

CS133 Computational Geometry

Voronoi Diagram Delaunay Triangulation

Nearest Neighbor Problem

- Given a set of points P and a query point q,
 find the closest point p ∈ P to q
- > $\forall p, r \in P, dist(p,q) ≤ dist(r,q)$
- Simple algorithm: Scan and find the minimum
- An efficient algorithm: Use a spatial index structure such as K-d tree
- What if we need to repeat this for every point in the space, i.e., an infinite number of points?

Application: Cell Coverage

Voronoi Diagram

Other Applications

- Service coverage for hospitals, post offices, schools, ... etc.
- Marketing: Find candidate locations for a new restaurant
- Routing: How an electric vehicle should travel while staying close to charging stations

Voronoi Region

> Given a set *P* of points (also called sites), a Voronoi region (Voronoi face) of a site $p_i \in P$, $V(p_i)$ is the set of points in the Euclidean space where p_i is (one of) the closest sites

>
$$V(p_i) = \{x: ||p_i - x|| \le ||p_j - x|| \forall p_j \in P\}$$

Voronoi Diagram

- The Voronoi diagram is the set of points that belong to two or more Voronoi regions
- Voronoi diagram is a tessellation of the space into regions where each region contains all the points that are closest to one site

VD of Two Points

VD of Three Points

VD of Three Points

Voronoi Region

 A Voronoi region of a set p_i is the intersection of all half spaces defined by the perpendicular bisectors

$$V(p_i) = \bigcap_{j \neq i} H(p_i, p_j)$$

VD of a Set of Points

Р

Onion cells under the microscope

A thin slice of carrot under the scope

A dead maple leaf at 160X

An oak leaf

- Voronoi regions are convex
- Each Voronoi region contains a single site
- Voronoi regions (faces) can be unbounded
- Most intersection points connect three segments

- > $V(p_i)$ is unbounded iff $p_i \in CH(P)$
- If a point x is at the intersection of three or more Voronoi regions, say V(p₁), V(p₂), ..., V(p_k), then x is the center of a circle C that have p₁, ..., p_k at its boundary
- C contains no other sites
- > VD is unique

Delaunay Triangulation (DT)

- Delaunay triangulation is the straight-line dual of the Voronoi diagram
- > Each site is a corner of at least one triangle
- Each two Voronoi regions that share an edge are connected with an edge in DT

- > The edges of D(P) do not intersect
- Is D(P) unique?
 - Yes, if no four sites are co-circular
- If p_i and p_j are the closest pair
 of sites, they are connected with an edge in DT
- If p_i and p_j are nearest neighbors, they are connected with an edge in DT
- > The circumcircle of p_i , p_j , and p_k is empty \Leftrightarrow (p_i, p_j, p_k) is a triangle in DT

DT is a Planar Graph

- Since the edges in DT do not intersect, they form a planar graph
 - The number of edges/faces in a Delaunay Triangulation is linear in the number of vertices.
 - The number of edges/vertices in a Voronoi Diagram is linear in the number of faces.
 - The number of vertices/edges/faces in a Voronoi Diagram is linear in the number of sites.

Theorem 7.3

For n ≥ 3, the number of vertices in the Voronoi diagram (n_v) of a set of n point sites in the plane is at most 2n - 5, and the number of edges n_e is at most 3n - 6

Proof

- > For any connected graph G
- > Euler's rule: $m_v m_e + m_f = 2$
 - > m_v : Number of vertices (nodes)
 - > m_e: Number of edges (arcs)
 - > m_f : Number of faces

>
$$(n_v + 1) - n_e + n = 2$$

- > Each edge connects two vertices
- > The sum of degrees of vertices $\sum d(v_i) = 2n_e$

Proof (cont'd)

- > $3n_v \leq \sum d(v_i)$
- > $3(n_v + 1) \leq 2n_e$
- > $(n_v+1) \leq \frac{2}{3}n_e$
- > But: $(n_v + 1) n_e + n = 2$
- > $(n_v + 1) = 2 n + n_e \le \frac{2}{3}n_e$
- > $\frac{1}{3}n_e \le n-2$
- > $n_e \leq 3n 6$
- > $n_v \leq 2n-5$

- If p_j is the nearest neighbor of p_i then p_ip_j is a Delaunay edge
- > p_j is the nearest neighbor of p_i iff. the circle around p_i with radius $|p_i p_j|$ is empty of other points.
- > \Rightarrow The circle through $(p_i + p_j)/2$ with radius $|p_i p_j|/2$ is empty of other points.
- ▶ $\Rightarrow (p_i + p_j)/2$ is on the Voronoi diagram.
- ▶ $\Rightarrow (p_i + p_j)/2$ is on a Voronoi edge.

VD Plane Sweep

- Scan the plane from top to bottom
- Compute the VD of the points above the sweep line
- > Is it that simple?

VD of a Line and a Point

VD of a Line and a n Points

VD of a Line and a n Points

Fortune's Algorithm

- As the line sweeps the plane, the algorithm maintains the VD of the set of points and the sweep line
- Since the sweep line is closer than any future point, it acts as a *barrier* that isolates the VD from all future points

Fortune's Algorithm in Action

VD Properties

- The VD part above the beach line (blue) is final. Why?
 - This area is closer to some site than the beach line
 - > ... closer to some site than any future site
 - > We already know the nearest site to those areas

VD Properties

- > The beach line is *x*-monotone. Why?
 - > Each parabola is *x*-monotone
 - At each x-coordinate, the beach line takes one value which is the minimum of all the parabolas
 - > Therefore, it is *x*-monotone

VD Properties

- The breakpoints of the beach line lie on Voronoi edges of the final diagram
 - Each breakpoint is equidistant from two sites
 - A breakpoint is as close to some site as to the sweep line
 - The sweep line is (closer) to the blue sites than future sites

Fortune's Algorithm

- Move the sweep line downwards and update the VD as the line moves
- > When the line reaches $-\infty$, we will have our final VD. (Because any point in the space is closer to some site than $y = -\infty$)
- Note: We never create the beach line explicitly. We only maintain enough information that allows us to reconstruct parts of it when we need them

Beach Line Changes

- How can the beach line change (topologically)
 - > A new arc appears
 - > An existing arc is removed

Site Event

- > When the sweep line hits a new site
- Where are the points that are equi-distant from the new site and the sweep line?
- > A vertical line that crosses the new site

Site Event

- Lemma: The only way in which a new arc can appear on the beach line is through a site event
- > Proof by contradiction

Case 1: An existing arc β_j breaks through the middle of an existing arc β_i

Case 2: An existing arc β_j appears in between two arcs

Circle (Vertex) Event

- An existing arc shrinks into a point and disappears
- This happens when three (or more) sites become closer to a point than the sweep line shielding the point from the sweep line

Circle (Vertex) Event

- The sweep line will only go further down while the points stay
- > This results in a vertex on the Voronoi Diagram
- Lemma: The only way in which an existing arc can disappear from the beach line is through a circle event

Circle (Vertex) Event

- A circle event happens between three adjacent arcs of three different sites
- A circle event is added at the lowest point of the circle and is associated with the point of the disappearing arc

Plane Sweep Constructs

- Sweep line status: The VD of the sites and the sweep line. In other words, the final part of the VD + the beach line in non-decreasing x order
- > Event points:
 - Site event: A new site that adds a new arc to the VD. 1-to-1 mapping to an input site
 - Circle event: The disappearance of an arc resulting in a vertex in VD. Can only be discovered along the way

Sweep Line Status

- The final part of VD is stored in the Doubly-Connected Edge List (DCEL) data structure
- The beach line is stored as a BST (τ) of arcs sorted by x
 - > Leaves store arcs
 - > Internal nodes store the breakpoints as a pair of sites (p_i, p_j)

Event Points

- Stored in a priority queue Q as a max-heap ordered by y
- > Q is initialized with all sites

Handle Site Event (p_i)

- > If τ is empty, add the site to it and return
- > Search in τ for the arc α vertically above p_i
- > If exists, delete a circle event linked with α
- Split α into two arcs and insert a new arc α_i corresponding to p_i
- > The new intersections are (α, α_i) and (α_i, α)
- Check the new triples of arcs and add their corresponding circle event to Q

Handle Site Event (p_i)

 $\alpha_1 \alpha_2 \alpha_3$ are no longer adjacent \rightarrow Remove the circle event that corresponds to α_2

 $\alpha_1 \alpha_2 \alpha_4$ are now adjacent \rightarrow Create a new circle event for them

Similarly, create a circle event for $\alpha_4 \alpha_2 \alpha_3$

Creating a Circle Event

- Siven three sites (p_i, p_j, p_k) that have three adjacent arcs, we first compute the center of their circumcircle, i.e., the intersection of the two perpendicular bisectors to $\overline{p_i p_j}$ and $\overline{p_j p_k}$
- > Compute the bottom point of the circle as $(x_c, y_c r)$ where
 - (x_c, y_c) are the coordinates of the circle center and r is the circle radius
- Associate the circle event with the middle site in the tree order

Handle Circle Event (γ)

- > Delete the leaf γ that corresponds to the disappearing arc α_i from τ
- > Delete the two breakpoints that involve α_i
- Insert a new break point
- Add the center of the circle event as a vertex in VD. This center is one side of two halfedges
- Check for any new circle events caused by the now adjacent triples of arcs
- > Running time: $O(n \log n)$

Delaunay Triangulation

Delaunay Triangulation

- A Delaunay triangulation can be defined as the (unique) triangulation in which the circumcircle of each triangle has no other sites
- > Naïve algorithm:
 - > Consider all possible triangles $O(n^3)$
 - Check if the circumcircle of the triangle is empty O(n)
 - > Running time $O(n^4)$

Guibas and Stolfi's Algorithm

> A divide and conquer algorithm

Algorithm Outline

UCR

- DelaunayTriangulation(P)
 - If (|P| <= 3)</p>
 - return TriviaIDT(P)
 - Split P into P1 and P2
 - DT1 = DelaunayTriangulation(P1)
 - DT2 = DelaunayTriangulation(P1)
 - Merge(DT1, DT2)

Split

67

TrivialDT(P)

Merge(P1, P2)

Find the First LR edge

Upper tangent of $CH(P_1), CH(P_2)$

111

Terminate

Rising Bubble Implementation θ_L θ

Terrain Problem

Terrain Problem

- We would like to build a model for the Earth terrain
- > We can measure the altitude at some points
- > How to approximate the altitude for nonmeasured points?

Nearest Neighbor

- One possibility, approximate it to the nearest measured point
- Does not look natural

Triangulation

- Determine a triangulation
- Raise each point to its altitude

> Question: Which triangulation?

Angle-optimal Triangulation

- > For a triangulation \mathcal{T}
- A(T): is the angle vector which consists of the angles α's in sorted order

 $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_n$

- We say that A(T) > A(T') if
 A(T) is lexicographically larger than A(T')
- > \mathcal{T} is angle optimal if $A(\mathcal{T}) \ge A(\mathcal{T}')$ for all triangulations \mathcal{T}'

- > The edge $\overline{p_i p_j}$ is illegal if $\min_{1 \le i \le 6} \alpha_i < \min_{1 \le i \le 6} \alpha'_i$
- > Flipping an edge increases the angle vector

Detect Illegal Edges

- > Thale's Theorem
- \overline{ab} is a chord in C
- > ∡arb > ∡apb
- > $\angle apb = \angle aqb$
- > ∡aqb > ∡asb

Detect Illegal Edges

- > By Thale's Theorem

- An angle-optimal triangulation is equivalent to Delauany Triangulation

 p_k Illegal Edge

Delaunay Triangulation

- 1. Start with any valid triangulation
- 2. If no illegal edges found, terminate
- 3. Pick an illegal edge and flip it
- 4. Go to 2
- Does this algorithm terminate?
- Running time: $O(n^2)$

- Given an existing Delaunay triangulation
 DT(P)
- > We need to add a point p_i to DT

Algorithm DELAUNAYTRIANGULATION(P) Input. A set P of n+1 points in the plane. Output. A Delaunay triangulation of P.

- 1. Initialize \mathcal{T} as the triangulation consisting of an outer triangle $p_0p_{-1}p_{-2}$ containing points of P, where p_0 is the lexicographically highest point of P.
- 2. Compute a random permutation p_1, p_2, \ldots, p_n of $P \setminus \{p_0\}$.
- 3. for $r \leftarrow 1$ to n
- 4. **do**
- 5. $\operatorname{LOCATE}(p_r, \mathcal{T})$
- 6. INSERT (p_r, \mathcal{T})
- 7. Discard p_{-1} and p_{-2} with all their incident edges from \mathfrak{T} .

8. return \mathfrak{T}

 p_r lies in the interior of a triangle

Insert

INSERT (p_r, \mathcal{T})

- 1. **if** p_r lies in the interior of the triangle $p_i p_j p_k$
- 2. **then** Add edges from p_r to the three vertices of $p_i p_j p_k$, thereby splitting $p_i p_j p_k$ into three triangles.
- 3. LEGALIZEEDGE $(p_r, \overline{p_i p_j}, \mathcal{T})$
- 4. LEGALIZEEDGE $(p_r, \overline{p_j p_k}, \mathcal{T})$
- 5. LEGALIZEEDGE $(p_r, \overline{p_k p_i}, \mathcal{T})$
- 6. **else** (* p_r lies on an edge of $p_i p_j p_k$, say the edge $\overline{p_i p_j} *$)
- 7. Add edges from p_r to p_k and to the third vertex p_l of the other triangle that is incident to $\overline{p_i p_j}$, thereby splitting the two triangles incident to $\overline{p_i p_j}$ into four triangles.
- 8. LEGALIZEEDGE $(p_r, \overline{p_i p_l}, \mathcal{T})$
- 9. LEGALIZEEDGE $(p_r, \overline{p_l p_j}, \mathcal{T})$
- 10. LEGALIZEEDGE $(p_r, \overline{p_j p_k}, \mathcal{T})$
- 11. LEGALIZEEDGE $(p_r, \overline{p_k p_i}, \mathcal{T})$

Legalize Edge

LEGALIZEEDGE $(p_r, \overline{p_i p_j}, \mathfrak{T})$

- 1. (* The point being inserted is p_r , and $\overline{p_i p_j}$ is the edge of \mathcal{T} that may need to be flipped. *)
- 2. **if** $\overline{p_i p_j}$ is illegal
- 3. **then** Let $p_i p_j p_k$ be the triangle adjacent to $p_r p_i p_j$ along $\overline{p_i p_j}$.
- 4. (* Flip $\overline{p_i p_j}$: *) Replace $\overline{p_i p_j}$ with $\overline{p_r p_k}$.
- 5. LEGALIZEEDGE $(p_r, \overline{p_i p_k}, \mathcal{T})$
- 6. LEGALIZEEDGE $(p_r, \overline{p_k p_j}, \mathcal{T})$

Correctness

All edges created are incident to p_r .

 \dot{p}_r

Correctness: Are new edges legal?

Correctness

Correctness:

For any new edge there is an empty circle through endpoints. New edges are legal.

Initializing triangulation: treat p_{-1} and p_{-2} symbolically. No actual coordinates. Modify tests for point location and illegal edges to work as if far away.

Point location: search data structure.

Point visits triangles of previous triangulations that contain it.
Search Data Structure

