Syllabus for CS111 Quiz 1

The entrance quiz will focus mostly on the topics from CS/MATH 11, but one question from algebra is possible too.

Topics:

- Logic. Prepositional and predicate calculi, conjunction, disjunction, negation, DeMorgan Laws, quantifiers.
Examples:

1. Negate the following sentence: "For each integer x, there is an integer y, such that for each integer $\mathrm{z}, 2 \mathrm{xy}-\mathrm{zx}+2=0$."
2. Are the two statements below equivalent?

- "It is not true that for each x , if x is omnilicious then x is bulganimic"
" "There is an x that is omnilicious and not bulganimic"
- Sets. Notations for sets. Set operations (union, intersection, complement, difference), finite and infinite sets, countable sets and uncountable sets. Operations on sets: union, intersection, the power set, Cartesian products, other.
Examples:

1. List all elements of the Cartesian product of $X=\{a, c, x\}$ and $Y=\{b, z\}$.
2. Let N denote the set of natural numbers. Give a $1-1$ function between NxN and N .

- Functions. Functions onto and 1-1. The inverse and composition of functions.
- Relations. Properties of relations (reflexive, transitive, symmetric, anti-symmetric).

Equivalence relations and equivalence classes. Partial orders.
Examples:

1. Let X be the set of integers $3,4, \ldots, 13$. Define relation R on X as follows: $x R y$ iff $x^{2}=y^{2}(\bmod 3)$. Prove that X is an equivalence relation and give its equivalence classes.
2. Define relation R on the set of natural numbers as follows: $x R y$ iff each each prime factor of x is a factor of y. Prove that X is a partial order.

- Basic algebra: solving quadratic equations, solving equations of degree 3 and higher (by guessing integral roots), solving systems of linear equations, matrices, matrix multiplication, determinants.
Examples:

1. Solve $x^{2}+3 x+4=0$
2. Solve $x^{3}-3 x^{2}+4 x-2=0$
3. Find x, y such that $3 x+2 y=7$ and $2 x-y=-2$
4. Find x, y such that $2 x+y=3$ and $x^{2}+y+1=0$

- Proof methods (induction, contradiction).

Examples:

1. Prove by induction that an n-element set has 2^{n} subsets.
2. Prove that $1+2+\ldots+n=n(n+1) / 2$.
3. Prove that $1^{2}+2^{2}+\ldots+n^{2}=n(n+1)(2 n+1) / 6$.

- Basic counting : permutations, combinations, subsets, functions, identities involving binomial expressions
Examples:

1. In how many ways we can order a set of 6 elements?
2. There are 10 students in class. We choose 3 of them. In how many ways this can be done?
3. There are 5 students in class. Each will be assigned a grade of A, B or C. In how many ways this can be done?

- Summation formulas, computing closed forms, arithmetic and geometric sums.

Examples:

1. What is the sum of $1+2+\ldots+n$?
2. What is the sum of $n+(n+1)+(n+2)+\ldots+2 n$?
3. What is the sum $1+3+3^{2}+\ldots+3^{n}$?
4. What is the sum of $1+1 / 3+1 / 9+1 / 27+\ldots$?

- Elementary number theory: prime numbers, factorization, relatively prime numbers, greatest common divisor, least common multiple. Examples:

1. Compute the factorization of 5462 .
2. What is the greatest common divisor of 459 and 931 ?
