
Storage Formats

1



2

•We covered storage of unstructured 
files in HDFS
§ Partition into blocks
§ Replicate to data nodes
§ HDFS treats each file as a sequence 

of data, i.e., it is data agnostic
• This lecture covers an HDFS-friendly 

format for nested semi-structured data

Overview



Data Normalization
• In RDBMS, data must be at least in 1-NF
§ Think of it as a spreadsheet
§ Each row represents a record
§ Each column represents a field
§ You can have only one primitive value for 

each cell, possibly null
• In the big-data world, data is not in 1-NF
§ JSON is the standard format
§ JSON allows nesting and repetition (lists)
§ How to efficiently store this data in HDFS?

3



Row-oriented Stores

• CSV and JSON formats are examples of 
traditional row-oriented data formats
• CSV is naturally in 1-NF, similar to 

spreadsheets
• JSON supports nesting and repetition
• Q: How is the schema defined for in CSV 

and JSON?
4

Field 1Row Field 2 Field 3 …



CSV Schema Definition

Host URL Response Bytes Referrer

5

Schema

Data

Advantage: Low overhead
Disadvantages: Rigid model (not flexible), does 
not support nesting



6

JSON Schema Definition
{
“created-at”: “Mon May 06 20:01:29 +0000 2019”,
“id”: 9457298472,
“text”: “Good Morning!”,
“user”: {
“id”: 242342,
“name”: “Alex”,
“location: {“city”: “Riverside”, “state”, “CA”, 

“country”: “USA”}
}

Advantages: Flexible model. Supports nesting.
Disadvantage: High overhead. Schema is 
repeated for each record



7

• Both CSV and JSON are considered row 
formats when stored in their textual form
• Row formats is beneficial when the entire 

record needs to be processed as one unit
• Traditional RDBMS use row formats
• How about analytical queries?
§ Count of records
§ Sum of bytes
§ Avg(bytes) per response code

Row Format



Column Format

• Stores each column separately rather 
than each row

8

ID

1

2

3

Name

Jack

Jill

Alex

Email

…

…

…

ID Name Email …

1 Jack jack@example.com

2 Jill jill@example.net

3 Alex alex@example.org



9

• Preferred for analytical queries that access 
a few set of columns, e.g., avg(bytes) per 
response code
• Can avoid reading unnecessary attributes 

from disk
• Columns can be encoded more efficiently
§ Bit masks for null value
§ Delta encoding
§ Run-length encoding (RLE)
• Column format is preferred in data 

warehouses

Column Format



Column Encoding/Compression

10

City

Riverside

Riverside

Riverside

Los Angeles

Los Angeles

Riverside

Sacramento

…

City

Riverside,3

Los Angeles,2

Riverside, 1

Sacramento, 1

…

Run Length Encoding (RLE)



Column Encoding/Compression

11

Temperature

85

85

84

83

87

85

86

…

City

85

0

-1

-1

+4

-2

+1

…

Diff Encoding

Range [-100, +150]
251 unique values
8-bits per entry

8-bits

Range [-7, +7]
15 unique values
4-bits per entry

Compression/decompression cost
One (or a few) instruction per value



Encoding of Null Values

12

Email

jeff@example.com

chen@example.org

alex@example.net

nora@example.com

…

Null Encoding

Email

jeff@example.com

chen@example.org

alex@example.net

nora@example.com

…

Exists

1

0

1

0

0

0

1

0

1

…

mailto:jeff@example.com
mailto:chen@example.org
mailto:alex@example.net
mailto:nora@example.com
mailto:jeff@example.com
mailto:chen@example.org
mailto:alex@example.net
mailto:nora@example.com


HDFS

Column Format for Big Data

13

Bl
oc
k

Bl
oc
k

ID

1

2

3 Bl
oc
k

Bl
oc
k

Name

Jack

Jill

Alex Bl
oc
k

Bl
oc
k

Email

…

…

…



Column Format for Big Data
• The format needs to be compatible with 

HDFS structure to maximize data locality
• The format needs to support nesting 

and repetition as in JSON data

14



15

• A column format designed 
for big data

• Based on Google Dremel
• Designed for the 

distributed file system
• Supports nesting
• Language independent, 

can be processed in C++, 
Java, or other formats

• Limited to static data and 
recommended for 
analytical queries

Apache Parquet



Parquet Overview

Host URL Response Bytes Referrer

16

Ro
w

 G
ro

up
~1

GB
Ro

w
 G

ro
up

~1
GB

Column Chunk



17

• A sequence of values of the same type
• In the absence of repetition and nesting, 

storing one column chunk is straight-
forward
• We can store all values as a list
• Values can be compressed or encoded 

using any of the popular method
• When compressed, each column chunk is 

further split into pages of 16KB each
• Nesting, Repetition, and Nulls, Oh My!

Column Chunk



Nesting and Null in Parquet

18

Record Schema
message AddressBook {
required string owner;
repeated string ownerPhoneNumbers;
repeated group contacts {
required string name;
optional string phoneNumber;
}
}



Examples

19

message1: {
owner: “Alex”;
ownerPhoneNumbers: [
“951-555-7777”, “961-555-9999”

],
contacts: [{

name: “Chris”;
phoneNumber: “951-555-6666”;

}]
}

message2: {
owner: null;
ownerPhoneNumbers: [
“951-555-7777”, “961-555-9999”

],
contacts: [{

name: “Chris”;
phoneNumber: “951-555-6666”;

}]
}

message3: {
owner: “Joe”;
ownerPhoneNumbers: [
“951-555-4444”, “961-555-3333”

]
}

message4: {
owner: “Olivia”;
ownerPhoneNumbers: [
“951-555-2222”

],
contacts: [{

name: “Chris”;
phoneNumber: null;

}]
}

message5: {
owner: “Violet”;
ownerPhoneNumbers: [
“961-555-1111”

]
}



Definition Level
• The nesting level at which a field is null

20

message ExampleDefinitionLevel {
optional group a {
optional group b {
optional string c;
}
}
}



Definition Level

21



Definition Level with Required
• When a field is require (not nullable), then there 

is one definition level that is not allowed

22

message ExampleDefinitionLevel {
optional group a {
required group b {
optional string c;
}
}
}



Repetition Level

• The level at which we should create a 
new list

23



Repetition Level
• The repetition level marks the beginning 

of lists and can be interpreted as 
follows:
§ 0 marks every new record and implies 

creating a new level1 and level2 list
§ 1 marks every new level1 list and 

implies creating a new level2 list as 
well.

§ 2 marks every new element in a level2 
list.

24



Repetition Level

25



AddressBook Example

26

Record Schema
message AddressBook {
required string owner;
repeated string ownerPhoneNumbers;
repeated group contacts {
required string name;
optional string phoneNumber;
}
}

Attribute Optional Max Definition level Max Repetition level

Owner No 0 (owner is required) 0 (no repetition)

Owner phone number Yes 1 1 (repeated)

Contacts.name No 1 (name is required) 1 (contacts is repeated)

Contacts.Phone number Yes 2 (phone is optional) 1 (contacts is repeated)



Example

27

DocId: 10
Links

Forward: 20
Forward: 40
Forward: 60

Name
Language

Code: ‘en-us’
Country: ‘us’

Language
Code: ‘en’

Url: ‘http://A’
Name

Url: ‘http://b’
Name

Language
Code: ‘en-gb’
Country: ‘gb’

DocId: 20
Links

Backward: 10
Backward: 30
Forward: 80

Name
Url: ‘http://C’

message Document {
required int64 DocId;
optional group Links {
repeated int64 Backward;
repeated in64 Forward; }

repeated group Name {
repeated group Language {
required string Code;
optional string Country; }

option String Url;}}



Further Reading
• Dremel made simple with Parquet 

[https://blog.twitter.com/engineering/e
n_us/a/2013/dremel-made-simple-with-
parquet.html]
• Apache Parquet project homepage 

[http://parquet.apache.org]
• Parquet for MapReduce (works for both 

Hadoop and Spark) 
[https://github.com/apache/parquet-
mr]

28


