
Hadoop Distributed
File System (HDFS)

1



HDFS Overview

• A distributed file system

• Built on the architecture of Google File 
System (GFS)

• Shares a similar architecture to many other 
common distributed storage engines such as 
Amazon S3 and Microsoft Azure

• HDFS is a stand-alone storage engine and can 
be used in isolation of the query processing 
engine

2



Background on Disk Storage

• What are file systems and why do we need 
them?

• A file is a logical sequence of bits/bytes

• A physical disk stores data in sectors, tracks, 
tapes, blocks, … etc.

3



File System

• Any file system, is a method to provide a 
high-level abstraction on physical disk to 
make it easier to store files

4

File System

FoldersFiles



Distributed File System

5

FoldersFiles

Distributed File System



Analogy to Unix FS

6

The logical view is similar

/

user
mary

chu

etc hadoop



Analogy to Unix FS

7

The physical model is comparable

Unix HDFS

File1

List of iNodes

Block 1

Block 2

Block 3

…

File1

List of block locations

Meta data

B B B

B B B

B B B

B

B B B

B B



HDFS Architecture

8

B B B

B B B

B B B

B

B B B

B B

Name node

Data nodes



What is where?

9

B B B

B B B

B B B

B

B B B

B B

Name node

Data nodes

File and directory names
Block ordering and locations
Capacity of data nodes
Architecture of data nodes

Block data
Name node location



Physical 
Cluster 
Layout

10

Rack
#1

Rack 
#2 …

Node #32

…
Node #3

Node #2

Node #1

…

…

…
Node #34

Node #33



Analogy of racks

11

Node

Node

Node

Node

Rack

Switch

Node

Node

Node

Node

Rack

Switch



HDFS Shell

Manage the files from command line

12



HDFS Shell

• The easiest way to deal with HDFS is through 
its shell

• The commands are very similar to the Linux 
shell commands

• General format

• So, instead of

• You will write

13

hdfs dfs -<cmd> <arguments>

mkdir –p myproject/mydir

hdfs dfs -mkdir –p myproject/mydir



HDFS Shell

• In addition to regular commands, there 
are special commands in HDFS
▪ copyToLocal/get Copies a file 

from HDFS to the local file system
▪ copyFromLocal/put Copies a file 

from the local file system to HDFS
▪ setrep Changes the replication factor

• A list of shell commands with usage
▪ https://hadoop.apache.org/docs/r3.2.2/hadoop-project-dist/hadoop-

common/FileSystemShell.html

14

https://hadoop.apache.org/docs/r3.2.2/hadoop-project-dist/hadoop-common/FileSystemShell.html


HDFS API

Mange the file system programmatically

15



FileSystem API

• HDFS provides a Java API that allows your 
programs to manage the files similar to the 
shell. It is even more powerful.

• For interoperability, the FileSystem API 
covers not only HDFS, but also the local file 
system and other common file systems, e.g., 
Amazon S3

• If you write your program in Hadoop 
FileSystem API, it will generally work for 
those file systems

16



HDFS API Basic Classes

17

FileSystem

DistributedFileSystemLocalFileSystem S3FileSystem

Path Configuration



HDFS API Classes

• Configuration: Holds system 
configuration such as where the master 
node is running and default system 
parameters

• Path: Stores a path to a file or directory

• FileSystem: An abstract class for file 
system commands

18



Fully Qualified Path

19

hdfs://masternode:9000/path/to/file

hdfs: the file system scheme. Other possible values are 
file, ftp, s3, …
masternode: the name or IP address of the node that 
hosts the master of the file system
9000: the port on which the master node is listening
/path/to/file: the absolute path of the file



Shorter Path Forms

• file: relative path to the current working directory 
in the default file system

• /path/to/file: Absolute path to a file in the 
default* file system (as configured)

• hdfs://path/to/file: Use the default* values for the 
master node and port

• hdfs://masternode/path/tofile: Use the given 
masternode name or IP and the default* port

*All the defaults are in the Configuration object

20



HDFS API

21

Configuration conf = new Configuration();
Path path = new Path(“…”);
FileSystem fs = path.getFileSystem(conf);

// To get the local FS
fs = FileSystem.getLocal(conf);

// To get the default FS
fs = FileSystem.get(conf);

Create the file system



HDFS API

22

FSDataOutputStream out = fs.create(path, …);

Create a new file

fs.delete(path, recursive);

fs.deleteOnExit(path); // For temporary files

Delete a file

fs.rename(oldPath, newPath);

Rename/Move a file



HDFS API

23

FSDataInputStream in = fs.open(path, …);

Open a file for reading

in.seek(pos);
in.seekToNewSource(pos);

Seek to a different location for random access



HDFS API

24

fs.concat(destination, src[]);

Concatenate

fs.getFileStatus(path);

Get file metadata

fs.getFileBlockLocations(path, from, to);

Get block locations



HDFS Writing Process

25

Data nodes

File creator

Name node



HDFS Writing Process

26

Data nodes

File creator
Create(…)

Name node

The creator process calls the create 
function which translates to an RPC call at 
the name node



HDFS Writing Process

27

Name node

Data nodes

File creator
Create(…)

The master node creates an initial block 
with three replicas
1. First block replica is assigned to a 

random machine
2. Second block replica is assigned to 

another random machine on a different 
rack

3. Third block replica is assigned to a 
random machine on the second rack

1 2 3



HDFS Writing Process

28

Name node

Data nodes

File creator
OutputStream

1 2 3



HDFS Writing Process

29

Name node

Data nodes

File creator

1 2 3

OutputStream#write



HDFS Writing Process

30

Name node

Data nodes

File creator

1 2 3

OutputStream#write



HDFS Writing Process

31

Name node

Data nodes

File creator

1 2 3

OutputStream#write



HDFS Writing Process

32

Name node

Data nodes

File creator

1 2 3

OutputStream#write

When a block is filled up, the 
creator contacts the name node to 
create the next block with three 
new replicas on possibly a 
different set of nodes

Next block



Notes about writing to HDFS

• Data transfers of replicas are pipelined

• The data does not go through the name 
node

• Random writing is not supported

• Appending to a file is supported but it 
creates a new block

33



Writing from a datanode

34

Name node

Data nodes

File 
creator

If the file creator is running on one of 
the data nodes, the first replica is 
always assigned to that node
The second and third replicas are 
assigned as before



Reading from HDFS

• Reading is relatively easier

• No replication is needed

• Replication can be exploited

• Random reading is allowed

35



HDFS Reading Process

36

Data nodes

File reader
open(…)

Name node

The reader process calls the open function 
which translates to an RPC call at the 
name node



HDFS Reading Process

37

Data nodes

File reader
InputStream

Name node

The name node locates the first block of 
that file and returns the address of one of 
the nodes that store that block

The name node returns an input stream 
for the file



HDFS Reading Process

38

Data nodes

File reader

InputStream#read(…)

Name node



HDFS Reading Process

39

Data nodes

File reader

Name node

When an end-of-block is 
reached, the name node 
locates the next block

Next block



HDFS Reading Process

40

Data nodes

File reader

Name node

seek(pos)

InputStream#seek operation locates a 
block and positions the stream 
accordingly



Reading from a datanode

41

Data nodes

File 
reader

Name node

1. If the block is locally stored on 
the reader, this replica is 
chosen to read

2. If not, a replica on another 
machine in the same rack is 
chosen

3. Any other random block 
replica is chosen

Open, seek

When self-reading occurs, HDFS 
can make it much faster through 
a feature called
short-circuit



Notes About Reading

• The API is much richer than the simple 
open/seek/close API
▪ You can retrieve block locations
▪ You can choose a specific replica to 

read
• The same API is generalized to other file 

systems including the local FS and S3
• Review question: Compare random 

access read in local file systems to HDFS

42



HDFS Special Features

• Node decommission

• Load balancer

• Cheap concatenation

43



Node Decommission

44

B B B

B B B

B B B

B

B B B

B B

B B B

B



Load Balancing

45

B B B

B B B

B B B

B

B B B

B B



Load Balancing

46

B B B

B B B

B B B

B

B B B

B B

Start the load balancer



Cheap Concatenation

47

Name node

File 1

File 2

File 3

Concatenate File 1 + File 2 + File 3 ➔ File 4

Rather than creating new blocks, HDFS can just change 
the metadata in the name node to delete File 1, File 2, 
and File 3, and assign their blocks to a new File 4 in the 
right order.



Conclusion

• HDFS is a general-purpose distributed file 
system

• Provides a similar abstraction to other file 
systems

• HDFS provides two interfaces
▪ Shell script. Similar to Linux and MacOS
▪ Java API: For programmatic access

• The FileSystem API applies to other file 
systems including the local file system and 
Amazon S3

48



Further Readings

• HDFS Architecture
▪ https://hadoop.apache.org/docs/r3.2.2/hadoop

-project-dist/hadoop-hdfs/HdfsDesign.html

• Shell commands
▪ https://hadoop.apache.org/docs/r3.2.2/hadoop

-project-dist/hadoop-
common/FileSystemShell.html

• FileSystem API
▪ https://hadoop.apache.org/docs/r3.2.2/api/org

/apache/hadoop/fs/FileSystem.html

49

https://hadoop.apache.org/docs/r3.2.2/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/r3.2.2/hadoop-project-dist/hadoop-common/FileSystemShell.html
https://hadoop.apache.org/docs/r3.2.2/api/org/apache/hadoop/fs/FileSystem.html

