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Nearest Neighbor Problem

Given a set of points 𝑃 and a query point 𝑞, 

find the closest point 𝑝 ∈ 𝑃 to 𝑞

∀𝑝, 𝑟 ∈ 𝑃, 𝑑𝑖𝑠𝑡 𝑝, 𝑞 ≤ 𝑑𝑖𝑠𝑡(𝑟, 𝑞)

Simple algorithm: Scan and find the minimum

An efficient algorithm: Use a spatial index 

structure such as K-d tree

What if we need to repeat this for every point 

in the space, i.e., an infinite number of 

points?
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Application: Cell Coverage
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Voronoi Diagram



Other Applications

Service coverage for hospitals, post offices, 

schools, … etc.

Marketing: Find candidate locations for a new 

restaurant

Routing: How an electric vehicle should travel 

while staying close to charging stations
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Voronoi Region

Given a set 𝑃 of points (also called sites), a 

Voronoi region (Voronoi face) of a site 𝑝𝑖 ∈ 𝑃, 

𝑉 𝑝𝑖 is the set of points in the Euclidean 

space where 𝑝𝑖 is (one of) the closest sites

𝑉 𝑝𝑖 = 𝑥: 𝑝𝑖 − 𝑥 ≤ 𝑝𝑗 − 𝑥 ∀𝑝𝑗 ∈ 𝑃
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Voronoi Diagram

The Voronoi diagram is the set of points that 

belong to two or more Voronoi regions

Voronoi diagram is a tessellation of the space 

into regions where each region contains all 

the points that are closest to one site
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VD of Two Points
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𝑝1

𝑝2𝑉 𝑝1

𝑉 𝑝2



VD of Three Points
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𝑝1

𝑝2𝑉 𝑝1

𝑉 𝑝2

𝑝3

𝑉 𝑝3



VD of Three Points
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𝑝1

𝑝2𝑉 𝑝1

𝑉 𝑝2

𝑝3

𝑉 𝑝3



Voronoi Region

A Voronoi region of a set 𝑝𝑖 is the intersection 

of all half spaces defined by the 

perpendicular bisectors

𝑉 𝑝𝑖 = 𝑗≠𝑖𝐻ځ 𝑝𝑖 , 𝑝𝑗
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VD of a Set of Points
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𝑃 𝑉𝐷 𝑃



Mother Nature Loves VD

http://forum.woodenboat.com/showthread.php?112363-Voronoi-Diagrams-in-Nature



Mother Nature Loves VD



Mother Nature Loves VD

http://forum.woodenboat.com/showthread.php?112363-Voronoi-Diagrams-in-Nature



Mother Nature Loves VD

Onion cells under the microscope



Mother Nature Loves VD

http://forum.woodenboat.com/showthread.php?112363-Voronoi-Diagrams-in-Nature

A thin slice of carrot under the scope



Mother Nature Loves VD

http://forum.woodenboat.com/showthread.php?112363-Voronoi-Diagrams-in-Nature

A dead maple leaf at 160X



Mother Nature Loves VD

http://forum.woodenboat.com/showthread.php?112363-Voronoi-Diagrams-in-Nature

An oak leaf



VD Properties
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Voronoi regions are 

convex

Each Voronoi region 

contains a single site

Voronoi regions (faces) 

can be unbounded

Most intersection points 

connect three 

segments



VD Properties

𝑉 𝑝𝑖 is unbounded iff 𝑝𝑖 ∈ 𝒞ℋ 𝑃

If a point 𝑥 is at the intersection of three or 

more Voronoi regions, say 

𝑉 𝑝1 , 𝑉 𝑝2 , … , 𝑉 𝑝𝑘 , then 𝑥 is the center of 

a circle 𝐶 that have 𝑝1, … , 𝑝𝑘 at its boundary

𝐶 contains no other sites

VD is unique
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Delaunay Triangulation (DT)

Delaunay triangulation is the straight-line dual 

of the Voronoi diagram

Each site is a corner of at least one triangle

Each two Voronoi regions that share an edge 

are connected with an edge in DT
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DT Properties

The edges of 𝐷 𝑃 do not intersect

Is 𝐷 𝑃 unique?

Yes, if no four sites are co-circular

If 𝑝𝑖 and 𝑝𝑗 are the closest pair

of sites, they are connected with an edge in DT

If 𝑝𝑖 and 𝑝𝑗 are nearest neighbors, they are 

connected with an edge in DT

The circumcircle of 𝑝𝑖, 𝑝𝑗, and 𝑝𝑘 is empty ⟺

𝑝𝑖 , 𝑝𝑗 , 𝑝𝑘 is a triangle in DT
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DT is a Planar Graph

Since the edges in DT do not intersect, they 

form a planar graph

The number of edges/faces in a Delaunay 

Triangulation is linear in the number of vertices.

The number of edges/vertices in a Voronoi 

Diagram is linear in the number of faces.

The number of vertices/edges/faces in a Voronoi 

Diagram is linear in the number of sites.
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Theorem 7.3

For 𝑛 ≥ 3, the number of vertices in the 

Voronoi diagram (𝑛𝑣) of a set of 𝑛 point sites 

in the plane is at most 2𝑛 − 5, and the 

number of edges 𝑛𝑒 is at most 3𝑛 − 6
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Proof

For any connected graph 𝐺

Euler’s rule: 𝑚𝑣 −𝑚𝑒 +𝑚𝑓 = 2

𝑚𝑣: Number of vertices (nodes)

𝑚𝑒: Number of edges (arcs)

𝑚𝑓: Number of faces

𝑛𝑣 + 1 − 𝑛𝑒 + 𝑛 = 2

Each edge connects two vertices

The sum of degrees of vertices

∑𝑑 𝑣𝑖 = 2𝑛𝑒
𝑑 𝑣𝑖 ≥ 3
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Proof (cont’d)

3𝑛𝑣 ≤ ∑𝑑 𝑣𝑖
3 𝑛𝑣 + 1 ≤ 2𝑛𝑒

𝑛𝑣 + 1 ≤
2

3
𝑛𝑒

But: 𝑛𝑣 + 1 − 𝑛𝑒 + 𝑛 = 2

𝑛𝑣 + 1 = 2 − 𝑛 + 𝑛𝑒 ≤
2

3
𝑛𝑒

1

3
𝑛𝑒 ≤ 𝑛 − 2

𝑛𝑒 ≤ 3𝑛 − 6

𝑛𝑣 ≤ 2𝑛 − 5
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DT Properties

The boundary of 𝐷 𝑃 is the convex hull of 𝑃
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𝑝𝑖

𝑝𝑗

𝑉 𝑝𝑖

𝑉 𝑝𝑗



DT Properties

The boundary of 𝐷 𝑃 is the convex hull of 𝑃
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𝑝𝑖

𝑝𝑗

𝑉 𝑝𝑖

𝑉 𝑝𝑗



DT Properties

The boundary of 𝐷 𝑃 is the convex hull of 𝑃
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𝑝𝑖

𝑝𝑗

𝑉 𝑝𝑖

𝑉 𝑝𝑗



DT Properties

The boundary of 𝐷 𝑃 is the convex hull of 𝑃
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𝑝𝑖

𝑝𝑗

𝑉 𝑝𝑖

𝑉 𝑝𝑗



DT Properties

The boundary of 𝐷 𝑃 is the convex hull of 𝑃
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𝑝𝑖

𝑝𝑗

𝑉 𝑝𝑖

𝑉 𝑝𝑗∞



DT Properties

If 𝑝𝑗 is the nearest neighbor of 𝑝𝑖 then 𝑝𝑖𝑝𝑗 is 

a Delaunay edge

𝑝𝑗 is the nearest neighbor of 𝑝𝑖 iff. the circle 

around 𝑝𝑖 with radius 𝑝𝑖 − 𝑝𝑗 is empty of 

other points.

⇒The circle through 𝑝𝑖 + 𝑝𝑗 /2 with radius 

|𝑝𝑖 − 𝑝𝑗|/2 is empty of other points.

⇒ 𝑝𝑖 + 𝑝𝑗 /2 is on the Voronoi diagram.

⇒ 𝑝𝑖 + 𝑝𝑗 /2 is on a Voronoi edge.
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VD Plane Sweep

Scan the plane from top to bottom

Compute the VD of the points above the 

sweep line

Is it that simple?
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VD of a Line and a Point
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𝑦 =
1

2

𝑥 − 𝑝𝑖𝑥
2

𝑝𝑖𝑦 − ℓ𝑦
+ ℓ𝑦 + 𝑝𝑖𝑦

𝑝𝑖𝑥, 𝑝𝑖𝑦

ℓ𝑦



VD of a Line and a n Points
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VD of a Line and a n Points
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Fortune’s Algorithm

As the line sweeps the plane, the algorithm 

maintains the VD of the set of points and the 

sweep line

Since the sweep line is closer than any future 

point, it acts as a barrier that isolates the VD 

from all future points
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Fortune’s Algorithm in Action
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VD Properties

The VD part above the beach line (blue) is 

final. Why?

This area is closer to some site than the beach 

line

… closer to some site than any future site

We already know the nearest site to those areas
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VD Properties

The beach line is 𝑥-monotone. Why?

Each parabola is 𝑥-monotone

At each 𝑥-coordinate, the beach line takes one 

value which is the minimum of all the parabolas

Therefore, it is 𝑥-monotone

40Figure Credits: http://www.cs.sfu.ca/~binay/813.2011/Fortune.pdf



VD Properties

The breakpoints of the beach line lie on 

Voronoi edges of the final diagram

Each breakpoint is equidistant from two sites

A breakpoint is as close to some site as to the 

sweep line

The sweep line is (closer) to the blue sites than 

future sites
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Fortune’s Algorithm

Move the sweep line downwards and update 

the VD as the line moves

When the line reaches −∞, we will have our 

final VD. (Because any point in the space is 

closer to some site than y = −∞)

Note: We never create the beach line 

explicitly. We only maintain enough 

information that allows us to reconstruct parts 

of it when we need them
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Beach Line Changes

How can the beach line change 

(topologically)

A new arc appears

An existing arc is removed
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Site Event

When the sweep line hits a new site

Where are the points that are equi-distant 

from the new site and the sweep line?

A vertical line that crosses the new site
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Site Event
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Lemma: The only way in which a new arc can 

appear on the beach line is through a site event

Proof by contradiction

Case 1: An existing arc 𝛽𝑗 breaks through 

the middle of an existing arc 𝛽𝑖

Case 2: An existing arc 𝛽𝑗 appears 

in between two arcs

Proof is in the book



Circle (Vertex) Event

An existing arc shrinks into a point and 

disappears

This happens when three (or more) sites 

become closer to a point than the sweep line 

shielding the point from the sweep line
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Circle (Vertex) Event

The sweep line will only go further down while 

the points stay

This results in a vertex on the Voronoi Diagram

Lemma: The only way in which an existing arc 

can disappear from the beach line is through a 

circle event
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Circle (Vertex) Event

A circle event 

happens between 

three adjacent arcs 

of three different 

sites

A circle event is 

added at the lowest 

point of the circle

and is associated 

with the point of the 

disappearing arc
48

Circle event



Plane Sweep Constructs

Sweep line status: The VD of the sites and 

the sweep line. In other words, the final part 

of the VD + the beach line in non-decreasing 

𝑥 order

Event points:

Site event: A new site that adds a new arc to the 

VD. 1-to-1 mapping to an input site

Circle event: The disappearance of an arc 

resulting in a vertex in VD. Can only be 

discovered along the way
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Sweep Line Status

The final part of VD is stored in the Doubly-

Connected Edge List (DCEL) data structure

The beach line is stored as a BST (𝜏) of arcs 

sorted by 𝑥

Leaves store arcs

Internal nodes store the breakpoints as a pair of 

sites 𝑝𝑖 , 𝑝𝑗
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Sweep Line Status
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𝑝1

𝑝2
𝑝3

𝛼1

𝛼2 𝛼3

𝑝1, 𝑝2

𝑝1, 𝑝2
𝑝2, 𝑝3

𝑝2, 𝑝3𝑝1

𝑝2 𝑝3



Event Points

Stored in a priority queue 𝑄 as a max-heap 

ordered by 𝑦

𝑄 is initialized with all sites
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Handle Site Event (𝒑𝒊)

If 𝜏 is empty, add the site to it and return

Search in 𝜏 for the arc 𝛼 vertically above 𝑝𝑖
If exists, delete a circle event linked with 𝛼

Split 𝛼 into two arcs and insert a new arc 𝛼𝑖
corresponding to 𝑝𝑖
The new intersections are 𝛼, 𝛼𝑖 and 𝛼𝑖 , 𝛼

Check the new triples of arcs and add their 

corresponding circle event to 𝑄
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Handle Site Event (𝒑𝒊)
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𝑝1

𝑝2
𝑝3

𝛼1

𝛼2 𝛼3

𝑝1, 𝑝2

𝑝1, 𝑝2
𝑝2, 𝑝3

𝑝2, 𝑝3𝑝1

𝑝2 𝑝3

𝑝4



Handle Site Event (𝒑𝒊)
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𝑝1

𝑝2
𝑝3

𝛼1

𝛼2 𝛼3

𝑝1, 𝑝2

𝑝1, 𝑝2
𝑝2, 𝑝3

𝑝2, 𝑝3𝑝1

𝑝2 𝑝3

𝑝4

𝑝4, 𝑝2𝑝2, 𝑝4



Handle Site Event (𝒑𝒊)
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𝑝1

𝑝2
𝑝3

𝛼1

𝛼2 𝛼3

𝑝1, 𝑝2

𝑝1, 𝑝2
𝑝2, 𝑝3

𝑝2, 𝑝3𝑝1

𝑝3

𝑝4

𝑝4, 𝑝2𝑝2, 𝑝4
𝑝2, 𝑝4

𝑝4, 𝑝2

𝑝4

𝑝2

𝑝2



Handle Site Event (𝒑𝒊)
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𝑝1

𝑝2
𝑝3

𝛼1

𝛼2 𝛼3

𝑝1, 𝑝2

𝑝1, 𝑝2
𝑝2, 𝑝3

𝑝2, 𝑝3𝑝1

𝑝3

𝑝4

𝑝4, 𝑝2𝑝2, 𝑝4
𝑝2, 𝑝4

𝑝4, 𝑝2

𝑝4

𝑝2

𝑝2

𝛼1𝛼2𝛼3 are no longer adjacent ➔ Remove the circle event that corresponds to 𝛼2

𝛼1𝛼2𝛼4 are now adjacent ➔ Create a new circle event for them

Similarly, create a circle event for 𝛼4𝛼2𝛼3

No circle event for the triple 𝛼2𝛼4𝛼2
because they don’t correspond tot three 

different sites



Creating a Circle Event

Given three sites 𝑝𝑖 , 𝑝𝑗 , 𝑝𝑘 that have three 

adjacent arcs, we first compute the center of 

their circumcircle, i.e., the intersection of the 

two perpendicular bisectors to 𝑝𝑖𝑝𝑗 and 𝑝𝑗𝑝𝑘

Compute the bottom point of the circle as 

𝑥𝑐 , 𝑦𝑐 − 𝑟 where

𝑥𝑐 , 𝑦𝑐 are the coordinates of the circle center 

and 𝑟 is the circle radius

Associate the circle event with the middle site 

in the tree order
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Handle Circle Event (𝜸)

Delete the leaf 𝛾 that corresponds to the 

disappearing arc 𝛼𝑖 from 𝜏

Delete the two breakpoints that involve 𝛼𝑖
Insert a new break point

Add the center of the circle event as a vertex 

in VD. This center is one side of two half-

edges

Check for any new circle events caused by 

the now adjacent triples of arcs

Running time: 𝑂 𝑛 log 𝑛
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Circle Event (𝜸)
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𝑝1 𝑝2 𝑝3

𝛼1
𝛼2

𝛼3

𝑝1, 𝑝2 𝑝2, 𝑝3

Circle event point

𝑝1, 𝑝2

𝑝2, 𝑝3

𝑝1 𝑝2 𝑝3

𝑝4

𝜏

𝛼4

𝑝3, 𝑝4

𝑝3, 𝑝4

𝑝4



Circle Event (𝜸)
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𝑝1 𝑝2 𝑝3

𝛼1
𝛼2

𝛼3

𝑝1, 𝑝2 𝑝2, 𝑝3

Circle event point

𝑝1, 𝑝2

𝑝2, 𝑝3

𝑝1 𝑝2 𝑝3

𝑝4

𝜏

𝛼4

𝑝3, 𝑝4

𝑝3, 𝑝4

𝑝4



Circle Event (𝜸)
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𝑝1 𝑝2 𝑝3

𝛼1
𝛼2

𝛼3

𝑝1, 𝑝2 𝑝2, 𝑝3

Circle event point
𝑝1, 𝑝3

𝑝1

𝑝3

𝑝4

𝜏

𝛼4

𝑝3, 𝑝4

𝑝3, 𝑝4

𝑝4

(𝑝1, 𝑝3, 𝑝4) are now adjacent in the 

tree, create a corresponding circle 

event



Delaunay 

Triangulation
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Delaunay Triangulation

A Delaunay triangulation can be defined as 

the (unique) triangulation in which the 

circumcircle of each triangle has no other 

sites

Naïve algorithm:

Consider all possible triangles 𝑂 𝑛3

Check if the circumcircle of the triangle is empty 𝑂 𝑛

Running time 𝑂 𝑛4
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Guibas and Stolfi’s Algorithm

A divide and conquer algorithm
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Algorithm Outline

DelaunayTriangulation(P)

If (|P| <= 3)

return TrivialDT(P)

Split P into P1 and P2

DT1 = DelaunayTriangulation(P1)

DT2 = DelaunayTriangulation(P1)

Merge(DT1, DT2)
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Split

67Pre-sort by x



TrivialDT(P)
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P TrivialDT(P)



Merge(P1, P2)
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Merge(P1, P2)
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Merge(P1, P2)
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Merge(P1, P2)
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Find the First LR edge

73Upper tangent of 𝒞ℋ 𝑃1 , 𝒞ℋ 𝑃2

Base LR edge



Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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New Base LR edge



Rising Bubble

78



Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble

101



Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble
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Rising Bubble

114



Rising Bubble

115



Terminate
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Rising Bubble Implementation
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𝜃𝑅𝜃𝐿



Rising Bubble Implementation
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𝜃𝑅
𝜃𝐿



Rising Bubble Implementation
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𝜃𝑅
𝜃𝐿



Rising Bubble Implementation
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𝜃𝑅
𝜃𝐿



Rising Bubble Implementation
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𝜃𝑅
𝜃𝐿



Rising Bubble Implementation
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Terrain Problem
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Terrain Problem

We would like to build a model for the Earth 

terrain

We can measure the altitude at some points

How to approximate the altitude for non-

measured points?
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Nearest Neighbor

One possibility, 

approximate it to the 

nearest measured 

point

Does not look 

natural
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Triangulation

Determine a 

triangulation

Raise each point to 

its altitude

Question: Which 

triangulation?
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Angle-optimal Triangulation

For a triangulation 𝒯

𝐴(𝒯): is the angle vector which 

consists of the angles 𝛼’s in 

sorted order

𝛼1 ≤ 𝛼2 ≤ ⋯ ≤ 𝛼𝑛
We say that 𝐴 𝒯 > 𝐴(𝒯′) if 

𝐴(𝒯) is lexicographically larger 

than 𝐴(𝒯′)

𝒯 is angle optimal if 𝐴 𝒯 ≥
𝐴(𝒯′) for all triangulations 𝒯′

127

𝛼1

𝛼2

𝛼3 𝛼4

𝛼5

𝛼6



Edge Flip

The edge 𝑝𝑖𝑝𝑗 is illegal if min
1≤𝑖≤6

𝛼𝑖 < min
1≤𝑖≤6

𝛼𝑖
′

Flipping an edge increases the angle vector
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𝛼1

𝛼2

𝛼3 𝛼4

𝛼5

𝛼6

𝑝𝑖

𝑝𝑗

𝑝𝑘

𝑝𝑙

𝛼1
′

𝛼2
′

𝛼3
′

𝛼4
′

𝛼5
′

𝛼6
′

𝑝𝑖

𝑝𝑗

𝑝𝑘

𝑝𝑙

Edge Flip



Detect Illegal Edges

Thale’s Theorem

𝑎𝑏 is a chord in 𝐶

∡𝑎𝑟𝑏 > ∡𝑎𝑝𝑏

∡𝑎𝑝𝑏 = ∡𝑎𝑞𝑏

∡𝑎𝑞𝑏 > ∡𝑎𝑠𝑏
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𝑎

𝑏

𝑟

𝑝
𝑞

𝑠

𝐶



Detect Illegal Edges

By Thale’s Theorem

∡𝑝𝑖𝑝𝑗𝑝𝑘 < ∡𝑝𝑖𝑝𝑙𝑝𝑘

∡𝑝𝑗𝑝𝑖𝑝𝑘 < ∡𝑝𝑗𝑝𝑙𝑝𝑘

An angle-optimal 

triangulation is 

equivalent to Delauany

Triangulation
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Delaunay Triangulation

1. Start with any valid triangulation

2. If no illegal edges found, terminate

3. Pick an illegal edge and flip it

4. Go to 2

• Does this algorithm terminate?

• Running time: 𝑂 𝑛2
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Incremental Algorithm

Given an existing Delaunay triangulation 

𝐷𝑇(𝑃)

We need to add a point 𝑝𝑖 to 𝐷𝑇
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Incremental Algorithm
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Incremental Algorithm
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Incremental Algorithm
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Incremental Algorithm
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Incremental Algorithm

137

𝑝−1 𝑝−2



Incremental Algorithm
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Incremental Algorithm
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Insert

140



Legalize Edge
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Correctness
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Correctness
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Incremental Algorithm
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Search Data Structure
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