Review

- Logic
 - Propositional calculus: variables, boolean operations, truth tables, tautologies, De Morgan's Laws, distributive laws
 - Predicate calculus: predicates, quantifiers
- Sets
 - Notation (braces), how to specify/define sets (enumeration, using a predicate, ...)
 - o Operations on sets: union, intersections, difference, complement, Cartesian product
 - o Empty set
 - Infinite sets: countable vs non-countable
- Sequences
 - What's the difference between a sequence and a set?
 - Notation
- Relations
 - What is a relation?
 - o Properties of relations (reflexive, symmetric, transitive, anti-symmetric)
 - Partial orders (posets), Hasse diagrams, topological sorting
 - Equivalence relations and equivalence classes
- Basic counting
 - Addition rule (union of disjoint sets), multiplication rule (for independent choices)
 - Subsets
 - Permutations
 - Functions
 - k-permutations
 - k-element subsets (combinations)
 - Basic probability
 - Some important functions
 - o Polynomials
 - Exponential functions
 - Logarithmic functions
- Some important numbers
 - Euler number e
 - \circ π , circumference/diameter ratio for a circle
 - $\circ \phi$, golden ratio
 - Important sequences and summation formulas
 - Finite arithmetic sequences
 - Finite geometric sequences
 - Infinite geometric sequences, Zeno's paradox
 - Harmonic numbers, $H_n = 1 + 1/2 + 1/3 + ... + 1/n$
 - \circ Fibonacci numbers, $F_0 = F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$
- Number theory basics
 - o prime and composite numbers
 - o prime factors, factorization
 - greatest common divisor (gcd)
 - least common multiple (lcm)
- Algebra
 - Solving quadratic equations
 - Solving polynomial equations with integer roots
 - Factoring polynomials
 - Solving systems of linear equations
 - Vectors, matrices, and operations on them
 - What are proofs, and why do we care?
- Proofs for some summation formulas and bounds:
 - mathematical induction

- sum of an arithmetic sequence, 1+2+ ... + n = n(n+1)/2

- sum of a finite geometric sequence, $1+2+...+2^n = 1/(1+7)/2^n$ sum of a finite geometric sequence, $1+2+...+2^n = 2^{n+1}-1$ estimate for Fibonacci numbers: $1.5^n \le F_n \le 2^n$, for $n \ge 2$ sum of infinite geometric sequence: $1+x+x^2+...=1/(1-x)$, for 0 < x < 10
- estimating Harmonic numbers: $(\log(n)-1)/2 \le H_n \le \log(n)+1$ 0
- Other examples of proofs •
 - If R is an equivalence relation on a set X, then the equivalence classes of R form a partition of X 0 into disjoint subsets
 - Each finite poset has a topological sort (linear extension) 0
 - relations involving binomial coefficients, for example (n choose k) = (n-1 choose k) + (n-1 choose k)0 k-1)