Marlan and Rosemary Bourns
College of Engineering

HOW TO WRITE A CV

DO YOU HAVE
ANY EXPERTISE

DOESN'T
MATTER.
WRITE:
"EXPERT IN
NO sSQL"

Leverage the NoSQL boom

What is NoSQL?

* Not only SQL

* SQL means
= Relational model
= Strong typing
" ACID compliance
= Normalization

* NoSQL means more freedom or
flexibility

Relevance to Big Data

* Data gets bigger
* Traditional RDBMS cannot scale well

* RDBMS is tied to its data and query
processing models

* NoSQL relaxes some of the restrictions
of RDBMS to provide a better
performance

Advantages of NoSQL

* Handles Big Data
* Data Models — No predefined schema

e Data Structure — NoSQL handles semi-
structured data

* Cheaper to manage
* Scaling — Scale out / horizonal scaling

Advantages of RDBMS

* Better for relational data

* Data normalization

* Well-established query language (SQL)
* Data Integrity

* ACID Compliance

Types of NoSQL Databases

* Document Databases [MongoDB,
CouchDB]

* Column Databases [Apache Cassandra]

» Key-Value Stores [Redis, Couchbase
Server]

e Cache Systems [Redis, Memcached]
* Graph Databases [Neo4J]
e Streaming Systems [FlinkDB, Storm]

Document Database

College of Engineering

Document Data Model

* Relational model (RDBMS)

= Database
- Relation (Table) : Schema
- Record (Tuple) : Da*=

* Document Model
“address”: {“street”: “900 university ave”, “city”: “Riverside”,

u D a ta b a S e state: “CA”}, “friend_ids”: [3, 55, 123]}

- Collection : No predetined schema
- Document : Schema+data

* No need to define/update schema
* No need to create collections

“id”: 1, “name”:"Jack”, “email”: “jack@example.com”,

Document Format

* MongoDB natively works with JSON
documents

* For efficiency, documents are stored in a
binary format called BSON (i.e., binary
JSON)

e Like JSON, both schema and data are
stored in each document

How to Use MongoDB

Install: Check the MongoDB website
https://docs.mongodb.com/manual/installation/

Create collection and insert a document

db.users.insert({name: “Jack”, email:

“jack@example.com™});

Retrieve all/some documents

db.users.find();
db.users.find({name: “Jack”});

Update

db.users.update({name: "Jack"}, {$set: {hobby:
"cooking"}});
updateOne, updateMany, replaceOne

Delete

db.users.remove({name: "Alex"});

deleteOne, deleteMany

https://docs.mongodb.com/manual/crud/

https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/crud/

Schema Validation

* You can still explicitly create collections
and enforce schema validation

db.createCollection("students”, {
validator: { $jsonSchema: {

bsonType: "object”,

required: ["name", "year", "major", "address"],

properties: {

name: {

bsonType: "string",
description: "must be a string and is required" },

https://docs.mongodb.com/manual/core/schema-validation/

Storage Layer

* Prior to MongoDB 3.2, only B-tree was
available in the storage layer

* To increase its scalability, MongoDB
added LSM Tree in later versions after it
acquired WiredTiger

Override default configuration

mongod --wiredTigerIndexConfigString "type=1lsm,block compressor=z1ib"

LSM Vs B-tree

LSM Write Throughput LSM Read Throughput
350000 900000
800000 —
300000
700000 —
250000 -
600000 —
§ 200000 § 500000 -
Z T Z T
S 15 Unlimited Writes & 400000 - Unlimited Writes
“ Limited Writes Limited Writes
300000 —
100000 -
200000 -
50000 -
100000 -
0 0
write (1+1) write (1+4) write (1+16) write (1+32) read (1+1) read (1+4) read (1+16) read (1+32)
Thread Count (writers + readers) Thread Count (writers + readers)
Btree Write Throughput Btree Read Throughput
250000 3000000
2500000
200000 -
2000000
150000 -
© v
: i
= 1500000
g- & Unlimited Writes é & Unlimited Writes
100000 1 ~ Limited Writes Limited Writes
1000000
50000 -
500000
0 0
write (1+1) write (1+4) write (1+16) write (1+32) read (1+1) read (1+4) read (1+16) read (1+32)
Thread Count (writers + readers) Thread Count (writers + readers)

https://github.com/wiredtiger/wiredtiger/wiki/Btree-vs-LSM

14

https://github.com/wiredtiger/wiredtiger/wiki/Btree-vs-LSM

Indexing

e Like RDBMS, document databases use
indexes to speed up some queries

Collection Query Criteria Sort order

v :

db.users.find({ score: { "$1t": 30 } }).sort({ score: -1 })

{ score: 1 } Index

score: 30,

users

* MongoDB uses B-tree as an index structure

https://docs.mongodb.com/manual/indexes/

https://docs.mongodb.com/manual/indexes/

Index Types

e Default unique id index

* Single field index
= db.collection.createlndex({name: -1});

 Compound index (multiple fields)
" db.collection.createlndex({ name: 1,
score: -1});
* Multikey indexes (for array fields)
" Creates an index entry for each value

https://docs.mongodb.com/manual/indexes/

https://docs.mongodb.com/manual/indexes/

Index Types

* Geospatial index (for geospatial points)
= Uses geohash to convert two dimensions to
one dimension
" 2d indexes: For Euclidean spaces
" 2d sphere: spherical (earth) geometry
" Works with multikey indexes for multiple
locations (e.g., pickup and dropoff locations
for taxis)
* Text Indexes (for string fields)
= Automatically removes stop words
= Stems the works to store the root only

* Hashed Indexes (for point lookups)

Additional Index Features

* Unique indexes: Rejects duplicate keys

* Sparse Indexes: Skips documents
without the index field

" [n contrast, non-sparse indexes

assume a null value if the index field
does not exist

* Partial indexes: Indexes only a subset of
records based on a filter.

db.restaurants.createIndex(
{ cuisine: 1, name: 1 },

{ partialFilterExpression: { rating: { $gt: 5 } } }

)

Distributed Processing

* Two methods for distributed processing
" Replication (Similar to MySQL)
» Sharding (True horizontal scaling)

Primary

\\(7’ %//e

Replication Sharding
https://docs.mongodb.com/manual/replication/ https://docs.mongodb.com/manual/sharding/

19

https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/sharding/

Comparison of data types

* Min key (internal type)
* Null

 Numbers (32-bit integer, 64-bit integer, double)
* Symbol, String

* Object

* Array

* Binary data

* ObjectID

* Boolean

* Date, timestamp

* Regular expression

* Max key (internal type)

https://docs.mongodb.com/v3.6/reference/bson-type-comparison-order/

20

https://docs.mongodb.com/v3.6/reference/bson-type-comparison-order/

Comparison of data types

* Numbers: All converted to a common type

* Strings
* Alphabetically (default)
= Collation (i.e., locale and language)

* Arrays
" <:Smallest value of the array
= >: largest value of the array
" Empty arrays are treated as null

Object
= Compare fields in the order of appearance
= Compare <name,value> for each field

21

