numbers in A[] are non-negative.
In fact, if some numbers are negative, the internal loop may increase j beyond the range of A[]
(although this is quite easy to correct.)

(c) The running time analysis is very similar to that for the algorithm that computed common
elements in two sorted arrays. Here again we assume that the numbers are non-negative.

2

The total running time for lines 1,2,3 and 10 is O(1), so it’s negligible. Lines 7,8,9 run in time
O(1) and are executed at most n times, because i is increased at each step. So the contribution of
these lines to the overall running time is O(n).

The only non-trivial part is the analysis of the running time of the nested while loops. The
key observation is that in line 6 we always increase j and the value of j never exceeds i, so it never
exceeds n. Thus the total number of increases of j, over the whole computation, is at most n. This
shows that the total contribution of the nested while loop to the running time is O(n). Putting it
all together, we obtain that the running time is O(n).

3

