Review

- Logic
- Propositional calculus: variables, boolean operations, truth tables, tautologies, De Morgan's Laws, distributive laws
- Predicate calculus: predicates, quantifiers
- Sets
- Notation (braces), how to specify/define sets (enumeration, using a predicate, ...)
- Operations on sets: union, intersections, difference, complement, Cartesian product
- Empty set
- Infinite sets: countable vs non-countable
- Sequences
- What's the difference between a sequence and a set?
- Notation
- Relations
- What is a relation?
- Properties of relations (reflexive, symmetric, transitive, anti-symmetric)
- Partial orders (posets), Hasse diagrams, topological sorting
- Equivalence relations and equivalence classes
- Basic counting
- Addition rule (union of disjoint sets), multiplication rule (for independent choices)
- Subsets
- Permutations
- Functions
- k-permutations
- k-element subsets (combinations)
- Basic probability
- Some important functions
- Polynomials
- Exponential functions
- Logarithmic functions
- Some important numbers
- Euler number e
- π, circumference/diameter ratio for a circle
- φ, golden ratio
- Important sequences and summation formulas
- Finite arithmetic sequences
- Finite geometric sequences
- Infinite geometric sequences, Zeno's paradox
- Harmonic numbers, $\mathrm{H}_{\mathrm{n}}=1+1 / 2+1 / 3+\ldots+1 / \mathrm{n}$
- Fibonacci numbers, $\mathrm{F}_{0}=\mathrm{F}_{1}=1, \mathrm{~F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}-2}$
- Number theory basics
- prime and composite numbers
- prime factors, factorization
- greatest common divisor (gcd)
- least common multiple (lcm)
- Algebra
- Solving quadratic equations
- Solving polynomial equations with integer roots
- Factoring polynomials
- Solving systems of linear equations
- Vectors, matrices, and operations on them
- What are proofs, and why do we care?
- Proofs for some summation formulas and bounds:
- mathematical induction
- sum of an arithmetic sequence, $1+2+\ldots+n=n(n+1) / 2$
- sum of a finite geometric sequence, $1+2+\ldots+2^{n}=2^{n+1}-1$
- estimate for Fibonacci numbers: $1.5^{n} \leq F_{n} \leq 2^{n}$, for $n \geq 2$
- sum of infinite geometric sequence: $1+x+x^{2}+\ldots=1 /(1-x)$, for $0<x<1$
- estimating Harmonic numbers: $(\log (\mathrm{n})-1) / 2 \leq \mathrm{H}_{\mathrm{n}} \leq \log (\mathrm{n})+1$
- Other examples of proofs
- If R is an equivalence relation on a set X, then the equivalence classes of R form a partition of X into disjoint subsets
- Each finite poset has a topological sort (linear extension)
- relations involving binomial coefficients, for example (n choose $k)=(n-1$ choose $k)+(n-1$ choose k-1)

