Syllabus for the CS111 Quiz 4

Topics:

- Linear non-homogeneous recurrences equations
- Solve the recurrence $\mathrm{D}_{\mathrm{n}}=3 \mathrm{D}_{\mathrm{n}-1}+1, \mathrm{D}_{0}=0$.
- Find a general solution of the recurrence $f_{n}=5 f_{n-1}-6 f_{n-2}+2^{n}$.
- Find a particular solution of the recurrence $g_{n}=5 g_{n-1}-6 g_{n-2}+2^{n}$.
- Divide-and-conquer recurrence equations
- State the Master Theorem
- Give an (asymptotic) solution to the following recurrence: $\mathrm{f}(\mathrm{n})=3 \mathrm{f}(\mathrm{n} / 2)+3 \mathrm{n}$
- Give an (asymptotic) solution to the following recurrence: $f(n)=8 f(n / 2)+5^{*} n^{4}$
- Given the pseudo-code below, what is the (asymptotic) number of lines printed on input n? ...
- Inclusion-Exclusion
- Give a complete statement of the inclusion-exclusion principle.
- Suppose that we have sets A, B, C such that $|A|=22,|B|=36,|C|=26,|A \cap B|=$ $2|\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C}|,|\mathrm{A} \cap \mathrm{C}|=3|\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C}|,|\mathrm{B} \cap \mathrm{C}|=4|\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C}|,|\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}|=13 \mid \mathrm{A}$ $\cap \mathrm{B} \cap \mathrm{C} \mid$. Determine the number of elements in the of these three sets.
- Compute the number of permutations of $\{1,2,3,4,5,6,7,8,9\}$ in which either 2,3,4 are consecutive or 4,5 are consecutive or $8,9,2$ are consecutive.
- We have a group of 53 people, including 22 US citizens, 15 Mexican citizens, and 27 Canadian citizens. Among them, 4 people have a dual US-Mexican citizenship, 5 have US-Canadian citizenship, and 6 have Canadian-Mexican citizenship. How many people have a triple citizenship?
- Compute $\varphi(440)(\varphi(\mathrm{n})$ is the Euler totient function).
- Give the number of solutions of $x+y+z=30$, for $4 \leq x \leq 14,3 \leq y \leq 17,10 \leq z \leq 25$.

