UCRIVERSITY OF CALIFORNIA

CS014 Introduction to Data Structures and Algorithms

Instructor: Ahmed Eldawy

Welcome (back) to UCR!

Class information

- Classes: Tuesday and Thursday 2:10 PM 3:30 PM at MSE 104
- Instructor: Ahmed Eldawy
- > Office hours:
 - Tuesday and Thursday 1:00 PM 2:00PM @357 WCH. Conflicts?
- TAs: Saheli Ghosh, Zacharias (Harry) Chasparis, and Tin Vu

Textbook

- Data Structures and Algorithm Analysis in C++, Fourth Edition
- > By Mark Allen Weiss
- http://www.facultybookshelf.org/course/13395

Course goals

- > What are your goals?
- Analyze and compare algorithms
- Familiarize yourself with fundamental data structures and algorithms
- > Use basic data structures to solve problems
- > Develop your own data structure or algorithm

Course work

- Five assignments (10%) Lowest grade does not count
 - Late policy: 20% for each calendar day up to four days
- Lab work (35%) Lowest two grades do not count
- > Midterm exam (15%)
- > Final exam (40%)
 - > Friday, December 15 11:30 a.m. 2:30 p.m.

Experience with C++

- We will use C++ but we will not teach it in class or labs!
- > We may use the following features and more:
 - Recursion
 - C++ classes (declaration, definition, constructor, destructor ...)
 - Arrays (both single- and multi-dimensional)
 - > Pointers (allocation, deallocation, dereference, ...)
 - File manipulation and streams (read and write, random access)
 - Templates

Covered topics

- Analysis of algorithms
- Abstract data types (ADT)
- Lists, stack, and queues
- Search trees
- > Heaps
- Sorting algorithms
- Hash tables
- Graphs

Introduction

Performance of algorithms

- Conservation of Energy
 - "Energy can neither be created nor destroyed"
 - > But it can be wasted!

- > In algorithms, you can think of energy as:
 - Running time
 - Disk IO
 - Network IO
 - ••
- How to get the job done efficiently!

Criteria of Analysis

- > Which criteria should be taken into account?
- > Running time
- Memory footprint
- > Disk IO
- Network bandwidth
- > Power consumption
- Lines of codes

Average Case Vs Worst Case

Case Study: Insertion Sort

INSERTION-SORT (A, n)	cost	times
for $j = 2$ to n	c_1	n
key = A[j]	c_2	n-1
// Insert $A[j]$ into the sorted sequence $A[1 j - 1]$.	0	n-1
i = j - 1	<i>C</i> ₄	n-1
while $i > 0$ and $A[i] > key$	C_5	$\sum_{j=2}^{n} t_j$
A[i+1] = A[i]	C_6	$\sum_{j=2}^{n} (t_j - 1)$
i = i - 1	<i>C</i> ₇	$\sum_{j=2}^{n} (t_j - 1)$
A[i+1] = key	<i>C</i> ₈	n-1

Running time analysis

- > $T(n) = c_1 n + (c_2 + c_4 + c_8)(n-1) + c_5 \sum_{j=2}^{n} t_j + (c_6 + c_7) \sum_{j=2}^{n} t_j 1$
- > Worst case $(t_j = j)$
- > $T(n) = c_1 n + (c_2 + c_4 + c_8)(n 1) + c_5 \left(\frac{n(n+1)}{2} 1\right) + (c_6 + c_7) \frac{n(n-1)}{2} = an^2 + bn + c$
- > Best case $(t_j = 1)$
- > $T(n) = c_1 n + (c_2 + c_4 + c_8)(n 1) + c_5(n 2) = an + b$

Growth of Functions

- > It is hard to compute the actual running time
- > The cost of the worst-case is a good measure
- The growth of the function is what interests us (Big Data)
- > We are more concerned with comparing two functions, e.g., two algorithms.