

CS133 Computational Geometry

Computational Geometry Primitives

Point Representation

 A point in the 2D Cartesian space is represented as a vector from the origin to the point

Line Segment Representation

- A line segment is represented by its two end points
- > Length=||a b||
- Straight lines are usually represented by two points on it

Application: CCW sort

- How to sort a list of points in a CCW order around the origin?
- Naïve solution: Calculate all the angles and sort
 - Advantages: Easy and can reuse an existing sort algorithm as-is
 - Disadvantages: arctan calculation is complex and might be inaccurate

CCW Sort

What is the cross/dot product of the vectors of two points?

CCW Comparator

-1: p_1 precedes p_2 +1: p_2 precedes p_1 0: On the same angle

- > compare($p_1 = (x_1, y_1), p_2 = (x_2, y_2)$)
 - > If $(x_1 < 0 \text{ and } x_2 > 0)$ OR $(x_1 > 0 \text{ and } x_2 < 0)$
 - > Return $x_1 < 0$? -1 : +1
 - $> cp = p_1 \times p_2$
 - > If cp < 0
 - Return -1
 - > If cp > 0
 - Return +1
 - > // cp = 0
 - > If $(y_1 < 0 \text{ and } y_2 > 0)$ OR $(y_1 > 0 \text{ and } y_2 < 0)$
 - > Return $y_1 < 0$?-1 : +1
 - Return 0

CCW Sort

- > How to sort a set of points around their geometric center?
- > First, compute the geometric center
- Then, translate the points to make the origin at the center

Collinearity

- Given three points, check if they are on the same straight line
- > Collinear(p_1, p_2, p) > Return $\overrightarrow{p_1p_2} \times \overrightarrow{p_1p} == 0$

Missing Square Problem

Hint: Test the collinearity of three points on the figure

Direction

- Given a straight line (ray) and a point, find whether the point is to the right or left of the line
- > Direction (p_1, p_2, p)
 - $cp = \overrightarrow{p_1 p_2} \times \overrightarrow{p_1 p}$
 - > If cp < 0
 - > Return "right"
 - > If cp > 0
 - Return "left"
 - Return "on-the-line"

Point-line Relationship

- Given a line segment and a point, find whether the point is on the line segment or not
- > Coincident($p_1(x_1, y_1), p_2(x_2, y_2), p(x, y)$)
 - > If NOT Collinear(p_1, p_2, p)
 - Return false
 - > Return $x \in [\min(x_1, x_2), \max(x_1, x_2)]$
 - > AND $(y \in [\min(y_1, y_2), \max(y_1, y_2)]$

Line-line Relationship

- Given two straight lines, find whether they intersect or not
- > IsIntersected(p_1 , p_2 , p_3 , p_4)
 - > If $\overrightarrow{p_1p_2} \times \overrightarrow{p_3p_4} \neq 0$
 - Return true // intersected in a point
 - > // The two lines are parallel
 - > If Collinear(p_1, p_2, p_3)
 - Return true // Lines are coincident
 - Return false // Parallel ant not coincident

Line-line Intersection

- > Given two straight lines, find their intersection
- Solve the two linear equations that represent the two lines
- > One solution → The lines intersect in a point
- ➤ No solutions → The lines are disjoint parallel

Line-line Intersection

- > (p_1, p_2) : First line (input)
- > (p_3, p_4) : Second line (input)
- > p_0 : Intersection point (output)
- > p_0 must be collinear with $\overleftarrow{p_1p_2}$ and $\overleftarrow{p_3p_4}$

$$\overrightarrow{p_1p_2} \times \overrightarrow{p_1p_0} = 0$$

$$\overrightarrow{p_3p_4} \times \overrightarrow{p_3p_0} = 0$$

 See the rest of the derivation in the notes

Line Segment Intersection

Given two line segments, find whether they intersect or not. If they intersect, find their intersection point

(Homework)