
Hadoop Distributed File
System (HDFS)

1

HDFS Overview
• A distributed file system
• Built on the architecture of Google File

System (GFS)
• Shares a similar architecture to many other

common distributed storage engines such
as Amazon S3 and Microsoft Azure
• HDFS is a stand-alone storage engine and

can be used in isolation of the query
processing engine
• Even if you do not use Hadoop MapReduce,

you will probably still use HDFS

2

3

• HDFS design and architecture
• Fault tolerance in HDFS
• Create (Write) a file
• Stream reading
• Structured reading
• Java API
• Command-line interface (HDFS Shell)

HDFS Topics

HDFS Architecture

4

B B B

B B B

B B B

B

B B B

B B

Name node

Data nodes

What is where?

5

B B B

B B B

B B B

B

B B B

B B

Name node

Data nodes

File and directory names
Block ordering and locations
Capacity of data nodes
Architecture of data nodes

Block data
Name node location

Data Loading

6

Input file (600 MB)

128 MB

128 MB

128 MB

128 MB

88 MB

HDFS
Block

The most common
replication factor is three

HDFS Storage

7

B B B

B B B

B B B

B

B B B

B B

Analogy to Unix FS

8

The logical view is similar

/
user

mary

chu

etc hadoop

Analogy to Unix FS

9

The physical model is comparable

Unix HFDS

File1

List of iNodes

Block 1

Block 2

Block 3

…

File1

List of block locations

Meta data

B B B
B B B

B B B
B

B B B
B B

10

Fault Tolerance in HDFS

11

• The default fault tolerance mechanism in
HDFS is replication
• The most common replication factor is

three
• If one or two nodes are temporarily

unavailable, the data is still accessible
• If one or two nodes permanently fail, the

master node replicates the under-
replicated blocks to reach the desired
replication factor
• Drawback: reduced disk capacity

Replication

12

• Uses advanced algorithms for recovery,
e.g., Reed-Solomon, XOR

Erasure Coding

Data Block

f1 f2

13

• Uses advanced algorithms for recovery,
e.g., Reed-Solomon, XOR

Erasure Coding

f3

14

• Three-way
replication
• Overhead= !

"
= 200%

• Erase coding
• If we use 5+2

scheme, as in the
previous example
• Overhead= !

#
= 40%

Overhead

15

Writing to HDFS

HDFS Create

16

File creator

Name node

Data nodes

1 2 3

HDFS Create

17

File creator
Create(…)

The creator process calls the create
function which translates to an RPC call at
the name node

Name node

Data nodes

1 2 3

HDFS Create

18

Name node

Data nodes

File creator
Create(…)

The master node creates one initial block
with three replicas
1. First replica is assigned to a random

machine
2. Second replica is assigned to another

random machine in a different rack
3. Third replica is assigned to a random

machine on the same rack of the
second machine

1 2 3

B1
File

r1 r2 r3

Physical
Cluster
Layout

19

Rack
#1

Rack
#2 …

Node #32

…
Node #3

Node #2

Node #1

…

…
…

Node #34

Node #33

HDFS Create

20

File creator
OutputStream(r1)

Name node

Data nodes

1 2 3

B1
File

r1 r2 r3

HDFS Create

21

File creator

OutputStream#write

Name node

Data nodes

1 2 3

B1
File

r1 r2 r3

HDFS Create

22

File creator

OutputStream#write

Name node

Data nodes

1 2 3

B1
File

r1 r2 r3

HDFS Create

23

File creator

OutputStream#write

Name node

Data nodes

1 2 3

B1
File

r1 r2 r3

HDFS Create

24

File creator

OutputStream#write à B2.r1

When a block is filled up, the
creator contacts the name node to
create the next block

Next block

Name node

Data nodes

1 2 3

B1
File

r1 r2 r3

B2

r1 r2 r3

Notes about writing to HDFS
• Data transfers of replicas are pipelined
• The data does not go through the name

node
• Random writing is not supported
• Appending to a file is supported but it

creates a new block

25

Self-writing

26

Name node

Data nodes

File
creator

If the file creator is running on one of
the data nodes, the first replica is
always assigned to that node

The second and third replicas are
assigned as before, i.e., the second
replica on a different rack and the
third replica on the same rack as the
second one.

27

Stream reading from HDFS

Reading from HDFS
• Reading is relatively easier
• No replication is needed
• Replication can be exploited
• Random reading is allowed

28

HDFS Read

29

Data nodes

File reader
open(…)

Name node

The reader process calls the open function
which translates to an RPC call at the
name node

HDFS Read

30

Data nodes

File reader
InputStream

Name node

The name node locates the first block of
that file and returns the address of one of
the nodes that store that block

The name node returns an input stream
for the file

HDFS Read

31

Data nodes

File reader

InputStream#read(…)

Name node

HDFS Read

32

Data nodes

File reader

Name node

When an end-of-block is
reached, the name node
locates the next block

Next block

HDFS Read

33

Data nodes

File reader

Name node

seek(pos)

InputStream#seek operation locates a
block and positions the stream
accordingly

Self-reading

34

Data nodes

File
reader

Name node

1. If the block is locally stored on
the reader, this replica is
chosen to read

2. If not, a replica on another
machine in the same rack is
chosen

3. Any other random block is
chosen

Open, seek

When self-reading occurs, HDFS
can make it much faster through
a feature called
short-circuit

Notes About Reading
• The API is much richer than the simple

open/seek/close API
§ You can retrieve block locations
§ You can choose a specific replica to

read
• The same API is generalized to other file

systems including the local FS and S3
• Review question: Compare random

access read in local file systems to HDFS

35

36

Special Features in HDFS

HDFS Special Features
• Node decomission
• Load balancer
• Cheap concatenation

37

Node Decommission

38

B B B

B B B

B B B

B

B B B

B B

B B B

B

Load Balancing

39

B B B

B B B

B B B

B

B B B

B B

Load Balancing

40

B B B

B B B

B B B

B

B B B

B B

Start the load balancer

Cheap Concatenation

41

Name node

File 1

File 2

File 3

Concatenate File 1 + File 2 + File 3 è File 4

Rather than creating new blocks, HDFS can just change
the metadata in the name node to delete File 1, File 2,
and File 3, and assign their blocks to a new File 4 in the
right order.

42

HDFS Shell
Command-line Interface (CLI)

43

• Used for common operations
• Its usage is similar to Unix shell

commands
• Basic operations include
§ ls, cp, mv, mkdir, rm, …
• HDFS-specific operations include
§ copyToLocal, copyFromLocal, setrep,

appendToFile, …

HDFS Shell

HDFS Shell

• General format

• So, instead of

• You will write

• A list of shell commands with usage
§ https://hadoop.apache.org/docs/r3.3.0/hadoop-project-dist/hadoop-

common/FileSystemShell.html

44

hdfs dfs -<cmd> <arguments>

mkdir –p myproject/mydir

hdfs dfs -mkdir –p myproject/mydir

https://hadoop.apache.org/docs/r3.3.0/hadoop-project-dist/hadoop-common/FileSystemShell.html

HDFS API

45

FileSystem

DistributedFileSystemLocalFileSystem S3FileSystem

Path Configuration

HDFS API Classes
• Configuration: Holds system

configuration such as where the master
node is running and default system
parameters, e.g., replication factor and
block size
• Path: Stores a path to a file or directory
• FileSystem: An abstract class for file

system operations

46

Fully Qualified Path

47

hdfs://masternode:9000/path/to/file
hdfs: the file system scheme. Other possible values are
file, ftp, s3, …
masternode: the name or IP address of the node that
hosts the master of the file system
9000: the port on which the master node is listening
/path/to/file: the absolute path of the file

Shorter Path Forms
• file: relative path to the current working

directory in the default file system
• /path/to/file: Absolute path to a file in the

default* file system (as configured)
• hdfs://path/to/file: Use the default* values

for the master node and port
• hdfs://masternode/path/tofile: Use the

given masternode name or IP and the
default* port

*All the defaults are in the Configuration
object

48

HDFS API (Java)

49

Configuration conf = new Configuration();
Path path = new Path(“…”);
FileSystem fs = path.getFileSystem(conf);

// To get the local FS
fs = FileSystem.getLocal (conf);

// To get the default FS
fs = FileSystem.get(conf);

Create the file system

HDFS API

50

FSDataOutputStream out = fs.create(path, …);

Create a new file

fs.delete(path, recursive);
fs.deleteOnExit(path);

Delete a file

fs.rename(oldPath, newPath);

Rename a file

HDFS API

51

FSDataInputStream in = fs.open(path, …);

Open a file

in.seek(pos);
in.seekToNewSource(pos);

Seek to a different location

HDFS API

52

fs.concat(destination, src[]);

Concatenate

fs.getFileStatus(path);

Get file metadata

fs.getFileBlockLocations(path, from, to);

Get block locations

53

Structured Reading

54

• In distributed big data processing,
input files contain records not just raw
bytes
•We need to a way to read records from

files in HDFS
• For efficiency, we should split the file

and read it in parallel

Data files

55

• How to split the file?
§ By record: For fixed-size

records
§ By size: For variable-size

records
• Considerations, splitting the

file should be fast
• Should not need to read the

entire file to split it

File Splitting

Input File

56

• A split is created for each
block
• Advantages
§ Data locality
§ Efficiency
• If the file is too small, a

single block might be
further split

Default File Splitting

Input File

Block 1

Block 2

Block 3

Block 4

Block 1

Block 2

Block 3

Block 4

record

57

• Read all the records that are
inside the split
• How to deal with records that

overlap two splits?
• In each split, we should read

the records that start in that
split

Read data in one split

Input File

58

•Which records will
be read for each
of the four splits?

Read data in every split

Input File

record3

record2

record1

record6

record5

record4

record9

record8

record7

record10

Split 1

Split 2

Split 3

Split 4

59

• Split the file based on the file metadata
§ File size, block sizes, # of nodes
• Each split is defined by:
§ File name, Start offset, Length
• For each split:
§ Seek to the start offset
§ Skip the first record (except for the first

split)
§ Read until the beginning of the record

goes beyond the start + length

Reading process

60

• HDFS is a general-purpose distributed
file system
• It provides a write-once ready-many

access interface
• Supports random reading which can be

used for stream reading and structured
reading
• Provides a Unix-like shell
• Provides a Java API for programming

Conclusion

