
SPATIAL DATA GENERATORS

Tin Vu
Computer Science and Engineering Department

University of California, Riverside
tin.vu@email.ucr.edu

Sara Migliorini
Computer Science Department

University of Verona, Italy
sara.migliorini@univr.it

Ahmed Eldawy
Computer Science and Engineering Department

University of California, Riverside
eldawy@ucr.edu

Alberto Belussi
Computer Science Department

University of Verona, Italy
alberto.belussi@univr.it

ABSTRACT

This gem describes a standard method for generating synthetic spatial data that can be used in
benchmarking and scalability tests. The goal is to improve the reproducibility and increase the trust in
experiments on synthetic data by using standard widely acceptable dataset distributions. In addition,
this article describes how to assign a unique identifier to each synthetic dataset that can be shared in
papers for reproducibility of results. Finally, this gem provides a supplementary material that gives a
reference implementation for all the provided distributions.

Keywords benchmark, synthetic data, generator

1 Introduction

In many published papers, researchers often need to test their implementations of new index structures or query
execution methods on large scale spatial data. While some real datasets exist, the research community also needs to
try datasets with specific characteristics to highlight how the proposed research behaves under certain circumstances.
Synthetic data generation gives researchers full control over the data characteristics such as data skewness, complexity
of geometries, or amount of overlap between datasets.

This article proposes a practical tool for generating synthetic spatial datasets with various skewed distributions. These
generators have been successfully used in existing research to evaluate index construction, query processing, spatial
partitioning, and cost model verification. While the generators are already used in many papers, there is a fact that the
researchers rarely describe the details of generating these datasets for two reasons. First, it is not usually a research
contribution and the authors do not want to draw attention to it. Second, it takes a precious space of the paper that
authors usually prefer to utilize for other parts.

This gem takes the burden of describing, in detail, how to generate synthetic data of six common distributions. As the
gems are designed to be flexible, it fits very well the generation of synthetic data where other researchers can add more
datasets in the future.

Figure 1 gives an overview of the main parts of the proposed generator. First, the dataset descriptor is a vector that
contains information about the dataset to be generated. It acts a unique identifier for the synthetic dataset and it consists
of three parts, (1) the distribution ID i ∈ [1, 6] for six implemented distributions, (2) the model parameters depending
on the chosen distribution, and (3) a transformation matrix used later by the transformer. The first two components
of the dataset descriptor, i.e., distribution ID and model parameters, are passed to the generator which generates the
desired dataset. After that, the transformer applies an affine transformation on the generated data according to the third
component of the dataset descriptor.

Since the dataset descriptor fully identifies the generated dataset, researchers who use these generators can simply cite
this gem and list the descriptors of the datasets they used. Other researchers can then regenerate the same datasets

Dataset Descriptor Generator

Distribution ID

Model
parameters

Transformer

Affine transformation

Combiner

Uniform GaussianDiagonal

Sierpinsky ParcelBit

Transformation
Matrix

Figure 1: Overview of the spatial generator

following the same procedure described in this gem. For guidance, it provides a reference implementation [1] to all the
generators as a supplementary material, but researchers can develop other generators that follow the same guidelines,
e.g., a Spark-based generator for big spatial data. For example, Table 1 at the end of this gem defines the six datasets
used in this article.

The final component, combiner, can be used to create compound datasets by simply merging two or more simple
datasets. In this case, the descriptor of the compound dataset is simply the concatenation of all the descriptors of the
simple datasets.

As shown in Figure 1, this gem uses six different distributions for generating the simple datasets, which are all described
in the next section.

2 Data Generators

This section describes the six synthetic generators which are used in this gem, namely, uniform, diagonal, Gaussian,
Sierpinski, bit, and parcel. Some of these generators are inspired by a benchmark developed by Beckmann and Seeger [2].
This article provides more details about these generators and defines some additional generators. Each generator G∗
takes a list of common parameters [cp1, cp2, . . .] and a list of distribution-specific parameters [sp1, sp2, . . .]. For the
family of generators that are considered in this gem, there are two common parameters, the DATASET CARDINALITY
(card) specifying the total number of geometries and the NUMBER OF DIMENSIONS (d). The generator here considers
the generation of two-dimensional geometries; the extension to multi-dimensional datasets is straightforward.

For all these generators, the REFERENCE SPACE that contains the generated data is [0, 1]d, where d is the number
of dimensions. Additionally, these generators assume the existence of a random number generator RND() which
generates random numbers in the range [0, 1). This generator can be used to generate random numbers for three popular
distributions, Bernoulli, Uniform, and Normal, as follows 1.

Bernoulli(p) =

{
1 ; RND() < p
0 ; otherwise

(1)

U(a, b) = (b− a)RND() + a (2)

N(µ, σ) = µ+ σ
√
−2 ln RND1() · sin(2πRND2())(Box and Muller [3]) (3)

Algorithm 1 shows the general schemata of the first five generators, namely, uniform, diagonal, Gaussian, Sierpinski,
and bit distribution. These five generators can generate both points and rectangles. Points are generated using the
GenPNT∗ methods, described shortly, while rectangles are generated by using these points as centers. Lines 1,2
initialize the result set G to the empty set and the random number generator. If desired, the seed of the random number
generator can be fixed to generate exactly the same random dataset. The loop in lines 3-11 generates one record at a
time. Line 4 calls a generic GENPNT∗ function that is different for each generator. This function returns a random
point (x, y) according to the desired distribution. Then, Line 5 tests if the point is inside the reference space [0, 1]d as
some generators can generate points outside that space, e.g., Gaussian. If the point is inside the reference space, the

1More efficient implementations are usually available in standard packages

2

(a) Uniform distribution (b) Diagonal distribution (c) Gaussian distribution

Figure 2: Examples of the first three distributions

algorithm continues by generating random width and height for the rectangle by using the parameters sp1 and sp2 as
the maximum allowed width and height. Finally, a rectangle is generated with (x, y) as the center and (w, h) as its
dimensions, i.e., the corner point is at (x− w/2, y − h/2). The notation Box(x, y, w, h) is used to indicate a box with
its lower corner point at (x, y) and has dimensions of w and h.

The following parts are the descriptions of the point generators (GENPNT∗) for the first five distributions and then the
parcel distribution which generates rectangles directly without generating points first.

Algorithm 1: G∗(): basic algorithm for the first five generators.
Input: card, d = 2, sp1, . . . , spn
Result: Set of geometries: G = {geom}

1 G ← ∅; i← 0;
2 Initialize the random number generator;
3 while i < card do
4 (x, y)← GENPNT∗(i, sp3, . . . , spn);
5 if (x, y) ∈ [0, 1]d then
6 w = U(0, sp1);
7 h = U(0, sp2);
8 G = G ∪ {Box(x− w/2, y − h/2, w, h)};
9 i← i+ 1;

10 end
11 end
12 return G

2.1 Uniform

In the uniform distribution, points are generated randomly inside the reference space [0, 1]d as shown in Figure 2(a).
This distribution models non-skewed data such as data in suburban areas. No additional specific parameters are needed
for this generator. The point (x, y) is generated using the following equations.

GenPNTuni() = (x = U(0, 1), y = U(0, 1)) (4)

2.2 Diagonal

The diagonal point generator generates points that are concentrated around the diagonal line x = y as illustrated in
Figure 2(b). This distribution models real data concentrated around a line such as a river bank or a highway. The affine
transformation, described later, can be used to arbitrarily rotate this line. This generator takes two additional parameters
perc and buf , where perc ∈ [0, 1] is the percentage (ratio) of the points that are exactly on the line, and buf ∈ [0, 1] is

3

the size of the buffer around the line where additional points are scattered. The additional points are scattered according
to a normal distribution. Algorithm 2 illustrates the generation of a point using the diagonal distribution. Line 1
decides with a probability perc to generate a point exactly on the diagonal. Otherwise, with probability 1− perc, it
generates a point that is shifted with a distance d from the center. The distance is generated from the normal distribution
N(0, buf/5) which has almost a 99% probability in generating a number in the range [−buf,+buf]. This distance is
then divided by

√
2 to calculate the orthogonal offset for x and y. Finally, the point location is generated.

Algorithm 2: GENPNTdia (perc, buf)
1 if Bernoulli(perc) = 1 then
2 x = y = U(0, 1);
3 else
4 c = U(0, 1);
5 d = N(0, buf/5);
6 x = c+ d/

√
2;

7 y = c− d/
√
2;

8 end
9 return (x, y);

2.3 Gaussian

In the Gaussian distribution, the points are concentrated around the center of the input space (0.5, 0.5) as illustrated in
Figure 2(c). This distribution can model real data concentrated around a point such as a metro area. The coordinates
follow a normal distribution x, y ∼ N(0.5, 0.1). This ensures that almost 99% of the points fall in the box [0, 1]d. If
points are generated outside that space, the loop in Algorithm 1 will drop the point and generate another one. This
might make the data distribution is a bit different from original Gaussian distribution. In summary, the Gaussian point
generator follows the following formula.

GENPNTGaussian = (x = N(0.5, 0.1), y = N(0.5, 0.1)) (5)

2.4 Sierpinski triangle

In this case, the skewed distribution is obtained by applying a rule for generating points that belong to a fractal (the
Sierpinski’s triangle) [4]. Figure 3(a) gives an example of this data. This pattern could be found in many real model
such as cellular automata or motors. This rule is based on an iterative approach such that the generation of the next
point of the set depends on the current point and a random function. The function GENPNTsie(pnt, i) has two specific
parameters: the previous point of the iteration pnt and the iteration variable i. It generates a two-dimensional point at
each iteration as follows:

GENPNTsie(pnt, i) =

(0.0, 0.0) if i = 0
(1.0, 0.0) if i = 1
(1/2,

√
3/2) if i = 2

MIDDLEPOINT(pnt, (0.0, 0.0)) if i > 2 ∧ DICE(5) ∈ {1, 2}
MIDDLEPOINT(pnt, (1.0, 0.0)) if i > 2 ∧ DICE(5) ∈ {3, 4}
MIDDLEPOINT(pnt, (1/2,

√
3/2)) if i > 2 ∧ DICE(5) = 5

where DICE(5) = bU(0, 5)c + 1 is a random function producing a number between 1 and 5 and
MIDDLEPOINT(pnt1, pnt2) computes the middle point between two points, pnt1 and pnt2. Notice that, the first
three points are the corners of the triangle; the successive points are generated starting from the current point pnt and
computing the middle point between pnt and one of the vertices of the triangle chosen according to the random function
DICE(5). The vertices of the base are chosen with a probability of 2/5, the other vertex with a probability of 1/5.
Figure 3(a) shows an example of the resulting set.

2.5 Bit distribution

Another approach for generating a skewed point dataset is to introduce a rule for generating the coordinates of the points
by assigning higher probability to a subset of coordinates. For instance in the Bit distribution, the point coordinates are
generated as a bit string of a fixed length where each bit is set with a fixed probability p ∈ [0, 1]. This generator takes

4

(a) Sierpinski distribution (b) Bit distribution (c) Parcel distribution

Figure 3: Examples of the last three distributions

two parameters, p and digits, where p represents a fixed probability of setting each bit independently to 1 and digits
represents the number of binary digits after the fraction point. It generates a point in a higher dimensional space by
setting each dimension independently in the same method as shown below:

GENPNTbit(p, digits) = (BIT(p, digits),BIT(p, digits))

where BIT(p, digits) generates a real number between 0.0 and 1.0 as shown in the following Algorithm 3,

Algorithm 3: BIT(p, digits)

Input: p, digits
Result: Real number: n

1 n← 0.0; i← 0;
2 for i = 1 to digits do
3 c←Bernoulli(p);
4 n← n+ c/2i;
5 end
6 return n

2.6 Parcel distribution

This generator directly generates rectangles according to the parcel distribution. The parcel distribution generates
geometries that represent boxes of different sizes as illustrated in Figure 3(c). This distribution can model land sections
delineated in urban areas.

In addition to the cardinality card of the generated dataset, the parcel generator takes two specific parameters r and d,
where:

• r ∈ [0, 0.5] is the minimum tiling range for splitting a box. r = 0 indicates that all the ranges are allowed
while r = 0.5 indicates that a box is always split into half.

• d ∈ [0, 1] is the dithering parameter that adds some random noise to the generated rectangles. d = 0 indicates
no dithering and d = 1.0 indicates maximum dithering that can shrink rectangles down to a single point.

Algorithm 4 describes how the parcel generator works. The first loop in lines 3-15 repetitively splits the reference
space [0, 1]d along one of the two axes x and y. It always splits along the longer axis of the given box. This loop runs
card− 1 times as it generates one new box at each iteration.

The second loop in lines 16-19 adds the dithering effect by shrinking each box with a ratio 1− U(0, d). This means
that if d = 0, the ratio will always be equal to 1.0 which means no shrinking. If d = 1.0, the ratio can reach up-to 1.0
which shrinks the boxes all the way to a single point.

5

Algorithm 4: Gparcel(r, d): Generated boxes of the parcel distribution
Input: card, d = 2, r, d
Result: Set of geometries: G = {geom}

1 Initialize the random number generator;
2 G ← {Box(0, 0, 1.0, 1.0)};
3 while |G| < card do
4 b← G.dequeue;
5 if b.width > b.height then
6 splitSize = b.width ∗U(r, 1− r) ;
7 b1=Box(b.x, b.y, splitSize, b.height);
8 b2=Box(b.x + splitSize, b.y, b.width - splitSize, b.height);
9 else

10 splitSize = b.height ∗U(r, 1− r) ;
11 b1=Box(b.x, b.y, b.width, splitSize);
12 b2=Box(b.x, b.y + splitSize, b.width, b.height - splitSize);
13 end
14 G.enqueue(b1); G.enqueue(b2);
15 end
16 for b ∈ G do
17 b.width = b.width · (1− U(0, d));
18 b.height = b.height · (1− U(0, d));
19 end
20 return G

3 Post Transformations

This section describes two methods that can giver further flexibility on customizing the generated data, transformation
and compounding. The transformation method applies a simple affine transformation on the generated geometries. The
compounding method combines several datasets by simply unifying all their geometries.

3.1 Affine Transformation

The generators describes above are designed to be very simple on purpose. Instead of complicating each generator,
most of the customization is moved to this step. This step simply applies a standard affine transformation to all the
generated geometries. In the case of points, the transformation is applied to the coordinates of the point. For rectangles,
the transformation is applied to the two opposite corners, i.e., the lower left and upper right corners. This ensures that
the rectangle remains orthogonal even after rotation which is usually desired in data structures and algorithms that deal
with bounding boxes.

An affine transformation is defined by a fixed-size matrix. For two-dimensional data, the affine transformation transforms
a point (x, y) to a transformed point (x′, y′) according to the following equation.

[
x′

y′

1

]
=

[
a1 a2 a3
a4 a5 a6
0 0 1

][
x
y
1

]
(6)

where a1 · · · a6 are the parameters of the affine transformation. This formula could be modified to work with higher
dimensional data.

3.2 Compound Datasets

The final stage is to combine several datasets of either the same distribution but different parameters, different
distributions, or with different transformation matrices. Show some examples of how combining datasets can generate
new interesting datasets.

6

Figure 4: Example of compound dataset obtained by combining two different Gaussian distributions and one diagonal
distribution.

Distribution ID card d sp1 sp2 sp3 sp4 a1 a2 a3 a4 a5 a6
Uniform (Figure 2(a)) 1000 2 0.02 0.02 1 0 0 0 1 0
Diagonal (Figure 2(b)) 1000 2 0.01 0.01 0.2 0.1 1 0 0 0 1 0
Gaussian (Figure 2(c)) 2000 2 0.1 0.1 1 0 0 0 1 0
Sierpinski (Figure 3(a)) 1000 2 0.01 0.01 1 0 0 0 1 0
Bit (Figure 3(b)) 5000 2 0.01 0.01 0.3 10 1 0 0 0 1 0
Parcel (Figure 3(c)) 1000 2 0.2 0.2 1 0 0 0 1 0

Table 1: Identifiers for the six sample datasets shown in this paper. For simplicity, all of them use the identity
transformation (affine) matrix

3.3 Identifying Datasets

Based on the proposed method, each generated simple datasets, i.e., not compound, can be identified using a fixed
vector. This vector is the one illustrated in Figure 1 and it contains the generator model G∗, the common parameters
card and d, the specific parameters sp1 · · · spn, and the affine transformation matrix parameters a1 · · · a6. Researchers
who use the generators described in this paper can simply list all these parameters in a table to allow other researchers
to generate datasets of the same characteristics. For example, Table 1 identifies the six sample datasets illustrated in
Figure 2 and 3.

Acknowledgment

This work is supported in part by the National Science Foundation (NSF) under grants IIS-1838222 and CNS-1924694
and by the USDA National Institute of Food and Agriculture, AFRI award number A1521.

References

[1] Spatial Data Generators. https://github.com/tinvukhac/spatialdatagenerators.
[2] Norbert Beckmann and Bernhard Seeger. A Benchmark for Multidimensional Index Structures. 2019.

https://www.mathematik.uni-marburg.de/ rstar/benchmark/distributions.pdf.
[3] G. E. P. Box and Mervin E. Muller. A note on the generation of random normal deviates. Ann. Math. Statist.,

29(2):610–611, 06 1958.
[4] Michael F Barnsley and Alan D Sloan. A better way to compress images. Byte, 13(1):215–223, 1988.

7

https://github.com/tinvukhac/spatialdatagenerators

	Introduction
	Data Generators
	Uniform
	Diagonal
	Gaussian
	Sierpinski triangle
	Bit distribution
	Parcel distribution

	Post Transformations
	Affine Transformation
	Compound Datasets
	Identifying Datasets

