NAME: SID:

Problem 1: Use the Θ -notation to determine the rate of growth of the following functions:

Function	Θ estimate
$5n + 3n^2 + 3$	$\Theta(n^2)$
$17n + 3n^2 \log n + 1$	$\Theta(n^2 \log n)$
$7n^9 + (1.5)^n$	$\Theta((1.5)^n)$
$n^34^n + 5^n + 16\sqrt{n}$	$\Theta(5^n)$
$\sqrt{n} + 11 \log n$	$\Theta(\sqrt{n})$

Problem 2: (a) State Euclid's Algorithm.

(b) Use Euclid's Algorithm to compute the greatest common divisor of 391 and 299. Show your work.

Solution: We know that $gcd(a,b) = gcd(b,a-b) = gcd(b,a\operatorname{rem} b)$. Note that, using $a\operatorname{rem} b$ is more efficient than using a-b.

$$gcd(391, 299) = gcd(299, 391 \text{ rem } 299)$$

$$= gcd(299, 92)$$

$$= gcd(92, 299 \text{ rem } 92)$$

$$= gcd(92, 23)$$

$$= gcd(23, 92 \text{ rem } 23)$$

$$= gcd(23, 0)$$

$$= 23$$

Problem 3: (a) Give the factorization of 1386. Show your work.

Solution:

$$1386 = 2 \cdot 693$$

$$= 2 \cdot 3 \cdot 231$$

$$= 2 \cdot 3 \cdot 3 \cdot 77$$

$$= 2 \cdot 3^{2} \cdot 7 \cdot 11$$

(b) Determine 10^{-1} (mod 13), the inverse of 10 modulo 13. Show your work.

Solution: We want to find integers x and y that satisfy: $10 \cdot x + 13 \cdot y = 1$. Since, 10 is relatively prime to 13, such integers should exist.

$$10 \cdot x = 10, 20, 30, \mathbf{40}, 50, 60, \dots$$

 $13 \cdot y = 13, 26, \mathbf{39}, 52, 65, 78, \dots$

So, for
$$x = 4$$
 and $y = -3$, $10 \cdot x + 13 \cdot y = 40 - 39 = 1$. So, $10^{-1} \pmod{13} = 4$.

Alternatively, since 13 is a prime number, $10^{13-1} \equiv 1 \pmod{13}$ (Fermat's Little Theorem). So, $10^{11} \cdot 10 \equiv 1 \pmod{13}$, meaning the inverse is $10^{11} \pmod{13}$.