Storage Formats

Overview

* We covered storage of unstructured
files in HDFS

" Partition into blocks

= Replicate to data nodes

" HDFS treats each file as a sequence
of data, i.e., it is data agnostic

* This lecture covers an HDFS-friendly
format for nested semi-structured data

Data Normalization

* |In RDBMS, data must be at least in 1-NF
" Think of it as a spreadsheet
" Each row represents a record
" Each column represents a field
" You can have only one primitive value for
each cell, possibly null
* In the big-data world, data is not in 1-NF
= JSON is the standard format
" JSON allows nesting and repetition (lists)
" How to efficiently store this data in HDFS?

Row-oriented Stores

Row Field 1 Field 2 Field 3

* CSV and JSON formats are examples of
traditional row-oriented data formats

* CSV is naturally in 1-NF, similar to
spreadsheets

* JSON supports nesting and repetition

e Q: How is the schema defined for in CSV
and JSON?

CSV Schema Definition

Schema

\ Data Y

> Advantage: Low overhead

> Disadvantages: Rigid model (not flexible), does
not support nesting

JSON Schema Definition

“created-at”: “Mon May 06 20:01:29 +0000 2019”,
“1d”: 9457298472,

“text”: “Good Morning!”,

“user”: {

“id”: 242342,

“name”: “Alex”,

“location: {“city”: “Riverside”, “state”, “CA”,
“country”: “USA”}

¥

> Advantages: Flexible model. Supports nesting.

» Disadvantage: High overhead. Schema is
repeated for each record

Marlan and Rosemary Bourns
College of Engineering

Row Format

e Both CSV and JSON are considered row
formats when stored in their textual form

* Row formats is beneficial when the entire
record needs to be processed as one unit

* Traditional RDBMS use row formats

* How about analytical queries?
" Count of records
= Sum of bytes
" Avg(bytes) per response code

Column Format

* Stores each column separately rather
than each row

Jack jack@example.com
2 Jill jill@example.net
3 Alex alex@example.org

Column Format

* Preferred for analytical queries that access
a few set of columns, e.g., avg(bytes) per
response code

* Can avoid reading unnecessary attributes
from disk

* Columns can be encoded more efficiently
" Bit masks for null value
" Delta encoding
" Run-length encoding (RLE)

* Column format is preferred in data
warehouses

Column Encoding/Compression

Riverside Riverside,3

Riverside Los Angeles,?2
. . Run Length Encoding (RLE) . .

Riverside Riverside, 1

Los Angeles Sacramento, 1

Los Angeles

Riverside

Sacramento

Column Encoding/Compression

85

85

84

83

87

85

86

\

Diff Encoding

Range [-100, +150]
251 unique values
8-bits per entry

85

_

\

Compression/decompression cost
One (or a few) instruction per value

8-bits

Range [-7, +7]

15 unique values

4-bits per entry

11

Encoding of Null Values

jeff@example.com jeff@example.com
0 chen@example.org
chen@example.org 1 alex@example.net
0 nora@example.com
Null Encoding
0
0
alex@example.net 1
0

nora@example.com 1

12

mailto:jeff@example.com
mailto:chen@example.org
mailto:alex@example.net
mailto:nora@example.com
mailto:jeff@example.com
mailto:chen@example.org
mailto:alex@example.net
mailto:nora@example.com

Column Format for Big Data

Column Format for Big Data

* The format needs to be compatible with
HDEFS structure to maximize data locality

* The format needs to support nesting
and repetition as in JSON data

Apache Parquet

A column format designed
for big data

Based on Google Dremel

Designed for the
distributed file system

Supports nesting

Language independent,
can be processed in C++,
Java, or other formats

Limited to static data and
recommended for
analytical queries

Parquet Overview

Column Chunk

ost 4 JUR L JRewose Btes [Rekerer
r h N

[
3
o O
C;)?'
N y v
/Q N\
3
o O
C;)‘z_'
O Y,

Column Chunk

* A sequence of values of the same type

* In the absence of repetition and nesting,
storing one column chunk is straight-
forward

 \WWe can store all values as a list

* VValues can be compressed or encoded
using any of the popular method

* When compressed, each column chunk is
further split into pages of 16KB each

* Nesting, Repetition, and Nulls, Oh My!

Nesting and Null in Parquet

Record Schema

message AddressBook {
required string owner;

repeated string ownerPhoneNumbers;
repeated group contacts {

required string name;
optional string phoneNumber;

AddressBook
Column Type
contacts
- : owner | ownerPhoneNumbers

owner string name | phoneNumber
ownerPhoneNumbers string
contacts.name string
contacts.phoneNumber string

>

18

Examples

messagel: {

owner: “Alex”;
ownerPhoneNumbers: [
“951-555-7777", “961-555-9999”
1

contacts: [{
name: “Chris”;
phoneNumber: “951-555-6666";

}]
}

message3: A

owner: “Joe”;
ownerPhoneNumbers: [
“951-555-4444”, “961-555-3333”
]

}

message5: {
owner: “Violet”;
ownerPhoneNumbers: [
“961-555-1111"
]
}

message2: {
owner: null;
ownerPhoneN' “~ers: |
“951-555-77. y 555-9999”
1
contacts: [{
name: “Chr y
phoneNumbe . “951-> 5-6666";
3]
}

messaged: {
owner: “Olivia”;
ownerPhoneNumbers: [
“951-555-2222”
15
contacts: [{
name: “Chris”;
phoneNumber: null;

}]
}

Definition Level

* The nesting level at which a field is null

message ExampleDefinitionLevel {
optional group a {
optional group b {

optional string c;

Value Definition Level
a: null 0

a: { b: null } 1

a: { b: { c: null } } 2

a: { b: { c: “"foo” } } 3 (actually defined)

Definition Level

a: null 0
a: { b: null } 1
a: { b: { c: null } } 4
a: { b: { c: “foo” } } 3 (actually defined)
0 1 2 D
R s | = °
b: null

SRampeddnton e

Definition Level with Required

 When a field is require (not nullable), then there
is one definition level that is not allowed

message ExampleDefinitionLevel {
optional group a {
required group b {
optional string c;

Value Definition Level

a: null 0

a: { b: null } Impossible, as b is required
a: { b: { ¢c: mulLl })} 1

a: { b: { c: “"foo” } } |[2(actually defined)

22

Repetition Level

* The level at which we should create a

new list

Schema:

Data: ((a,b,c),(d,e,£,q]],

message nestedlLists {
repeated group levell {
repeated string level2;

levell:
level2:
level2:
level2:
level2:

levell:
level2:

levell:
level2:
level2:

level2:
level2:
level2:

o Q

Repetition level

Value

N OMNMNMNNEFEFNNO

U DQ M0 Q0D P

Repetition Level

* The repetition level marks the beginning
of lists and can be interpreted as
follows:

" 0 marks every new record and implies
creating a new levell and level2 list

" 1 marks every new levell list and
implies creating a new level2 list as
well.

= 2 marks every new element in a level2
list.

Repetition Level

new record
new level2 entry

new level2 entry

new levell entry

new level2 entry

new level2 entry

new level2 entry

new record

new levell entry

new level2 entry

25

AddressBook Example

Record Schema

message AddressBook {
required string owner;
repeated string ownerPhoneNumbers;

repeated group contacts {
required string name;
optional string phoneNumber;

}
}

m Optional Max Definition level Max Repetition level

Owner
Owner phone number
Contacts.name

Contacts.Phone number

Yes
No

Yes

0 (owner is required)
1
1 (name is required)

2 (phone is optional)

0 (no repetition)
1 (repeated)
1 (contacts is repeated)

1 (contacts is repeated)

26

DocId: 160 message Document {

Links required int64 DocId;
Forward: 20 optional group Links {
Forward: 40 repeated int64 Backward;
Forward: 60 repeated in64 Forward; }

Name repeated group Name {
Language repeated group Language {

Code: ‘en-us’ required string Code;
Country: ‘us’ optional string Country; }
Language option String Url;}}
Code: ‘en’
Url: ‘http://A’° DocId: 20

Name Links

Url: ‘http://b’ Backward: 10

Name
Language
Code: ‘en-gb’
Country: ‘gb’

Backward: 30

Forward: 80
Name

Url: ‘http://C’°

Further Reading

* Dremel made simple with Parquet
[https://blog.twitter.com/engineering/e
n us/a/2013/dremel-made-simple-with-
parquet.html]

* Apache Parquet project homepage
[http://parquet.apache.org]

* Parquet for MapReduce (works for both
Hadoop and Spark)
[https://github.com/apache/parquet-
mr]}

