Syllabus for CS111 Quiz 3

Topics:

- The RSA
 - Explain the principle of public-key cryptosystems
 - Explain the RSA (initialization, encryption, decryption)
 - Suppose that Bob chooses \(p = 5, q = 11 \). Show some correct values of \(e \) (public exponent) and \(d \) (secret exponent). Give three correct pairs.
 - Bob uses \(P = (143,19) \) as his public key and \(S = 21 \) as his secret key. Is Bob’s system correct?
 - Suppose Bob chooses \(p = 7, q = 13, e = 11 \). Determine \(d \). If Alice wants to send \(M = 10 \) to Bob, what is the ciphertext?

- Fermat’s Theorem. Using the theorem to compute powers and inverses.
- Linear homogeneous recurrences equations
 - Give the recurrence relation for Fibonacci numbers. (Should also be able to prove that \(F_n \) grows exponentially with \(n \).)
 - Setting up recurrence equations.
 - Example: One female rabbit produces 3 female rabbits per week, starting the 2nd week after its born. You receive one newly-born female rabbit for your birthday. How many female rabbits will you have after \(n \) weeks? (These are genetically modified female rabbits that do not need male rabbits for reproduction.)
 - Example: We tile an \(n \)-by-1 strip using 1-by-1, 2-by-1 and 3-by-1 tiles. Let \(t_n \) be the number of such tilings. Give a recurrence for \(t_n \).
 - Example: Modify the last problem by allowing tiles of two colors, say red and green. Give a recurrence for the number of such tilings.
 - Solving linear homogeneous recurrence equations.
 - Example: Solve: \(f_n = 5f_{n-1} - 6f_{n-2} \), with initial conditions \(f_0 = 1, f_1 = 2 \). Show your work.
 - Example: Determine the general solution of the recurrence \(h_n = 5h_{n-1} - 3h_{n-2} - 9h_{n-3} \).
 - Linear non-homogeneous recurrences equations.