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Abstract—Modern visual data exploration systems are de-
signed as client-server applications where the front-end interface
generates a large number of queries to the back-end which are
handled by a database server. As data exploration being a trial
and error process, a significant amount of these queries return an
empty result, which does not change the state of the visualization.
These requests still add a significant overhead on network
communication, request handling, and data processing. Moreover,
given the virtually unlimited query space, it is impractical to
enumerate and send all empty (or all non-empty) queries to
the client to filter them. This paper introduces HQ-Filter, a
hierarchy-aware filter for empty resulting queries, which utilizes
the hierarchical nature of the data to construct a configurable
and probabilistic filter. HQ-Filter can filter out empty-resulting
queries at the client-side with a minimal size and processing
overhead. HQ-Filter is applied to two existing data exploration
systems for geospatial data, UCR-Star and Cloudberry. In both
cases, it can successfully eliminate hundreds of queries per
user which results in up-to 66% increase in server capacity by
providing up to 15x speedup for average response time and up
to 90% decrease in the server workload.

Index Terms—data exploration, empty-resulting query filter

I. INTRODUCTION

The increasing availability of big data triggers a growth in
the interest for the data analytics. Data exploration is one of
the key tasks in data analytics and many business intelligence
and data exploration systems have been successfully deployed
on a large scale such as Tableau, Qlik, and OmniSci.

In data exploration systems, users spend most of their time
exploring, visualizing, and cleaning the data through a series
of interactive queries [1]. As addressed in [2]–[5], a large
number of these queries return an empty result. There are
three reasons that cause this behavior and increase the number
of the empty queries. First, data exploration is a trial and
error process and users do not know the data distribution
beforehand. Second, a single user action on the front-end can
trigger in tens, and sometimes hundreds, of queries on the
database to appropriately form a visualization possibly some
parts of it is empty. Third, some of these systems generate
many queries in the background to precache the result or
to provide query recommendation [6], [7]. Data exploration
systems also have different expectations on the response time.
To keep the user active and engaged, the system must provide
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Fig. 1. HQ-Filter in an interactive data exploration system

a response time of around 500 milliseconds [8]. With the large
number of queries and the fixed overhead of each query, e.g.,
parsing and optimization, a traditional DBMS will fall short
in supporting this response time. In this paper, we argue that
the best way to overcome this challenge is by reducing the
number of queries sent to the database server.

The state of the art visual data exploration systems [9]–
[12] support interactivity even for very large datasets by
applying several methods such as caching, sampling, and pre-
aggregation. Moreover, many systems proposed [13]–[17] to
handle special needs of trajectory, mobile network, mobile
sensor, and GPS data. However, none of these systems provide
a solution to avoid the empty resulting queries.

This paper proposes HQ-Filter, a hierarchy-aware filter,
which can reduce the number of queries sent from the client
to the server in data exploration systems. Figure 1 shows the
key idea of the proposed work. The server pre-constructs the
HQ-Filter and ships it to the front-end. The client uses it to
locally test and remove requests that will produce an empty
result to offload the server-side processing. In that way, the
user experience can be improved and the system would handle
more concurrent users without disrupting the data exploration
tasks. The challenge is to produce a compact filter that can be
quickly shipped over network and can be efficiently processed
at the client without adding a noticeable overhead.

The closest problem in literature is the empty-answer prob-
lem which results from very restrictive query constraints [18].
However, existing techniques in various domains [4], [19]–
[25] focus on query relaxation which starts with an empty-
answer query and modifies the constraints to avoid the empty



result with the goal of providing an explanation for the user on
why the result was empty. Unlike those methods, our problem
focuses on detecting and pruning these queries with the goal
of improving the system performance.

Besides query relaxation, [26] proposes a technique to store
and reuse the atomic query parts that cause empty answers
to detect the future queries that will return empty answer.
However, this method relies on analyzing historical queries
and works at the server-side. Applying it at the client-side
will not be efficient for two reasons. First, each new user will
start with an empty filter, so to have an efficient filtration, they
have to use the system until the filter has enough history of
queries. Our proposed filter does not require analyzing query
history which makes it useful from the first query. Second, this
method requires searching the historical atomic query parts
which grows linearly with the filter size and might degrade the
response time. Our proposed filter has a constant-time search
algorithm which does not add any significant overhead.

In HQ-Filter, we utilize the natural hierarchy in the data
to reduce the memory footprint of the filter so that it can be
transferred over network and kept in the client main memory.
Specifically, we build an approximate data structure based
on Bloom Filters [27] that stores non-empty queries up-to
a certain level in the data hierarchy and we use it to filter
out as many empty queries as possible. The challenges in this
approach are 1) ensuring a correct behavior of the application,
i.e., we should not skip a non-empty query; and 2) selecting
the optimal level in the data hierarchy to maximize the system
performance.

We apply HQ-Filter in two real applications, UCR-Star [9]
and Cloudberry [11]. In UCR-Star, the queries consist of map
tile requests organized in a pyramid hierarchy of 20 zoom
levels. In Cloudberry, the queries ask for the number of
tweets in a specific region, state, county, or city, in a certain
time interval. The data has two hierarchies, a geographical
hierarchy and a time-based hierarchy. HQ-Filter can find the
optimal level for each hierarchy to build the most efficient
filter. We run an extensive experimental evaluation, which
shows the efficiency of the HQ-Filter in improving the system
performance with a negligible overhead on the client.

The contributions of this paper are summarized as follows:
• Formally define the problem of empty-resulting query

filtering for hierarchical data.
• Propose HQ-Filter that can solve the hierarchical empty-

resulting query filtering.
• Formulate an algorithm that can find the optimal hierar-

chy level to construct the HQ-Filter.
• Apply HQ-Filter in two real-world applications, UCR-

Star and Cloudberry.
• Run an extensive experimental evaluation of HQ-Filter

on real data.
The rest of this paper is organized as follows. Section II

defines the problem. Section III describe the construction of
the proposed HQ-Filter. Section IV provides an experimental
evaluation of the system. Section V gives an overview of the
related work. Finally, Section VI concludes the paper.

II. PROBLEM DEFINITION

We first define the terms that we use in this study by
considering an interactive data exploration system which uses
the client-server architecture model.

Definition 1: (Resource) A piece of information that can be
provided by the server. It can be a tile in a tiled map visualiza-
tion, or a set of tweets along with various attributes as a JSON
document for a spatiotemporal-textual data visualization.

A particular tile in tiled map visualization can be identified
(Resource ID) with a unique reference represented as a tuple in
a form of (zoom level,row,column). Similarly, a resource id for
a tweet in a spatiotemporal-textual data visualization system
can be (geo id, keyword, start time, end time). Clients send
resource ids as requests to receive the resources as responses
from servers.

Definition 2: (Empty Resource) A default resource which
the server returns if the resource identifier does not match
any resources. It can be an empty image tile for tiled map
visualizations, or an empty set for a spatiotemporal-textual
data exploration system.

Definition 3: (Empty-Resource Identifier) Any identifier for
a resource that returns an empty result is called an empty-
resource identifier.

At this point, we can define a preliminary version of the
problem as follows. Given a limited memory size in bits, how
to construct a data summary that can act as a filter to detect if a
resource is empty given its identifier. The goal is to maximize
the number of empty resources that can be correctly detected.
We can easily show that an exact approach is infeasible due
to the huge number of resources but we omit this part due to
the limited space [28]. In the following part, we extend the
definitions to introduce the notion of hierarchy in resources
and use it to define our problem.

Definition 4: (Resource Hierarchy) A resource hierarchy is a
logical organization of all resources in a tree structure with one
root resource at the top. The terms parent, child, ascendant,
and descendant are defined based on that logical tree structure.
Note that the data covered by any child resource is a subset
of the data covered by its parent.

Definition 5: (Resource Level) Each resource r has a non-
negative integer level l(r). By definition the root resource
always has a level of zero. The level of any non-root resource
r is defined as l(r) = l(p) + 1, where l(p) is the level of its
parent resource.

Definition 6: (Resource Cardinality g(r)) The cardinality of
a resource r is the number of descendant resources under r.
Formally, g(r) = |{r2 : r2 is a descendant of r}|.

Definition 7: (Bounded Resource Cardinality g(r, lmax))
The bounded cardinality of a resource r is the number of
descendant resources under r that have a level of at most lmax.
Formally,

g(r, lmax) = |{r2 : r2 is a descendant of r ∧ l(r2) ≤ lmax}|

From the above definitions, we can observe that if a resource
is empty, then all its descendants are also empty. This means



Fig. 2. Three levels of tiled visualization with empty and non-empty tiles

that if we have a filter that correctly detects a resource as
empty with probability 1−p, then we can use it to detect that
all its descendants are also empty with the same probability.

Problem Definition: Given a set of resources R organized
in a hierarchy with a maximum level of lmax and a memory
budget m in bits, the problem is to construct a filter of at-most
m bits that can detect the largest number of empty resources
given their ID.

III. HIERARCHY-AWARE FILTER FOR EMPTY-RESULTING
QUERIES (HQ-FILTER)

In this section we introduce the Hierarchy-Aware Filter For
Empty-Resulting Queries (HQ-Filter). The key idea of HQ-
Filter is to build an probabilistic filter that stores only a subset
of the non-empty resource IDs and utilize the data hierarchy to
check for any resource ID. To further explain the key idea we
present a toy example in Figure 2 which consists of 21 tiles
organized in a hierarchy of three zoom levels with 9 non-
empty tiles and 12 empty tiles. Let us assume that we want
to build a filter of 8 bits. As a first cut solution we can build
a Bloom Filter (BF1) with the 9 non-empty tiles (highlighted
in blue). In a standard Bloom Filter, the optimal false positive
rate will be p1 = 0.675 which allows it to filter on average
3.9 out of the 12 empty tiles.

A better solution that utilizes the hierarchy is to build a
Bloom Filter (BF2) for the three non-empty tiles at levels 0
and 1 which results in a false positive rate p2 = 0.278. We
say that lf = 1 is the filter level. If a query asks for one of
the tiles in levels 0 and 1, it can be tested directly from BF2.
However, if a query requests a tile in level 2, then we check its
parent in level 1. If the parent tile is empty, we conclude that
the tile at level 2 must also be empty and we do not have to
request it from the server. On the other hand, if the parent tile
is not empty then we can only conclude that the tile in level 2
might be non-empty and we have to request it from the server.
This adds another source of approximation; for example, tiles
18 and 19 will always be considered non-empty because their
parents, tiles 3 and 4, respectively, are non-empty. On the other
hand, tiles 5-12 will be detected as empty with probability
1 − p2 since their parents will be queried in BF2. Therefore,
the expected number of empty tiles that can be skipped in this
approach is 7.22 as compared to 3.9 for BF1.

While this approach is simple to implement, the main
challenge is how to efficiently determine the filter level (lf )
to achieve an overall optimal performance. Furthermore, if the
data has multiple hierarchies, e.g., space and time hierarchies,
then we need to find the optimal level for each of these
hierarchies that together reach the optimal performance. In
this paper, we formally define and solve the problem of
constructing this filter optimally and we call it HQ-Filter
thereafter. In the rest of this section, we first define a new
metric that measures the quality of the filter for solving our
problem and show how to find the filter with the highest
quality. After that, we represent two case studies that show
how to use HQ-Filter in real applications, namely, UCR-
Star and Cloudberry. Lastly, we provide optimized counting
techniques for resource IDs which is the most time-consuming
step in the filter construction.

A. Performance metric

Our proposal is to utilize the observations that we explained
in prior sections about the data hierarchy to build an efficient
filter that detects empty resources up to a certain level lf , and
use the hierarchy to detect empty resources in deeper levels.
In this part, we propose a performance metric P that can
measure the performance of this filter. It is formally defined
as the expected number of empty resources that the filter can
correctly identify. The higher this value is, the more requests
it can filter at the client-side. This metric is formally defined
below.

P (lf ) = (1− pf )×

 lf∑
l=0

|El|+
∑

r∈Elf

g(r, lmax)

 (1)

Where,
• P (lf ) is the expected number of empty resources that the

filter can detect,
• lf is the level of the HQ-Filter f ,
• pf is the false positive probability of the HQ-Filter f for

resources at levels [0, lf ],
• l is a level in the hierarchy, l ∈ {0, 1, 2, . . . , lmax},
• El is the set of the empty resource identifiers at level l
• lmax is the maximum resource level a client can request,
• g(r, lmax) is the bounded resource cardinality, total num-

ber of descendants of a resource ID r up to level lmax

To compute pf , we note that we internally build a BF for
non-empty tiles in levels 0 ≤ l ≤ lf . Hence, we insert n =∑

0≤l≤lf |Nl| resource IDs into a filter with m bits. pf can
then be calculated according to the false positive probability
equation p = (1− e−kn/m)k [27].

The first summation in Equation 1 accounts for the empty
resources that are inserted in the HQ-Filter. The second sum-
mation accounts for the empty resources that are descendants
of an empty resource inserted in the HQ-Filter.

The optimal level lf is the level that maximizes Equation 1.
Therefore, to find the optimal level, we need to compute El

and the function g(r, lmax) for levels 0 ≤ l ≤ lmax. In the



rest of this section, we first give a high-level algorithm that
can find the optimal level and build the HQ-Filter and then we
follow by concrete algorithms for two applications, UCR-Star
and Cloudberry.

B. HQ-Filter Construction Overview
To construct an HQ-Filter for a dataset D, we propose an

algorithm that consists of three steps, counting, optimization,
and construction, described briefly below.

Step 1 - Counting: In this step, given a dataset D and
a maximum depth lmax, we count the number of non-empty
resources for all levels 0 ≤ l ≤ lmax, i.e., 〈|N0|, |N1|, . . . ,
|Nlmax |〉. lmax is the maximum depth of a resource that the
user can query. For example, for tile-based visualization, most
web maps support 20 zoom levels. There are three important
points that we highlight in this step. First, while Equation 1
uses the number of empty resources per level |El|, we compute
the non-empty resources since they are easier to compute as
they are much fewer and then we compute El from it given
the total number of resources per level. Second, we use a
distributed process to count all the non-empty resources with
one pass over the data as detailed shortly. Third, for some
cases, it could be impractical to exactly count non-empty
resources for all levels due to the excessive number of non-
empty resources at the deep levels. In this case, we propose
two alternatives in Section III-E that optimize the counting
step.

Step 2 - Optimization: This step takes as input the non-
empty resource counts |N∗|, the maximum level that the user
can request lmax, and the size of the filter in bits m, and
computes the optimal level at which the HQ-Filter should
be constructed (lf ). Given that the total number of levels is
usually small, e.g., tens of levels, we perform this step by
applying Equation 1 for each level and choosing the best. The
main challenge is to efficiently compute the bounded resource
cardinality, g(r, lmax), as described in Definition 7.

Step 3 - HQ-Filter Construction: This final step takes as
input the level to construct the HQ-Filter (lf ) and constructs
the filter. It finds all the non-empty resource IDs at levels zero
through lf and inserts all of them into HQ-Filter. We show
how to perform this step in a distributed environment on both
Spark and AsterixDB.

C. HQ-Filter Construction for UCR-Star
In this section, we give the concrete algorithm that con-

structs HQ-Filter for the case of tiled map visualization as
in UCR-Star [9]. To make a concrete algorithm, we have
to do five steps. First, we define the resource ID and the
hierarchy of the data. Second, we show how to efficiently
count the number of non-empty resources per level. Third,
we define the bounded resource cardinality g(r, lmax) to use
in the optimization phase. Fourth, we show how to construct
the filter once the level lf is found. Finally, we explain how
the client uses the filter to detect empty resources.

Tile Hierarchy: In the tiled map visualization, the resources
comprise tiles organized in a quad-tree-like hierarchical struc-
ture. Each tile is identified by the triple (l, x, y), where

0 ≤ l ≤ lmax is the zoom level, and 0 ≤ x, y < 2l is the
tile ID in that level. The root tile is (0, 0, 0). For a non-root
tile (l, x, y), the parent is the tile (l − 1, bx/2c, by/2c). Each
tile (l, x, y) has four children with IDs (l+ 1, 2x+ i, 2y + j)
where i ∈ {0, 1} and j ∈ {0, 1}.

Step 1 - Counting: To count the number of non-empty
resources per level |Nl|, we run a distributed Spark job on
the input data. In short, it partitions the data into 128 MB
partitions, generates the set of IDs per level per partition
in parallel, and finally combines them and counts the num-
ber of tiles per level. In more details, it first applies the
mapPartition Spark transformation to build a set of non-
empty resource IDs per level Nl, where 0 ≤ l ≤ lmax. For
each record in the input, it first finds the tile that contains
the record at the deepest level lmax. Then, it adds that tile
and all its ancestors in the hierarchy up-to the root tile to the
corresponding sets of tile IDs per level. All these tile IDs Nl

are stored as hash sets to ensure a constant-time process per
insertion and avoid repetition. The output of this step is a set
of pairs 〈l, Nl〉 for each level. These pairs are aggregated using
the reduceByKey Spark transformation to produce one set
of tile IDs per level which are finally counted. Even though all
steps in this algorithm are parallelized, there is a bottleneck
in merging the deepest level lmax which contains the largest
number of non-empty tiles. We propose two optimizations in
Section III-E when the Nl is extremely large.

Step 2 - Optimization: To find the optimum level lf to
construct the filter, the next step is to compute the performance
P for each level in the multi-level visualization pyramid. To do
that, we first define the bounded resource cardinality function g
for this application. Due to the uniformity of the tile structure,
where each tile has exactly four children, we propose the
following function to compute g efficiently:

g(r, lmax) =

lmax∑
l=lr+1

(4(lmax−l)+1)

=
4× (4lmax−lr − 1)

3
(2)

As a result, when we apply the g(·, ·) for multi-level visual-
ization to Equation 1, we can simplify the equation as follows.

P (lf ) = (1− pf )×

 lf∑
l=0

|El|+ |Elf |
4× (4lmax−lf − 1)

3


(3)

Equation 3 is much more efficient than Equation 1 because
it eliminates the second summation since all tiles at level lf
have the same bounded resource cardinality. Thus, we replace
the summation with a multiplication by the number of empty
resources at level lf , i.e., |Elf |.

Now, we can compute P for all levels in the multi-level
visualization pyramid to find the optimum level that maximizes
P . For each level lf , we calculate n =

∑
0≤l≤lf |Nl| which

allows us to compute pf given the memory budget m. To
calculate |El|, we observe that the total number of tiles in



level l is 4l. It directly follows that |El| = 4l − |Nl|. After
we have the above terms ready, we can easily use them in
Equation 3 and find Pl for each level l to pick the optimum
level lf which maximizes P .

Step 3 - HQ-Filter Construction: The last step is to
construct the HQ-Filter by inserting all of the non-empty RIDs
{N0, N1, . . . , Nlf } up to level lf that we computed in the
previous step. Similar to BF, we hash the RIDs using k hash
functions, and set the corresponding indices to 1 among all
m bits. Please recall that, each tile in multi-level visualization
system is represented as (l, x, y) tuples. To have an efficient
way of representing RIDs for tiles, we concatenate the bits of
l, x, and y into a 64-bit long. Then by using the MurmurHash3
[29] and hashing method from [27], we hash the unique Tile
IDs and set k number of bits to 1 in the bitarray.

Client-side Implementation: UCRStar’s front-end is built
as a web application using a tiled layer in OpenLayers. To
integrate the HQ-Filter, the client requests the HQ-Filter from
the server at startup and caches it in memory. Then, we
intercept the tile request and test if the tile is empty. If the level
of the requested tile is less than or equal to lf , we directly test
if the tile ID is in the filter. Otherwise, we look up the parent
tile at level lf which has the ID (lf , x� (l−lf ), y � (l−lf )),
where� is the logical right shift operation. If the tested tile is
in the filter, the request is sent to the backend, otherwise, we
skip the call and show an empty tile. This test runs in constant
time which adds a negligible overhead on the client.

D. HQ-Filter for Spatiotemporal-Textual Data Visualization

Similar to the previous section, we focus on four parts.
Based on how Cloudberry [11] works, the user searches for a
keyword and all the queries contain this keyword. By design,
Cloudberry builds a materialized view for the tweets that
match the keyword. All the steps mentioned in this section
are assumed to work on that materialized view. First, we
define the hierarchy which, in this application, consists of two
hierarchies for space and time. Second, we show how to count
the non-empty resources in AsterixDB. Third, we calculate the
bounded resource cardinality g. Fourth, we construct the HQ-
Filter using a SQL++ query in AsterixDB.

Resource Hierarchy: In this case study, we have two
hierarchies to deal with, spatial and temporal. The spatial
hierarchy is defined by administrative levels, e.g., country,
state, and city. The temporal hierarchy splits the entire time
range into 1, 2, 4, 8, . . . partitions and so on. For the temporal
hierarchy, we define the number of levels such that at the
deepest level, each resource covers one day. In summary, we
define two levels, one for each hierarchy, 0 ≤ lgeo ≤ lgeo−max

where lgeo = 0 covers the entire input space; and the other
for time 0 ≤ ltime ≤ ltime−max. To combine them, we can
define the level as a tuple l = (ltime, lgeo). However, to keep
it simple, we assign a unique integer to each level so that
0 ≤ l < (lgeo−max + 1)(ltime−max + 1). In this case, we can

easily convert back and forth using the following equations:

l = (lgeo−max + 1) · ltime + lgeo (4)
ltime = bl/(lgeo−max + 1)c (5)
lgeo = l mod (lgeo−max + 1) (6)

The linearization of the levels from multiple hierarchies makes
it easier to apply Equation 1 in the optimization step. In
the rest of this section, we will use l and (ltime, lgeo) in-
terchangeably. In this design, each resource is identified by
a pair (geoID, timeID) where geoID uniquely identifies a
location, e.g., a state or a country, and timeID identifies a
single day or a range in the time hierarchy. The level of a
resource r is lr = (lr−time, lr−geo)

Step 1 - Counting: We count the number of non-empty
resources in the input data using a SQL++ query that runs in
AsterixDB. To do that, we need to calculate the timeID and
geoID for each tweet at each level. Since the timeID has a
regular structure, we implement a user-defined function (UDF)
that takes the tweet timestamp and the level ltime and returns
the timeID. For the geoID, we run a spatial join operation
between the tweet geolocation (longitude, latitude) and the
boundaries of the geographical regions, e.g., countries and
states, and project the geoID of each level as an additional
column in the data table. To count the number of non-empty
resources per level, we perform one grouped aggregation
SQL++ query that groups the tweets by level and counts the
distinct IDs per level.

Step 2 - Optimization: To run the optimization step, this
part defines the bounded resource cardinality g(r, lmax). Given
the irregularity of the spatial hierarchy, we build a lookup
table s(geoID) which contains the total number of spatial
resource IDs that are descendants of geoID. For example
s(US) contains the total number of states and cities in the
US, while s(NY ) contains the total number of cities in New
York state. Hence, we define g as follows:

g(r, lmax) =

ltime−max∑
l=lr−time+1

(2ltime−max−l) · s(r.geoID)

= 2ltime−max−lr−time · s(r.geoID)

According to the above definition, the bounded resource
cardinality can be computed in constant time. However, unlike
the tiled map application, tiles at the same level do not all
have the same cardinality. Hence, we still need to iterate
over each empty resource at level lf while calculating the
filter performance using Equation 1. If the number of empty
resources is very large, we can instead calculate the summation
of the non-empty resources and subtract that from the total
number of resources in levels lf+1 to lmax which is a constant
that is independent of the empty and non-empty resource IDs.

Step 3 - Construction: Once the optimal level lf is
selected, this step constructs the HQ-Filter by inserting all the
non-empty resources in levels zero through lf . We implement
this step as a SQL++ query in AsterixDB. To do that, we define



a new UDF that computes the hash function from the resource
ID h(geoID, timeID). We apply this function to select the
bit positions in the HQ-Filter that need to be set. Then, we
iterate over all these bit positions and set them to construct
HQ-Filter. Notice that regardless of the data set, the number
of bits to set is bounded by the filter size.

Client-side Implementation: Cloudberry [11]’s front-end
is implemented as a web application which uses a vector
layer to display a choropleth map. When the user enters a
keyword, the client requests the corresponding HQ-Filter. As
the user navigates the map, the system generates a sequence
of requests for each visible region and every day. The request
level (lgeo, ltime) is compared to the HQ-Filter level lf . If
both are less than or equal their corresponding filter level
lf , we directly test if the resource is non-empty in the filter.
Otherwise, we locate the ascendant resource at level lf . To
find that resource in the geospatial hierarchy, the client keeps
a lookup table that contains the ascendant geoID at level lf
for each resource. The parent resource in the time hierarchy
can be easily obtained using simple calculations similar to the
one used in the tiled map case study.

E. Optimizations for Counting

For both case studies described earlier, counting is the most
expensive step for two reasons. First, it counts the number of
non-empty resource IDs in all levels. Second, depending on
the density of the dataset, the number of non-empty resource
IDs could be tremendously large in deep levels. For example,
in the Parks dataset which has only 10 million polygons,
the number of non-empty resources in level 19 is around 11
billion.

We make two observations that we utilize in this section
to speed up the counting process. First, since the goal of the
counting step is to find the optimal level in Step 2, we can
use approximate counts and still get the same result. The first
optimization uses approximate counting to obtain the optimal
levels lf . Second, based on the behavior of the performance
function P in Equation 1, we can find the optimum level lf by
counting the number of non-empty resource IDs in a few levels
around the optimal level lf . However, since lf is unknown, the
second optimization uses incremental counting to search for
the optimal level but without counting all the levels.

1) Approximate Counting: Since the goal of the counting
step is to find the optimal level lf , an estimation of these
resource counts can still produce an accurate answer. There-
fore, exact counting might be unnecessary. The first proposed
optimization is to replace exact counting with approximate
counting per level. We can control the desired accuracy so that
we can still achieve the same result for the overall algorithm,
i.e., find the same optimum level lf .

The approximate counting algorithm uses the HyperLogLog
approximate counting algorithm [30] which is widely used and
already supported by some big data frameworks, e.g., Spark.
We used Streamlib’s implementation of HyperLogLog++
(HLL++). Given that all the problematic cases that we faced
for counting were in the tiled map visualization application, we

only implemented this approach in Spark but the main idea can
easily apply to other systems. The implementation is similar
to the exact counting algorithm described in Section III-C.
However, we replace the partial and full hash sets with
the HLL counting structure. This means that each worker
approximately counts the number of unique resource IDs for
each level using HLL. Then, the partial HLL structures for
each level are transferred to one machine which combines
them to compute the final approximate count. The remaining
steps work exactly as before but they use the approximate
counts instead of the exact ones.

2) Incremental Counting: This part shows a second opti-
mization which relies on the properties of the optimization
function P . We observe that the function has only one global
maximum and no suboptimal local maxima. This means that
if we find any local maximum, we can directly use it as
the global maximum as well. This optimization combines the
counting and the optimization steps into one step to count and
search for the maximum, simultaneously. The way it works
is that it starts by counting the top few levels, e.g., seven
levels, since they are cheap to compute anyway. If a local
maximum is found, it is returned. Otherwise, it incrementally
counts one additional level at each iteration and tests if a
local maximum has been found. Once the performance P (lf )
starts to decrease, the algorithm stops and returns the level
that produced the highest performance.

Notice that the two optimizations are orthogonal which
means we can apply either or both of them if needed.

IV. EXPERIMENTS

We evaluate the HQ-Filter applied in two real-world ap-
plications: UCRStar [9] and CloudBerry [11]. As suggested
in [2], our experiments have been conducted with real-world
data and workload. We also provide a simplistic user behaviour
categorization and data analysis to highlight the empty-answer
aspects of both data and workload. Then, we measure the
empty resulting query detection performance of HQ-Filter,
average response time of the data exploration systems and the
capacity of maximum concurrent users that can use the system
within interactivity limits.

A. Setup

1) Software and Hardware setup: We have three baselines.
First, No-filter, when all the requests are sent to the server.
Second, Bloom Filter (BF), when all non-empty resources are
added to a regular BF. Third, the detection technique from
[26] (LUO). We implement the filter by following the original
design, and construct the filter by adding queries from 30
users. Then, we evaluate the filter with the test group.

All experiments have been conducted on Amazon Web
Services (AWS). We used m5.xlarge instance type which has
4 vCores, 16 GB memory. HQ-Filter creation experiments run
on an a cluster with 20 machines each has 200 GB SSD.

2) Datasets: Table I lists all datasets that we use. The first
three are used with tiled map visualization and are available at
UCR-Star [9]. The fourth is used with spatiotemporal-textual
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Fig. 3. Analysis of the datasets used in the experiments

TABLE I
DATASETS

Name Size Records Description
eBird 211.2 GB 566 Million Points
Parks 7.9 GB 10 Million Polygons

GeoLife 1.7 GB 23 Million Points
Tweets 1.6 TB 387 Million Geo-tagged Tweets

data exploration. Figure 3(a) shows the number of non-empty
tiles per level for the datasets used with tiled map visualization
which highlights the characteristics of these datasets.

To choose a representative set of keywords from the Twitter
dataset, we first analyze the keywords as illustrated in Fig-
ure 3(b). For each keyword, we count the number of empty
days and number of empty cities to measure its temporal
and spatial popularity, respectively. We use the average along
both dimensions to split the keywords into four categories
based on their popularity in time (LT/HT) and space (LS/HS).
Figure 3(c) shows the keywords that we picked to represent
each category. The radius of each bubble indicates the total
number of empty resources which is a good indicator for the
potential saving of empty resulting queries for this keyword.

3) Workload: Based on each dataset/keyword characteris-
tics, we define two types of users, sparse and dense. Sparse
users are those interested in regions that have a lot of empty
resources while dense users are the opposite. We pre-record
several timed sequences of requests for both user types and
use them as an input workload which provide the ability to
control the ratio of dense and sparse users.

4) Parameters & Metrics: We vary the filter size (m),
dataset size, ratio of dense users, and number of concurrent
users as our parameters. For our evaluations, we measure the
HQ-Filter creation time, average response time per request,
server workload, and the number of filtered requests.

B. Evaluation of Detection Performance

In this experiment we evaluate the empty resulting query
detection performance of the HQ-Filter and compare it to the
baselines. Our analysis also provide insights about how the
detection performance is affected by the user types. Recall
that sparse (dense) users who are interested in areas with large
(small) number of empty resources.
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Fig. 4. Percentage of the filtered requests as the ratio of dense users changes

1) Tiled map visualization: In Figure 4(a), we vary the
percentage of dense users from 100% (all users are dense)
to 0% (all users are sparse) and measure the percentage of
requests that the filter can detect, i.e., higher is better. We first
observe, HQ-Filter is consistently better even when it occupies
half the size of BF. This is a direct result from accounting
for the data hierarchy which allows it detect more empty
resources with less size. Second, HQ-Filter outperforms the
third baseline, and the performance of it is not consistent since
the detection rate is highly dependent on previous user data.
Lastly, the less the dense users, the better the filters behave
since there is a larger pool of empty requests to filter. This
experiment also reveals that BF is not as performant as HQ-
Filter due to its false-positive rate approaching 1.0 even with a
memory budget of 1MB. A memory budget larger than 1MB is
not practical for the proposed problem since it gets computed
on the server and transferred over network to the client. Other
datasets produce a similar behavior but we omit the results
due to the limited space. Interested readers can refer to the
technical report [28].

2) Spatiotemporal-Textual Data Exploration: We evaluate
the empty answer detection performance of HQ-Filter when
integrated into the Cloudberry. Please note that, in this use
case, we create a filter for each keyword. Thus, we have a
small number of elements to insert into the filters and our
filters should be small enough to be kept in client side for
multiple keywords. Figure 4(b) reports the percentages of the
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Fig. 5. The effect of filtering empty requests on the client response time and
server workload

filtered empty resulting request while we vary the percentage
of dense users. Here we report the results for HSHT keywords.
The other keyword categories provide a similar behavior as
detailed in [28]. These experiments show that HQ-Filter has
a better empty resulting query detection performance over
the other baselines. Similar to tiled map visualization, the
less dense users we have, the better the filters behave due
to the availability of more empty resources to skip. Please
note that for each keyword, the workload contains users who
zoom into different countries with different languages. As a
result, most of the requested resources for sparse users return
empty results which is the reason the percentage of filtered
requests is relatively high. For the same reason, third baseline’s
performance falls behind HQ-Filter since the previous users
queries are helping to the future queries only for country level.

C. Response Time Evaluations

We can effectively filter the empty queries at the client
side for both use cases but it is crucial to show that doing
this improves system performance. Figure 5 shows the effect
of eliminating empty-resulting queries on both the client and
server performance. We vary the number of filtered requests
in a controlled way to accurately measure its affect and we
repeat each point four times for accurate results. We use the
eBird dataset for the tiled map, and the ‘love’ keyword for
and spaitotemporal-textual exploration. The workload consists
of eight dense and eight sparse concurrent users.

1) Average Response Time (client-side): as we filter more
empty resource, the average response time reduces signifi-
cantly. The correlation coefficient for the average response
time and the number of filtered empty requests is -0.923
and -0.896 for the tiled map and the spatiotemporal-textual
data exploration, respectively. This is a result of saving the
transmission of the request over network, the processing on
the server side, and the queuing of requests at the server. It
is worth mentioning that the times converge to a fixed value
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which represents the time needed to process the non-empty
requests since the filter only saves the empty requests.

2) Server Workload: The figures Figure 5(c) and (d) show
the effect of filtering the requests on the server side. The server
workload is measured as the total time needed to handle all
the requests. We see a similar behavior in which the server
workload reduces significantly as we reduce the number of
empty queries. Unlike the average response times, we see that
the server workload is decreasing linearly since we measure
the total time not the average. Additionally, the network round-
trip time is not observed on the server side. Finally, we can
observe that the performance of the spatiotemporal-textual
exploration application improves significantly due to the high
volume of requests that is typically sent by its front-end design.

The above experiments reveal the strong correlation between
the number of filtered requests and the performance observed
on both the client and server. For the rest of the experiments,
we will focus on reporting the number of filtered requests
since these experiments are easier to reproduce as they do not
depend on the system load or hardware specification.

D. Improvement on server capacity

This experiment studies how the use of HQ-Filter can
increase the server capacity in terms of number of concurrent
users that can be supported while providing a processing time
of less than 500 milliseconds. Figure 6 shows the average re-
sponse time as the number of concurrent users increases from
1 to 20. We measure the performance of three approaches,
No Filter is when all requests are handled, BF is when a
Bloom filter is used to filter empty requests, and when HQ-
Filter is used. In this experiment BF uses 1MB while HQ-Filter
uses only 512KB of memory. The horizontal line indicates the
cutoff response time of 500 milliseconds.

The experiment clearly shows that the use of HQ-Filter
increases the capacity of the server for all three datasets. The
server capacity increases by 50%, 66%, and 60%, for eBird,
Parks, and Geolife datasets, respectively. While BF is close to
the performance of HQ-Filter for the Geolife datasets, note that
BF uses 1MB of memory while HQ-Filter uses only 512KB.
Finally, note that this improvement of the server capacity does
not require any change in the server architecture or design
since all the filtering happens on the client side.

E. HQ-Filter Creation

In this section, we provide our evaluations of creating HQ-
Filter for the two use-cases that we study.
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1) Tiled Map Visualization: In this experiment, we focus on
the counting step which is the main bottleneck of the HQ-Filter
creation process [28]. As Figure 3(a) shows, the number of
non-empty resources can increase excessively for deep levels
which makes this step very expensive for some datasets.

We report the time for the counting step of the three
techniques as we increase lmax in Figure 7(a). For the Parks
dataset, we see an interesting behavior where both the exact
and approximate techniques take too long which makes both of
them unpractical to use. This is due to the huge number of non-
empty resources in deep levels. The approximate technique
is faster but it still takes too long for deeper levels. The
incremental technique shines for this case since it does not
have to count the deeper levels. For the Parks dataset, the
optimal level is 12 so the running time stabilizes after that
point. For eBird and Geolife datasets, all three approach
performs similarly because of these datasets have a reasonable
amount of non-empty tiles for even deepest level which result
in any of the approach performing well [28].

2) Spatiotemporal-Textual Data Visualisation: Figure 7(b)
shows the breakdown of the HQ-Filter construction process in
the spatiotemporal-textual data exploration application. Fol-
lowing the design of Cloudberry [11], the filter is created
from a materialized view of the tweets that match the query
keyword. We do not show the time for creating the mate-
rialized view since it is not part of the HQ-Filter creation
process. Similar to the previous experiment, the counting step
is the most expensive step. Since we keep the resource ids in
memory after counting, the construction step remains stable.
The optimization step for this application is slightly costly due
to the complexity of the performance function P which needs
to iterate over all non-empty resources and use the lookup
table to count the number of descendent resources. The overall
creation time is very fast with no more than 1.5 seconds for
the largest dataset due to the use of materialized view. Hence,
we did not implement the two optimized counting techniques,
approximate and incremental, but they can be implemented in
the same way if needed.

V. RELATED WORK

This section summarizes the related work in data exploration
into three categories, presentation, application, or data layer [1]
by their focus.

Presentation layer represents the work that focus on pro-
viding an interactive interface that allows users to explore
data effectively. This includes systems that use pen and
touch devices [12], interactive map-based exploration [11],
commercial business intelligence (BI) systems based on the
grammar of graphics [31], [32], and JavaScript libraries for
visualization [33]. [34] is focused on reasoning whether the
system should make an empty resulting check and notify the
user by taking account the psychological factors for visual
query builders. All this work helps in building interactive
exploration systems that encourages more users to explore the
data. HQ-Filter can assist all these systems by filtering empty-
resulting queries.

Application layer takes a user query from the presentation
layer and processes it to return the result. Typically, processing
a user query involves retrieving and querying data from the
database layer. A prime example is Cloudberry [11] which
breaks down a user query into several queries [35] sent
to AsterixDB for processing. Some applications follow the
Approximate Query Processing (AQP) approach [36]–[38] in
which they use sampling to speed up the query processing
of big data. While HQ-Filter is a probabilistic technique that
detects empty queries, the final result is still exact since it
only skips queries that are certainly empty. Our work can be
combined with the work listed above where HQ-Filter is used
to skip empty resulting queries, and these techniques are used
to answer non-empty resulting queries.

Query relaxation is the problem of explaining why an
SQL query produces an empty result [18]. The techniques
in this topic [4], [19]–[25] can suggest alternative queries
or relaxations of the conditions by relying on application
customized optimizations. In contrast, the proposed approach
does not try to modify the query or suggest an alternative but
it just aims at quickly detecting queries that return an empty
answer at the client-side.

Database layer stores and indexes the data to serve in-
teractive exploratory systems. This work includes pushing
visualization queries into the database [39], using a specialized
query language for visualization [31], [40], and the use of
distributed query engines [41], [42] and adaptive indexes [43],
[44] for tiled map visualization. To improve the performance,
some techniques use in-memory preaggregated indexes [45],
WebGL [46], or sampling methods [47], [48]. GloBiMaps [49]
proposes a randomized data structure that models sparse binary
images, e.g., land and water, and provides an efficient query
to find the value of a pixel as zero or one. It differs from our
work by being a visualization method taking advantage of the
empty areas in the geospatial datasets while our work focuses
on pruning any empty-resulting query and is not limited to
raster images. [26] proposes a method that analyzes previous
SQL queries and extracts the atomic parts that can be used



to detect empty results in future queries. HQ-Filter does not
require past queries to be constructed and can be checked in
constant time which make it suitable for client-side filtering.
In summary, HQ-Filter can be applied at the client-side as
an additional light-weight filter in addition to more advanced
filters at the server-side that might need more information that
is only available to the database server.

VI. CONCLUSION

In this paper, we showed that in data exploration systems,
a large number of requests return an empty result. We defined
the problem of detecting empty queries at the client side by
utilizing the hierarchy in the data. We proposed HQ-Filter,
as an efficient solution that uses a compact representation to
detect empty queries at the client-side with minimal overhead
in processing. We implemented HQ-Filter in two real applica-
tions and showed that it can effectively be implemented in both
scenarios. Our extensive experimental evaluation showed that
HQ-Filter can accurately eliminate most of the empty queries
in both applications which results in up-to 66% increase
in server capacity, provides up to 15x speedup for average
response time, and up to 90% decrease in the server workload.
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