Syllabus for the CS111 Quiz 4

Topics:

- Linear non-homogeneous recurrences equations
 - Solve the recurrence $D_n = 3D_{n-1} + 1$, $D_0 = 0$.
 - Find a general solution of the recurrence $f_n = 5f_{n-1} 6f_{n-2} + 2^n$.
 - Find a particular solution of the recurrence $g_n = 5g_{n-1} 6g_{n-2} + 2^n$.
- Divide-and-conquer recurrence equations
 - State the Master Theorem
 - Give an (asymptotic) solution to the following recurrence: f(n) = 3f(n/2) + 3n
 - Give an (asymptotic) solution to the following recurrence: $f(n) = 8f(n/2) + 5*n^4$
 - $\circ~$ Given the pseudo-code below, what is the (asymptotic) number of lines printed on input n? ...
- Inclusion-Exclusion
 - Give a complete statement of the inclusion-exclusion principle.
 - Suppose that we have sets A, B, C such that |A|=22, |B|=36, |C|=26, $|A \cap B|=2|A \cap B \cap C|$, $|A \cap C|=3|A \cap B \cap C|$, $|B \cap C|=4|A \cap B \cap C|$, $|A \cup B \cup C|=13|A \cap B \cap C|$. Determine the number of elements in the of these three sets.
 - Compute the number of permutations of {1,2,3,4,5,6,7,8,9} in which either 2,3,4 are consecutive or 4,5 are consecutive or 8,9,2 are consecutive.
 - We have a group of 53 people, including 22 US citizens, 15 Mexican citizens, and 27 Canadian citizens. Among them, 4 people have a dual US-Mexican citizenship, 5 have US-Canadian citizenship, and 6 have Canadian-Mexican citizenship. How many people have a triple citizenship?
 - Compute $\varphi(440)$ ($\varphi(n)$ is the Euler totient function).
 - Give the number of solutions of x+y+z = 30, for $4 \le x \le 14$, $3 \le y \le 17$, $10 \le z \le 25$.