
Enabling Low-Cost Secure Computing on Untrusted In-Memory Architectures

Sahar Ghoflsaz Ghinani, Jingyao Zhang, Elaheh Sadredini
University of California, Riverside

{sghof001, jzhan502, elahehs}@ucr.edu

Abstract
Modern computing systems are limited in performance by the
memory bandwidth available to processors, a problem known
as the memory wall. Processing-in-Memory (PIM) promises
to substantially improve this problem by moving process-
ing closer to the data, improving effective data bandwidth,
and leading to superior performance on memory-intensive
workloads. However, integrating PIM modules within a se-
cure computing system raises an interesting challenge: un-
encrypted data has to move off-chip to the PIM, exposing
the data to attackers and breaking assumptions on Trusted
Computing Bases (TCBs). To tackle this challenge, this paper
leverages multi-party computation (MPC) techniques, specif-
ically arithmetic secret sharing and Yao’s garbled circuits,
to outsource bandwidth-intensive computation securely to
PIM. Additionally, we leverage precomputation optimization
to prevent the CPU’s portion of the MPC from becoming
a bottleneck. We evaluate our approach using the UPMEM
PIM system over various applications such as Deep Learning
Recommendation Model inference and Logistic Regression.
Our evaluations demonstrate up to a 14.66× speedup com-
pared to a secure CPU configuration while maintaining data
confidentiality and integrity when outsourcing linear and/or
nonlinear computation.

1 Introduction

However, while processing power has grown exponentially
following Moore’s Law, memory performance has lagged,
leading to the "memory wall" [78]—a critical bottleneck
caused by the growing disparity between CPU and memory
speeds, which limits overall system performance.

For data-centric applications, the cost of memory access is
particularly significant, both in terms of latency and energy
consumption [27]. Boroumand et al. [6] demonstrated that
in Google consumer workloads, such as machine learning
frameworks, 62.7% of the total energy consumption stems
from data movement between the CPU and memory. They

further showed that Processing-in-Memory (PIM) can reduce
total system energy consumption and execution time by an
average of 55% and 54%, respectively, highlighting PIM’s
potential as a solution to the memory wall challenge.

PIM technology [2, 3, 9, 44, 50, 51, 61, 64, 65, 83, 85] re-
duces memory latency by performing computations closer to
or within the memory itself, leveraging internal data band-
width. By minimizing data movement, PIM can significantly
alleviate the limitations imposed by the memory wall. How-
ever, as promising as PIM technology appears, it comes with
its own challenges, particularly in securely handling sensitive
data [4].

Untrusted
PlatformsTCB

Cache

Memory

PIM

TCB Untrusted
Platforms

Encrypted
Data

Computable
Plaintext

Cores

Cache

Memory

PIM
Computable
MPC share

Computable
MPC share

(a) (b)

Cores

Figure 1: (a) TEE-based system. Only on-chip modules (e.g.,
cores, cache) are within the TCB. The PIM module cannot
operate on encrypted data. (b) TEE-based system with MPC.
Private data can be split into two on-chip and off-chip shares.
The PIM module can operate on computable MPC share.

Since PIM modules are typically off-chip and connected
via buses such as memory or PCIe [19,51,62,74,84], they are
inherently outside the trusted computing base (TCB) estab-
lished by widely deployed Trusted Execution Environments
(TEEs) [8, 10, 41, 54]. TEEs prohibit unencrypted data from
appearing off-chip unless through a high-overhead attestation
process [31]. The presence of plaintext in off-chip locations
such as memory, memory buses, and peripheral interfaces
makes it vulnerable to physical attacks (e.g., cold boot at-
tacks [29]) and software attacks (e.g., unauthorized memory
access [45,71]). As shown in Fig. 1(a), only on-chip modules,
such as cores and caches, are included within the TCB. These
modules can operate on plaintext, while off-chip modules
like PIM can only handle encrypted data. Consequently, PIM



hardware cannot natively compute on encrypted data, present-
ing a significant obstacle to its adoption in security-critical
applications.

Although homomorphic encryption [18, 21, 25, 33, 40, 58]
allows computation directly on ciphertext, its significant com-
putational complexity and data bandwidth requirements make
it impractical for real-time applications, as it operates orders
of magnitude slower than plaintext computation [1, 52]. An
alternative is incorporating PIM into the TCB [38, 76, 86],
but this would require substantial redesigns of the PIM ar-
chitecture, such as adding a root of trust and secure boot
mechanisms, as well as addressing supply chain security is-
sues.

Xiong et al. [79] proposed an MPC-based scheme, SecNDP,
to securely offload linear computations to PIM. However, Sec-
NDP has several limitations: (1) it does not support nonlinear
computations, restricting its applicability; (2) its evaluation
relies on simulations rather than real hardware, leaving its
practicality in real-world scenarios unverified; and (3) our
analysis reveals that SecNDP suffers from performance bot-
tlenecks when the volume of public data significantly exceeds
that of private data, as shown in Fig. 2.

We analyzed the performance of SecNDP compared to an
insecure CPU for GEMV with varying input sizes, as shown
in Fig. 2. In GEMV, either the matrix or the vector can serve
as private data, depending on the application. The blue line
in Fig. 2 depicts the speedup when the matrix is private and
the vector is public, while the red line shows the opposite
case. The results demonstrate that SecNDP performs opti-
mally when the public data size is smaller than the private
data. However, as the public data size increases, CPU com-
putation becomes a bottleneck due to the need to transfer
large volumes of public data from memory to the CPU for
processing, significantly constraining performance.

Figure 2: Speedup of the SecNDP security scheme using
UPMEM over an insecure CPU for the GEMV kernel with
different input sizes. The SecNDP does not perform well
when the amount of public data is significantly large.

To overcome these limitations, we propose a novel secure
computation framework that leverages multi-party compu-
tation (MPC) to securely offload both linear and nonlinear
computations to untrusted PIM hardware. As illustrated in
Fig.1(b), our method partitions plaintext into two encrypted
shares: computationally intensive tasks are securely offloaded
to the PIM, while lighter tasks are processed by the TEE. To

address CPU bottlenecks, we employ precomputation tech-
niques [72] that shifts expensive tasks offline, significantly
reducing runtime overhead. For secure data handling, we use
counter-mode encryption [42, 46] for parallelized encryption
and Message Authentication Codes (MACs) to ensure data
and computation integrity.

Unlike SecNDP, our approach supports nonlinear compu-
tations and is validated on real-world PIM hardware (UP-
MEM) [14], demonstrating its practicality and efficiency. Our
framework is evaluated on diverse applications, including
Deep Learning Recommendation Models (DLRM) [53], Mul-
tilayer Perceptrons (MLP) [56], Linear Regression [68], and
Logistic Regression [11], showcasing its versatility and sig-
nificant performance improvements.

Our work makes the following contributions:
1. Secure PIM Acceleration Framework: We present a

secure PIM acceleration framework leveraging MPC
techniques, integrating arithmetic secret sharing for lin-
ear computations and Yao’s garbled circuits for nonlin-
ear operations. By partitioning workloads into encrypted
shares, our approach securely offloads computationally
intensive tasks to untrusted PIM hardware. A switching
mechanism between arithmetic secret sharing and Yao
sharing is adopted to outsource nonlinear computation
to PIM module securely.

2. Precomputation Optimization: We utilize a precom-
putation technique to alleviate the CPU computational
bottleneck in MPC by performing operations offline, re-
ducing runtime overhead and enhancing the efficiency
of secure data processing.

3. Empirical Evaluation on Real Hardware: To the best
of our knowledge, this is the first work to evaluate MPC-
based secure computation on real-world PIM hardware
(UPMEM). Our implementation and evaluation are pub-
licly available1, allowing other researchers to build upon
our findings.

4. Comprehensive Workload Evaluation: We extend our
secure PIM framework to various real-world applica-
tions, including MLP inference, DLRM inference, Lin-
ear Regression (training and inference), and Logistic
Regression (training and inference). These evaluations
highlight our design’s versatility in securely handling
both linear and nonlinear computations.

5. Performance and Security Achievements : Com-
pared to a secure CPU implementation, our framework
achieves speedups of 14.66×, 9.80×, 2.64×, and 5.85×
for MLP inference, DLRM inference, Linear Regression
training, and Logistic Regression training, respectively.
Our secure PIM design incurs only a minimal perfor-
mance overhead (4%) compared to an insecure PIM
design, ensuring robust security without compromising
efficiency.

1https://zenodo.org/records/14869014

https://zenodo.org/records/14869014


2 Threat Model

Fig. 3 presents our threat model, which aligns with standard
TEE threat models commonly used in secure computing. Data
within a TEE and the internal state of the processor are pro-
tected from unauthorized observation or modifications. Also,
any malicious software present within the same processor
cannot retrieve or modify private data. However, all off-chip
components are regarded as untrusted and vulnerable to at-
tacks [7, 70].

An attacker may attempt to access unencrypted user data
stored in either standard or PIM-enabled memory or make
unauthorized modifications. Additionally, attackers might
eavesdrop on the bus to extract sensitive user information or
tamper with the data. Furthermore, an attacker might launch
a cold-boot attack [29] on the standard DRAM and the PIM-
enabled DRAM to retrieve useful information. There could
be vulnerabilities that enable Processing Elements in the un-
trusted PIM accelerator to inject faults into the computation.

As the computation involves only a single untrusted party,
the possibility of collusion between parties is not relevant
to our work. Additionally, side-channel attacks that exploit
physical leakages, such as power analysis attacks [63], timing
attacks [63], and electromagnetic attacks [5], are all excluded
in our assumed threat model.

Figure 3: Proposed threat model. TEE is the trusted party, and
both standard and PIM-enabled memories are untrusted. An
attacker can access or modify the data within these memories
and the bus.

3 Background

3.1 Processing-in-Memory (PIM)
Processing-in-Memory, or PIM [2, 3, 9, 50, 51, 64, 65], is an
architectural paradigm that seeks to address the growing gap
between the speed of processors and memory latency, referred
to as the "memory wall" [78]. This strategy reduces or elimi-
nates the need for data movement between the memory and
the processing unit, leading to significant reductions in latency
and energy consumption. PIM achieves this by incorporating
computational capabilities into the memory unit, enabling
computations to be performed right where the data resides.

PIM can be broadly classified into two categories based
on where the computation takes place: Near Data Processing

(NDP) [75, 79] and In-Memory Computing (IMC) [3, 9, 65].
The NDP approach, such as the one employed by UP-
MEM [14], places the computation units near the memory
to minimize data movement. On the other hand, the IMC
approach integrates the computational units directly into the
memory chips, enabling computations to be performed in
parallel across multiple memory units. Although IMC theoret-
ically can further reduce data movement compared to NDP, it
has not been widely adopted in commercial applications [66].
This is mainly due to the challenges associated with ensur-
ing robustness during analog computation and integrating the
system into the current computer system.

3.2 UPMEM PIM Architecture
UPMEM [13, 14, 20, 22, 26, 27, 55] is a promising example of
the NDP approach. It combines the functionalities of standard
DDR4-2400 DIMMs with specialized Processing Elements re-
ferred to as DRAM Processing Units (DPUs). The UPMEM
DRAM chip is designed with two ranks, and each rank is
equipped with eight PIM chips. As shown in Fig. 4, each indi-
vidual UPMEM PIM chip consists of eight banks, with each
bank integrating a 64 MB Main RAM (MRAM) and a DPU.
Furthermore, the inherent design of each DPU involves the
utilization of 24 hardware threads known as tasklets, which
operate in parallel within the DPU. These tasklets operate
on the Single Instruction Multiple Data (SIMD) principles,
executing the same task concurrently on various data sets.

Host
CPU

Standard DIMMs

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

8 DRAM
Chips / Rank

N

M

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

8 PIM Chips
/ Rank

DP
U-

CP
U

CPU-DPU

PIM-enabled DIMMs

PIM Chip

DDR4
Interface

Control/status
Interface

8

MRAMDPU

MRAM
64MB

IRAM
24KB

WRAM
64KB

DPU

DMAPipeline

Figure 4: Overview of the UPMEM Architecture.

The DPU chip incorporates two essential on-chip mem-
ory elements, namely Instruction RAM (IRAM) and Working
RAM (WRAM), with the specific purpose of reducing the
access time to the Main RAM (MRAM) for the DPUs. The
IRAM, a 24 KB memory, can store DPUs’ encoded instruc-
tions, and the 64 KB WRAM, is accessible by DPUs using
data store and load instructions. Additionally, DMA is uti-
lized to enable communication between the MRAM and both
the WRAM and IRAM. The architecture, depicted in Fig. 4,
comprises two distinct types of DIMMs. Firstly, the standard



DRAM functions as the primary memory for the host system.
Secondly, there are PIM-enabled DRAMs, which can accel-
erate the computations in the memory. In this configuration,
data is initially stored in the conventional main memory, and
to perform computations on this data, it must be transferred to
the PIM (i.e., CPU-DPU Communication). Once the compu-
tation process is completed, the outcomes must be retrieved
from all the DPUs, which entails DPU-CPU Communication.
Given that these two memory types exhibit distinct data lay-
outs [20], data transfer is performed through the CPU host to
adjust the layout.

To minimize communication, public data can be transferred
to the PIM before runtime, leaving only user-specific or up-
dated data to be transferred during runtime.

3.3 Trusted Execution Environment Extension

Trusted Execution Environment (TEE) is a secure area inside
a main processor. It guarantees code and data loaded inside
are protected with respect to confidentiality and integrity. In
the scope of TEE, memory encryption technologies play a
vital role in ensuring data security. AES is a commonly used
memory encryption technology [10, 41, 43]. By using AES,
data that leaves the processor to be stored in the memory is en-
crypted, thus protecting the confidentiality of the information
against potential attackers. For the integrity of data - ensuring
that it has not been altered or tampered with, a data structure
known as a Merkle Tree is often employed [10, 41]. By hash-
ing the data and constructing a tree of hashes, the integrity of
large sets of data can be verified efficiently and securely.

While memory encryption techniques within TEE can pro-
tect plaintext from being accessed by untrusted off-chip mod-
ules, it also means that these untrusted off-chip accelerators
can only obtain encrypted data. As a result, they cannot accel-
erate applications effectively since computations based on en-
crypted data yield incorrect results. One potential workaround
is to extend the TEE’s Trusted Computing Base (TCB) to
include these accelerators [38, 76, 86]. Through a series of
protocols, these accelerators can be brought within the scope
of the TCB, thus gaining access to the plaintext data for pro-
cessing. However, this solution is not without its challenges.
Firstly, it would require the use of specialized accelerators de-
signed with a Root of Trust for attestation, a feature lacking in
most existing accelerators. Moreover, validating the integrity
of these accelerators’ supply chains to ensure the absence of
embedded backdoors or other malicious modifications would
also be necessary, a process that can be logistically and prac-
tically challenging. In essence, expanding the TCB of TEEs
to include accelerators may not be feasible with current hard-
ware, which further emphasizes the need for innovative solu-
tions in secure, high-performance computation.

MPC [12, 15, 32, 72, 77, 79] is a way to offload the compu-
tation to the off-chip components without the need to trust
additional units.

3.4 Multi-Party Computation (MPC)

MPC is a branch of cryptography that allows parties to jointly
compute a function over their inputs while keeping those
inputs private. MPC provides an exceptional way to solve
certain classes of problems where individual parties, each
holding their own piece of private data, wish to collaborate
on a shared computation without revealing their inputs to
each other. It achieves this remarkable feat by dividing the
sensitive data into multiple encrypted shares, each of which
is processed independently.

The charm of MPC lies in its ability to execute computa-
tions on encrypted data, thereby ensuring the confidentiality
of the data throughout the process. This feature makes MPC a
potential solution for securely leveraging accelerators without
the need to extend the TCB, since the computations on the
accelerator side are still performed on encrypted data.

In a typical MPC scenario involving a TEE and accelerators,
the sensitive data would be divided into two or more encrypted
shares [12,32,48,72,79]. One share would be processed on the
TEE, and the rest on the accelerators. By carefully assigning
computational tasks according to their complexity and volume
- lightweight, low-volume tasks to the TEE and heavier, high-
volume tasks to the accelerator - an efficient balance of the
workload can be achieved.

Arithmetic secret sharing [12, 48] is a type of Secure
MPC where data is partitioned into multiple portions and
arithmetic computations are performed separately by differ-
ent parties over different partitions. Subsequently, the partial
results obtained from each party are combined to derive the fi-
nal result. An illustrative example of this process is presented
in Fig. 5(b), where x is equal to xr + xc. The computation for
xr is executed by party 1, while party 2 handles the computa-
tion for xc. Finally, the partial results are aggregated to obtain
the final result. Each party is unaware of the actual data or the
portion held by other parties. Thus, the computation can be
outsourced while preserving privacy.

Counter-mode encryption: To employ counter-mode en-
cryption [42, 46], as depicted in Fig. 5(a), the plaintext is not
encrypted directly. Instead, a counter is encrypted to produce
One-Time Pads (OTPs), a.k.a encrypted counter. A block of
the plaintext is then XORed with the generated OTPs to pro-
duce a block of ciphertext. The decryption process simply
requires an XOR operation. The encrypted counter is typically
produced using a block cipher, such as AES. The CTR mode
of AES is suitable for this purpose. One significant advantage
of this counter-mode encryption is that it allows for parallel
encryption of different blocks, due to the independence of the
counters. This makes it an efficient method for symmetric en-
cryption. Additionally, parts of the encryption and decryption
processes can be precomputed.

Combining arithmetic secret sharing with counter-mode en-
cryption provides an effective and robust method for ensuring
data confidentiality.



Figure 5: (a) Counter-mode Encryption: Generated One-Time
Pads are XORed with the plaintext to produce the ciphertext.
(b) Arithmetic Secret Sharing: The trusted party distributes
the computation among multiple untrusted parties. Partial
results are retrieved and aggregated to achieve the final result.

Yao’s garbled circuit: Garbled Circuit (GC), as proposed
by Yao [80], is a cryptographic protocol for secure two-party
computation, typically employed when neither party trusts
the other. In this scheme, one party constructs the GC and
both parties then provide their encoded inputs to the circuit.
Subsequently, one party can obtain the output from the GC.
This output can also be shared with the other party.

Yao’s GC is computationally intensive due to the use of
cryptographic primitives like AES. However, some optimiza-
tions like using free XOR gates [36] can help us to reduce or
eliminate unnecessary cryptographic primitives, making GC
more efficient for simple computations [35, 57].

3.5 Message Authentication Codes (MAC)
Message Authentication Codes (MACs) are generated for
each discrete block of data to detect potential unauthorized
modifications. These algorithmically-produced tags are sub-
sequently stored in memory alongside the corresponding data.
Upon data retrieval, a new set of MACs is generated to be
compared with the pre-existing, retrieved tags. Any discrep-
ancies between these two sets of MACs would indicate a
potential instance of unauthorized modification. In the con-
text of linear functions, these tags can be generated via linear
checksums or hash functions, which serve to map larger data
blocks onto smaller data blocks. The likelihood of identical
tags being generated for two distinct messages under this
system is statistically negligible [79].

4 Related Work

Numerous cryptographic techniques have been proposed to
preserve the confidentiality of sensitive data and ensure com-
putation integrity when outsourcing computations to untrusted
parties. While Homomorphic Encryption (HE) [18, 21, 33, 40,
58] is regarded as a promising solution for achieving high the-
oretical privacy, it is computationally intensive. Studies [47]
indicate that HE algorithms can introduce an overhead as high
as two orders of magnitude in the best circumstances, making
it impractical for secure computation using PIM.

Gupta et al. [25] implemented and evaluated homomorphic
operations on the UPMEM architecture. While they signif-
icantly improved CPU and GPU implementations of homo-
morphic operations, their approach is still slower than MPC
or TEE implementations. A detailed comparison is provided
in section 7. Differential Privacy (DP) [16, 17] represents an
alternative approach that safeguards data privacy by introduc-
ing controlled noise during computation, which in turn leads
to a reduction in utility [47]. Increasing the level of privacy
may decrease data accuracy and usefulness.

TEE is a widespread technique deployed in the cloud to
provide data confidentiality and integrity. Acceleration can
be achieved by extending TEE to untrusted off-chip mod-
ules [38, 76, 86]. Graviton [76] and HIX [38] propose GPU
enclaves for secure GPU acceleration. However, they re-
quire hardware modifications, including hardware support
for GPU enclaves and memory-mapped IO access protec-
tion. HETEE [86] uses an FPGA-based access control mod-
ule to support TEE for PCIe-attached accelerators. However,
HETEE does not protect the internal PCIe bus from physical
attack and cannot support accelerators attached to the memory
bus (e.g., NDP).

Additionally, MPC [12,15,32,72,77,79] is another notewor-
thy solution that necessitates trust in the central component
while avoiding collusion. By combining MPC and TEE, se-
cure acceleration can be achieved with minimal overhead,
effectively balancing the need for data privacy and computa-
tional efficiency.

Slalom [72] uses MPC to offload the linear computation
to a co-located but untrusted GPU. While they are using pre-
computation to perform the computation on the TEE side,
their scheme involves a significant communication overhead
between memory, CPU, and GPU. Also, their scheme is only
implemented for neural network inference.

SecNDP [79] proposes an MPC scheme to securely of-
fload linear computation to an untrusted NDP. However, TEE
computation can become a bottleneck when dealing with ap-
plications where public data is significantly larger than private
data. In addition, their evaluation is based on simulation, and
they do not support nonlinear computation.

To address these challenges, we propose a low-overhead
security scheme to enable secure and fast computation of
linear and nonlinear operations for off-chip PIM modules.

5 Proposed Secure PIM Computation

5.1 Overview

This section provides a comprehensive overview of the en-
cryption and verification mechanisms integral to our proposed
framework for secure data processing on untrusted PIM ar-
chitectures. The design ensures that sensitive data remains
confidential while enabling secure computation offloading to



PIM modules. Additionally, our verification scheme guaran-
tees the integrity of data and computations outside the TEE.

5.2 Preliminaries and Notations
To illustrate our proposed encryption and computation
scheme, we use the MLP as an example, though the method-
ology is adaptable to other applications. The main computa-
tional bottleneck in many data-intensive tasks, including MLP,
lies in linear operations such as GEMV, which we securely
offload to PIM for acceleration.

Our scheme handles two types of data: private data, which
must remain confidential, and public data, which does not
require secrecy. Table 2 summarizes the key notations used in
our framework.

Our encryption scheme utilizes One-Time Pads (OTPs)
(Ri) to securely mask plaintext (Pi) during processing. Each
OTP is generated using a unique key and a version number,
ensuring that the masked data remains indistinguishable and
secure, even if intercepted. This approach provides strong
confidentiality with an extremely low risk of collisions [79].

Table 1: List of Notations
Notations Explanation

Pi ith element of the plaintext vector of size n

Ci ith element of the ciphertext vector of size n

Ri ith element of the generated OTP vector of size n
Wj,i Element at (j,i) of the weight matrix (m×n)

resPIM Retrieved partial results from PIM with size m
resCPU CPU’s partial results of size m

res Final result (resCPU + resPIM) of size m

5.3 Encryption Scheme
Our encryption scheme employs arithmetic secret sharing [12]
and counter-mode encryption [60, 67, 69] to securely offload
linear computations to the PIM [79]. For nonlinear compu-
tations, which arithmetic secret sharing cannot handle, we
utilize Yao’s garbled circuits [48, 49, 81], ensuring secure
processing for a wide range of workloads.

As explained in section 3.4, before runtime, the plaintext
is masked with OTPs (Ri) to generate the ciphertext (Ci),
which is stored in memory for use during execution. In our
scheme, PIM-enabled memory handles computation on the
ciphertext (Ci) to reduce data movement between the TEE-
enabled CPU and PIM. The TEE is responsible for performing
computations over the OTPs (Ri), as Ris can be generated on
the fly with little or no memory access. The final result is
obtained by combining partial results from PIM and TEE.

5.3.1 Secure outsourcing of linear functions

Computation over OTPs can be performed either at runtime in
parallel with the PIM computations, i.e., the runtime method,
or precomputed offline, i.e., the precomputation method.

Runtime Scheme: Fig. 6 shows the overview of computa-
tion using the runtime method. Once the execution is started,
the ciphertext (Ci), which is stored in the standard memory,
is sent to the PIM. Meanwhile, OTPs are generated on the
TEE-enabled CPU. Then, kernel computations are performed
in parallel across the TEE and the PIM. It is essential to en-
sure that the CPU does not become a performance bottleneck;
otherwise, the overall computational benefits of using the PIM
accelerator would be negated. The CPU avoids becoming a
bottleneck by generating OTPs on the fly, eliminating the
need for additional memory accesses. This streamlined OTP
generation enables the PIM to perform its operations at full
capacity without waiting for CPU side computation. Once
the computation on the PIM side is complete, the CPU re-
trieves partial results (resPIM). The final result is obtained
by applying the ReLU function to the sum of CPU results
and PIM results (resCPU + resPIM). Fig. 7(a) presents the
pseudo-code for runtime-based implementation of MLP.

resCPU + VerifyOTP
Ri

max(0,resCPU+resPIM)resCPU=R*WTEE

Wj,i

Wj,i

Ci

GEMV RELU

Ci
resPIM

resPIM=C*W

Input for the
next Layer

PIM-enabled DRAM

Wj,i
GEMV

Standard DRAM

PIM-CPU CPU-PIMMEM-CPU

Figure 6: The computation flow of the runtime approach
begins with the initiation of a GEMV kernel by the PIM
system on the ciphertext. Concurrently, on the CPU side, a set
of OTPs is generated, and GEMV computation is performed
on them. Finally, the partial results are merged within TEE.

The runtime method may be less effective in applications
where the volume of public data significantly exceeds that
of private data. In this case, while the runtime generation of
OTPs obviates the need to transfer Ci from memory to the
CPU, a substantial amount of public data must be transferred,
which causes the CPU computation to become the bottleneck.
We employ the precomputation scheme (explained next) to
mitigate this issue.

Precomputation Scheme: The precomputation scheme
can mitigate the issue associated with the runtime scheme by
precomputing the kernel computation over OTPs on the TEE.
This makes the runtime computation on the CPU lightweight
and prevents it from becoming a bottleneck. The reason be-
hind this is that OTPs are encrypted counters and can be
generated independently of the private data, allowing us to
precompute the kernel over them.

As shown in Fig. 7(b), the precomputation scheme con-
sists of two phases: the offline and online phases. In the
offline phase, the computation is performed on the OTPs,
and the encrypted results are stored in memory. In the on-
line phase, as presented in Fig. 8, the computation on the



procedure PIM_MLP:
for j = 0, m-1:
  for i = 0, n-1:
    resPIM[j] = w[j][i] * c[i]
Transfer_to_CPU(resPIM)

procedure TEE_MLP:
for j = 0, m-1:
  for i = 0, n-1:
    r[i] = PRNG(seed)[j][i]
    resCPU = w[j][i] * r[i]

// merge partial results
for j = 0, m-1:
  res[j] = resCPU[j] + resPIM[j]
  res[j] = ReLU(res[j])
  // non-linear function

procedure PIM_MLP:
for j = 0, m-1:
  for i = 0, n-1:
    resPIM[j] = w[j][i] * c[i]
Transfer_to_CPU(resPIM)
// wait CPU processing

procedure Online_TEE_MLP:

resCPU = Decrypt(resCPUE)
// wait DPU processing

// merge partial results
for j = 0, m-1:
  res[j] = resCPU[j] + resPIM[j]
  res[j] = ReLU(res[j])
  // non-linear function

procedure Offline_TEE_MLP:
for j = 0, m-1:
  for i = 0, n-1:
    r[i] = PRNG(seed)[j][i]
    resCPU = w[j][i] * r[i]
resCPUE = Encrypt(resCPU)

(a) Runtime-based MPC Computation

CPU Bottleneck

(b) Pre-computation-based MPC Computation

Offline CPU TEE

Online CPU TEE

Off-Chip PIM

Off-Chip PIM

No CPU Bottleneck

Online CPU TEE

Figure 7: (a) In runtime-based MPC, the CPU generates
OTPs and performs GEMV computations, which can cre-
ate bottlenecks on the CPU side. (b) In precomputation-based
MPC, these computationally intensive tasks are handled of-
fline, removing them from the critical path and resulting in
lightweight runtime CPU computation.

TEE is as lightweight as decrypting the encrypted results
(resCPU). The computation on the PIM remains the same as
in the runtime scheme. Once the computation on the PIM is
complete, the TEE merges the precomputed results (resCPU)
with the partial results retrieved from the PIM (resPIM). The
precomputation method can be applied to applications such
as neural network inference, where the weights do not change
dynamically.

TEE

Ci

resCPU

resPIM

+ VerifyresCPUE Decrypt

resCPUE

max(0,resCPU+resPIM)

resPIM=C*W

Input for the
next Layer

PIM-enabled DRAMStandard DRAM

Wj,i

RELU

GEMVCi Wj,i

PIM-CPU CPU-PIMMEM-CPU

Figure 8: Precomputed partial results (resCPU) are securely
stored in memory. During runtime, the PIM accelerator per-
forms computations over the ciphertext (Ci). However, the
computation on the CPU is limited to decrypting the precom-
puted results (resCPU).

5.3.2 Secure outsourcing of non-linear functions

To perform both linear and nonlinear computations securely
on the PIM, we employ a switching technique that transitions
from arithmetic secret sharing to Yao’s Garbled Circuits (Yao

sharing) [48,49,80,81]. This dual approach enables our frame-
work to handle a broader range of computations securely and
efficiently.

When only linear computations are offloaded to the PIM
(Fig. 9(a)), the system simply retrieves the intermediate re-
sults after computation. However, offloading both linear and
nonlinear computations requires an additional step. As shown
in Fig. 9(b), the TEE generates Yao’s circuit based on the
desired nonlinear function and shares it with the PIM. This
process ensures that the nonlinear computation is securely
handled on the untrusted PIM hardware.

To optimize the performance of nonlinear computations
using Yao’s circuits, it is advantageous to convert complex
functions into more GC-friendly equivalents. Yao’s circuits
are inherently efficient for Boolean logic, and transforming
nonlinear functions into circuit-compatible formats minimizes
overhead. For example, the sigmoid function is computation-
ally expensive to implement directly using Yao’s Garbled
Circuits. To address this, Mohassel et al. [49] proposed a
GC-friendly approximation of sigmoid for logistic regression,
defined as:

f (x) =


0, if x <− 1

2 ,

x+ 1
2 , if − 1

2 ≤ x ≤ 1
2 ,

1, if x > 1
2 .

This function can be represented in a Boolean circuit-
friendly format as:

f (u) = (¬b2)+(b2 ∧ (¬b1))u,

where

b1 =

{
0, if u+ 1

2 ≥ 0,
1, otherwise,

and

b2 =

{
0, if u− 1

2 ≥ 0,
1, otherwise.

The TEE computes b1 and b2, constructs the corresponding
Garbled Circuit, and securely shares it with the PIM.

Once the Yao’s circuit is constructed and shared, both the
TEE and PIM feed their respective inputs into the circuit to
compute the final result. Since the TEE is a trusted party, it
processes plaintext data without encryption, reducing over-
head compared to traditional Yao’s Garbled Circuit imple-
mentations.

While this switching scheme introduces communication
overhead due to the construction and sharing of Yao’s cir-
cuits, the resulting acceleration in computation justifies the
trade-off. By leveraging this dual approach—arithmetic se-
cret sharing for linear tasks and Yao’s Garbled Circuits for
nonlinear computations—we enable the PIM to securely and
efficiently handle diverse workloads, ensuring robust perfor-
mance across a wide range of applications.



TEE

PIM-enabled DRAM

Ci

+Ri

TEE

(a) (b)

Yao's Sharing

Linear Non-
Linear

Linear Ci Linear

+Ri Linear Non-
Linear +

Non-
Linear

Artihmetic Sharing

PIM-CPU CPU-PIM

Artihmetic Sharing

Artihmetic Sharing Artihmetic Sharing Yao's Sharing

PIM-enabled DRAM

Figure 9: (a) Securely outsourcing the linear computation to
the PIM module. (b) Securely outsourcing both linear and
nonlinear functions to the PIM. The main difference between
these two is that we need to switch to Yao sharing to outsource
nonlinear functions securely.

5.4 Verification Scheme
Given that off-chip accelerators are untrusted, it is crucial to
ensure computational integrity and detect any unauthorized
modifications. We employ MACs to address this concern. To
generate a MAC for a block of data, a linear checksum can be
utilized. Specifically, we employ Linear Modular Hashing [30,
42,79] to generate tags for data blocks. For the GEMV kernel,
the linear checksum can be formulated as below [79]:

Tag j = (
m−1

∑
i=0

Pi, j × sm−i) mod q

Verification tags (Tag j) are generated for each column of the
matrix. q is a big prime number and s is an encrypted value
using a key, a version number v, and the address of P.

As shown in Fig. 10, tags are generated and securely stored
in the memory using MAC-then-encrypt strategy [59]. At
runtime, the encrypted tags are decrypted, and the same ker-
nel computation is executed over the tags to generate FTage.
Since the overhead of generating FTage is negligible and can
be parallelized with the PIM computation, we opt to generate
them at the runtime on TEE. Subsequently, we retrieve the
computation results from PIM and merge them with the par-
tial results from CPU (res = resCPU + resPIM). Applying
Linear Modular Hashing to these results generates FTagr. By
comparing FTage with FTagr, we can verify the computation
and ensure there are no unauthorized modifications.

The process requires multiple verification stages when of-
floading both linear and non-linear functions to PIM. For
example, in the secure implementation of logistic regression,
there are two steps of verification: 1) after the dot product and
2) after gradient descent. Depending on the application, the
number of verification rounds may increase if we switch to
arithmetic sharing multiple times.

5.5 Evaluation Baselines
This section discusses the baseline approaches used for

comparing against our proposed secure PIM framework.
As illustrated in Fig. 11(a), the CPU-Secure baseline repre-

sents a system with a TEE-enabled CPU that performs com-

Pi

T0 ... Tn

TEE

FTageTi Wi

ResPIM
Ci

Wi

PIM-
enabled

 Memory 

Linear Checksum FTagr

Res = ResCPU + ResPIM

OTP Gen

Ri

CT0 CTn

-

Memory CT0 ... CTn

Offline Runtime
CTi + Ri = Ti

Ti - Ri

Linear Checksum

... ...CTi
Encrypted Tags

GEMV

. = ?

Figure 10: In the offline phase, tags are generated and stored in
memory. At runtime, the precomputed tags are decrypted, and
the same kernel computation is performed on them (FTage).
Meanwhile, new tags are generated based on the final result
(FTagr). If these tags are equal, the computation is verified.

putations on encrypted data stored in main memory. The
TEE-enabled CPU decrypts the data, processes it, and ensures
confidentiality and integrity. However, frequent data move-
ment between memory and the CPU introduces significant
overhead, which limits the overall system efficiency.

TEEStandard DRAM

PiCi

Wi,j
max(0,P*W)

Res Verify
Wi,j

Pi

max(0,P*W)

Ci

PIM-enabled DRAM

Merge

max(0,P*W)

Pi
Decryption

Verify
MLPMLP

MLP

Decryption

ResE

(c) PIM-Enc/Dec

(a) CPU-Secure (b) PIM-Insecure

Encryption

Wi,j

CPU

PIM-CPU CPU-PIMMEM-CPU

Figure 11: (a) CPU-Secure: TEE-based computation on the
CPU. The TEE decrypts the encrypted data, enabling it to
carry out the required computations. (b) PIM-Insecure: The
PIM accelerator directly performs computation on the plain-
text. (c) PIM-Enc/Dec: The PIM accelerator first decrypts the
encrypted data to perform the computation.

The PIM-Insecure baseline, shown in Fig. 11(b), transfers
plaintext data from main memory to the PIM for computa-
tion. While this approach leverages PIM-based computation
to reduce data movement and achieve high performance, it
completely lacks security mechanisms, exposing sensitive
data to potential risks. Additionally, handling both linear and
nonlinear computations in this setup increases communication
overhead between the CPU and PIM.

In Fig. 11(c), the PIM-Enc/Dec baseline represents a sys-
tem where the PIM and CPU are assumed to share encryption
keys for secure data exchange. The CPU encrypts data before
transferring it to the PIM, where it is decrypted, processed,
and re-encrypted before returning the results to the CPU.



Although this ensures data confidentiality and integrity, the
repeated encryption and decryption operations introduce sub-
stantial performance overhead, particularly for large datasets.
This scheme is partially secure based on the TEE’s threat
model, as it assumes that the PIM is trusted.

Our proposed framework overcomes these limitations by
securely offloading computations to untrusted PIM hardware
without compromising efficiency, achieving a balance be-
tween robust security and high performance.

Fig. 11(c) provides an overview of our secure PIM base-
line, assuming that both the CPU and the Processing Elements
(PEs) within a PIM chip are trusted entities that share a secret
key. This key is utilized to encrypt and decrypt data stored in
the memory. The PIM loads the encrypted data onto the PEs
and decrypts it to perform the computation. Afterward, the
PEs encrypt the results before sending them back to the CPU.
Compared to our scheme, this approach requires additional
encryption and decryption steps, which affects performance
when handling large private datasets. Furthermore, it pro-
cesses unencrypted data in the PIM, which contrasts with the
TEEs’ threat model.

5.6 Security Argument
Our security scheme is built upon existing cryptographic
techniques introduced in SecNDP [79], Slalom [72], and Se-
cureML [49] to ensure the privacy and integrity of data and
computation while offloading them to the PIM.

Security Guarantees: The following cryptographic tech-
niques are used in our scheme:

• Privacy of Data: Counter-mode encryption (CTR) is
employed to ensure the privacy of sensitive data by mask-
ing it with OTPs. CTR mode uses a block cipher, such
as AES, to generate encrypted counters, which serve as
OTPs. These OTPs are generated using random numbers
that are securely and honestly produced within the TEE.
As a result, masking the plaintext with these OTPs makes
the data indistinguishable from random values from the
adversary’s perspective. These security guarantees are
based on the assumptions validated in SecNDP [79].

• Correctness of Linear Computation: Arithmetic secret
sharing is used to ensure that the linear computation is
performed privately by splitting it into two unrecogniz-
able parts between the PIM and TEE. Each share alone
cannot reveal any information. The correctness of lin-
ear computation is based on the assumptions validated
in [72, 79].

• The Correctness of Non-linear Computation: Yao’s
Garbled Circuit is employed to perform non-linear com-
putations securely using the PIM and TEE. SecureML
[49] outlines the cryptographic guarantees and correct-
ness guarantees for this technique.

• Verification and Integrity: Message Authentication
Codes (MACs) are used to detect any unauthorized modi-
fications and to verify computations on the PIM side. We

use a linear modular hashing technique to verify linear
computations. SecNDP [79] presents how this scheme
verifies computation and ensures integrity.

6 Evaluation Methodology

6.1 Workload

This section describes our use cases and how the computation
is distributed among different DPUs. We have implemented
MLP inference, DLRM inference, Logistic Regression train-
ing, and Linear Regression (training and inference).

Implementation of MLP: MLP [34] is a class of neural
networks with at least three layers. Typically, each layer con-
sists of a GEMV kernel followed by the activation function
(ReLU) [27]. In our baseline UPMEM implementation of
MLP inference [24, 27, 28], each layer of the MLP involves
a weight matrix and an input vector. We consider the vector
inputs to be private and weights to be public.

In this setup, to optimize the MLP computation, only the
GEMV operation is offloaded to the UPMEM, while the CPU
handles all other computations. The matrix is divided into
equal row-wise partitions and distributed among the DPUs.
Meanwhile, a copy of the vector is sent to each DPU. In MLP
inference, each layer’s output serves as the next layer’s in-
put. As shown in Fig. 12, the input (X1,i) is secret-shared
between the CPU and PIM (C1,i = X1,i − R1,i). Then, the
PIM computes ResPIM1,i = C1,i ×W1,i, while ResCPU1,i is
precomputed offline in the CPU. The TEE merges these
partial results to obtain the input for the next layer (X2,i =
ResCPU1,i +ResPIM1,i). The TEE encrypts X2,i by subtract-
ing RL+1 from it and secret shares it with the PIM. The over-
head associated with this subtraction is negligible since R2,i
is generated on the fly and X2,i is present in the cache.

The implemented secure MLP consists of ten layers. We
experimented with various input and weight dimensions
(Fig. 14(a)), as well as different batch sizes (Fig. 14(b)).
Our implementation was evaluated with three different input
sizes (1000, 5000, and 10000) and three different weight sizes
(1000× 1000, 5000× 5000, and 10000× 10000). A weight
dimension of 1000×1000 means that each layer consists of
1000 neurons, and each neuron is connected to 1000 neurons
in the next layer.

Dec

C1,i

resCPU1,i

resPIM1,i

+

LAYER 1ResCPUE,1

R2,i

X2,i
O1,i

LAYER 2

GEMV

-
C2,i

resCPU2,i

resPIM2,i

+ O2,i

GEMV

C
PU

PI
M

Dec

ResCPUE,2

Figure 12: An example of how precomputation can be used for
MLP with multiple layers of computation. Since the output of
each layer is unencrypted, it must be encrypted before being
passed to the next layer.



Implementation of DLRM: DLRM [53], is used for per-
sonalization and recommendation tasks, distinguishes itself
from other deep learning models by handling both continu-
ous and categorical features as input. Continuous features are
processed through a dense MLP, while millions of embedding
vectors represent categorical features.

The embedding table lookup operation involves a weighted
sum, involving a sparse lookup followed by a reduction op-
eration. This reduction operation corresponds to the Pooling
Factor (PF), or the aggregation size. Given a batch size de-
noted by B, a list of indices I = {id0, id1, ..., idB×PF−1}, and
a list of weights A, the output of the computation over the em-
bedding table W is given as below when k = {0,1, ...,B−1}.

Out putk,i =
(k∗PF)−1

∑
j=k

a(id) j ×w(id) j ,i

Our insecure PIM baselines, PIM-Rec [73,75,82], is based
on Meta’s DLRM [53], which primarily offload the embed-
ding lookup table operation to UPMEM, while other opera-
tions are carried out on the CPU. This is due to the high degree
of irregular memory accesses required by embedding lookup
operation and the considerable amount of data involved. [75]
splits the columns of the embedding tables and offloads them
to the DPUs.

The user data within the embedding lookups is private,
so it is essential to ensure that it is securely offloaded and
processed in memory. Similarly to our baselines, the model
architecture can be configured to evaluate the design, and the
input can be randomly generated [82]. For our test cases, the
number of embedding lookup tables is 64, PF=32, and batch
size is 128.

Implementation of Logistic Regression: Logistic Regres-
sion [11], is a method employed for binary classification. This
statistical technique outputs the probability that an input be-
longs to one of the two classes. In the training phase of logistic
regression, numerous iterations are conducted to find the opti-
mal parameters. Each iteration of logistic regression training
begins with a forward pass, which involves the dot product
of the weights and inputs, followed by the activation function
(e.g., sigmoid). Next, the loss function is calculated to evaluate
the accuracy of our predictions, followed by the computation
of gradient descent to update the model parameters.

In the implementation of logistic regression training, we
adhere to the approach outlined in our UPMEM-Insecure
baseline study [23, 26]. Initially, the input is distributed row-
wise across PIM cores and tasklets. The CPU performs the
final reduction step in each iteration and updates the model
parameters.

We implemented two different versions: one only executes
linear functions on the PIM (UPMEM-Runtime-A), and the
other performs both linear and nonlinear computation on the
PIM cores (UPMEM-Runtime-A2Y). In the second case, we
must temporarily switch to Yao’s sharing to perform the acti-
vation function. As discussed in section 5.3.2, we utilize the

GC-friendly activation function to be able to efficiently and
securely offload non-linear functions to PIM.

Both schemes were evaluated over 1000 iterations with a
learning rate of 0.001 and 16 features (n).

Implementation of Linear Regression: Linear regres-
sion [68], is a statistical technique used to model the optimal
relationship between a dependent variable and one or more
independent variables using a linear equation. Like logistic
regression, the training involves multiple iterations to find
optimal parameters. Each iteration is identical to logistic re-
gression except for the activation function. In the baseline
implementation of linear regression [23, 26], the input is dis-
tributed across PIM cores and tasklets. Partial results are then
merged within DPUs and CPU before updating the weights.
Since we execute both dot product and gradient descent on
UPMEM, some additional communication between CPU and
PIM, after dot products and before gradient descent, is neces-
sary.

Linear regression inference is simply a matrix-vector multi-
plication of the weights and inputs. The input matrix consists
of several samples, each with different features. The weight
vector has the same length as the number of features.

6.2 Hardware Settings

We evaluated our method using UPMEM PIM hardware [74],
which is mainly the standard DDR4-2400 [39] DIMM inte-
grated with DPUs. Each UPMEM DIMM has 128 DPUs, each
with 64 MB of memory and a communication rate of 1 GB/s.
Increasing the number of PIMs enhances parallel computing
capabilities and throughput, but this is limited by memory
capacity (server’s DIMM channels/slots) [74]. For our experi-
ments, we used 20 PIM-enabled DIMMs, resulting in a total
of 160 GB of MRAM, which is the maximum supported by
a dual-socket Cascade Lake server (Intel Xeon Silver 4110
CPU [37]). This configuration supports the parallel operation
of 2,560 DPUs, all running at a clock frequency of 350 MHz.
The CPU host can send data in parallel to the PIMs; thus,
fewer PIMs result in reduced bandwidth.

UPMEM-Insecure represents the insecure version of our
UPMEM baseline implementation for various applications,
and UPMEM-Enc/Dec denotes a secure variant under the
assumption that both the CPU and the DPUs are trusted (De-
scribed in section 5.4). In addition, for UPMEM-Enc/Dec, the
DPUs can perform both encryption and decryption operations
using AES at a rate of 5 MB/sec. Our proposed framework can
be applied to any PIM-based architecture as it is independent
of the specific PIM hardware specifications.

CPU-Insecure and CPU-Secure are evaluated on the same
system as UPMEM-Insecure and UPMEM-Secure. In the
CPU-Secure version, TEE protection is provided using Intel’s
Trust Domain Extensions (TDX), a VM-based TEE that offers
improved efficiency compared to hardware-based TEEs.



7 Evaluation Result

7.1 Performance Analysis

In this section, we evaluate the latency and security analysis
of our scheme using four memory-bound applications.

Precomputation Overhead: We evaluate the precompu-
tation scheme on MLP. This scheme can be applied to appli-
cations where the weights remain static and do not change
dynamically. As described in Section 5.3.1, the precomputa-
tion scheme operates in two phases: offline and online. Figure
13 (left) illustrates the overhead of the offline phase in the
precomputation scheme and compares the online phase of the
precomputation scheme with the runtime scheme for MLP. By
precomputing the computationally intensive portions offline,
the execution time of MLP is significantly reduced, achieving
up to a 92% reduction compared to the runtime scheme. This
demonstrates that with precomputation, the CPU portion of
the computation no longer becomes a performance bottleneck.

Furthermore, increasing the input size for MLP primarily
affects the offline phase (Fig 13 (right)). Since the offline
phase consists of kernel operations over OTPs and the encryp-
tion of results, the associated overhead remains bounded.

Figure 13: (Left) Comparing precomputation vs. runtime
scheme for MLP. (Right) Online vs. offline proportion in
precomputation scheme for MLP.

MLP performance analysis: Fig. 14(a) compares the exe-
cution time of MLP under various operational modes: precom-
putation (UPMEM-Precomputation) and runtime (UPMEM-
Runtime), against insecure CPU (CPU-Insecure), insecure
UPMEM [27] (UPMEM-Insecure), TEE-enabled CPU (CPU-
Secure), and secure UPMEM with the assumption of hav-
ing trusted DPUs (UPMEM-Enc/Dec). Utilizing 2496 DPUs
and 16 tasklets, our precomputation method can achieve a
14.28× and a 14.66× speedup over CPU-Insecure and CPU-
Secure for the model with an input size of 40 KB/layer, respec-
tively. However, the runtime method has negligible speedup
(1.14×) compared to CPU-Insecure, primarily due to the sig-
nificant performance constraint imposed by the large volume
of data transfer between the standard memory and the CPU
for weights (public data). On average, the CPU-Secure imple-
mentation of MLP results in about 3% overhead compared to
CPU-Insecure.

We incorporated batch processing to the baseline imple-
mentation of MLP [27] (UPMEM-Insecure), leading to a
14.87× speedup compared to CPU-Insecure for an input
size of 40 KB/layer. Thus, UPMEM-Precomputation has
demonstrated minimal performance overhead (as low as
4%) compared to UPMEM-Insecure. Furthermore, as can
be seen in Fig. 14(a), the performance speedup of UPMEM-
Precomputation over CPU-Insecure increases with the model
size. This is due to the CPU’s performance limitations under
memory wall constraints, making our approach more effective
when dealing with larger datasets.

As can be seen in Fig. 14(a), UPMEM-Precomputation-
CV performs slightly better than UPMEM-Enc/Dec-V for an
input size of 40 KB per layer, resulting in a 1.13× speedup
compared to UPMEM-Enc/Dec-V. Furthermore, increasing
the input size further would lead to a more significant speedup.

Fig. 14(b) illustrates the execution time of different MLP
implementations across various batch sizes. For this evalu-
ation, we exploit the input size of 20 KB and a weight size
of 100 MB per layer. The optimal performance, compared
to CPU-Insecure and CPU-Secure, is observed at a batch
size of 128, achieving an 11.63× and an 11.90× speedup,
respectively. Smaller batch sizes lead to underutilization of
the UPMEM, while larger batch sizes require more PIMs to
process the entire batch in parallel. Since our memory is lim-
ited to 20 PIMs, for batch sizes greater than 128, we still need
to split the computation into mini-batches of 128, leading to
sequential computation across different mini-batches.

Fig. 14(a) and (b) show that the verification overhead for
MLP is negligible, with an overhead as low as 12.5 ms for an
input size of 40 KB per layer.

DLRM performance analysis: Fig. 15(a) demonstrates
the execution time of our experiments across various embed-
ding table sizes. We specifically report results for the embed-
ding lookup table comparison, as this operation is the primary
differentiating factor among various approaches, while the
rest of the computation is performed on the CPU in all ap-
proaches.

In our performance comparison across different system
configurations, we observed that our method initially exhibits
a negligible speedup of 1.53× for a model size of 16 GB over
CPU-Insecure. However, this speedup gradually increases as
the size of the embedding tables grows, eventually reaching
6.44× for embedding tables of 24 GB. This trend suggests
that our approach is particularly advantageous when handling
larger embedding tables due to the need for irregularly access-
ing more considerable amounts of data.

Our experiments show that CPU-Secure is, on average,
1.84× slower than CPU-Insecure. UPMEM-Precomputation-
CV achieves a 9.80× speedup for embedding tables of 24
GB over CPU-Secure. Furthermore, both the precomputation
and runtime schemes performed similarly in our experiments.
This similarity arises because the volume of public data is
relatively small, and CPU computation in the runtime scheme



Figure 14: Comparing different MLP implementations: (a) with varying model sizes for a batch size of 64, where increasing the
model size enables UPMEM-Precomputation to achieve greater speedups over CPU-Secure. (b) with varying batch sizes for a
model size of 20 KB/100 MB per layer, where UPMEM-Precomputation consistently delivers the best performance.

Figure 15: Execution time comparison of different implementations of Embedding Lookup (a) with different embedding table
sizes for a batch size of 128, where for larger model sizes, UPMEM-Precomputation can achieve a higher speedup compared to
CPU-Secure. (b) with different batch sizes for model size = 24 GB, where UPMEM-Precomputation outperforms CPU-Secure.

does not limit the overall computation.
Compared to our proposed scheme, the UPMEM-Enc/Dec

approach involves additional encryption and decryption steps,
which can degrade performance, mainly when processing
large datasets privately. For example, for embedding tables
of 24 GB, the overhead of decryption and encryption is about
58% of the total computation. This results in a 2.30× slow-
down for the UPMEM-Enc/Dec approach compared to the
UPMEM-Precomputation approach.

Fig. 15(b) presents the results of our embedding lookup
experiments conducted across a range of batch sizes, utilizing
a model size of 24 GB. Our scheme effectively accelerates
the computation for larger batch sizes, while its improvement
on smaller ones is insignificant. According to the results in
Fig. 15(b), UPMEM-Insecure achieves a 6.72× speedup com-
pared to CPU-Insecure. Incorporating privacy and verification
schemes leads to negligible performance degradation, and our
scheme attains a 6.44× speedup for a batch size of 128. This
is due to the increase in irregular memory accesses as the
batch size increases. However, the benefits of using PIM are
less pronounced for smaller batch sizes where memory access
is less significant.

Logistic Regression performance analysis: Fig. 16 illus-
trates the execution time of different logistic regression im-
plementations across various numbers of samples. Increasing
the number of samples allows our UPMEM-Runtime scheme
to achieve a speedup of up to 5.85× compared to the CPU-

Insecure baseline. This improvement is due to the memory
wall concept. Our experiments on the CPU-Secure implemen-
tation of logistic regression show no overhead compared to
CPU-Insecure.

Figure 16: Comparing different implementations of logis-
tic regression when having different numbers of samples.
UPMEM-Runtime-A(2Y) can achieve higher speedup over
CPU-Secure by increasing the number of samples.

The UPMEM-Insecure baseline has different implementa-
tions for the sigmoid function of logistic regression on the
UPMEM. We compared our implementation with two of their
implementations: an LUT-based implementation of the sig-
moid function and a non-LUT-based implementation. Our
scheme performs better than the non-LUT-based implementa-
tion, but the LUT-based approach outperforms ours. This is
because the non-LUT approach performs the sigmoid function
on the UPMEM, which is a complex computation based on the
UPMEM’s capabilities. UPMEM-Runtime-A is implemented



based on the sigmoid function; however, UPMEM-Runtime-
A2Y uses the GC-friendly activation function proposed in
SecureML [49]. SecureML shows that this activation function
does not degrade accuracy on their experimented datasets,
or the degradation is negligible. For 640000 samples, our
design experiences a 4.91× slowdown compared to UPMEM-
Insecure (LUT) but achieves a 4.61× speedup compared to
UPMEM-Insecure (non-LUT).

Since the verification scheme uses a linear checksum, it
cannot be used to verify non-linear computations. However,
we can verify the logistic regression by checking the com-
putation twice: once after the dot product and once after the
gradient descent computation. As seen in Fig. 16, the verifica-
tion overhead is negligible, so performing it twice does not
significantly impact the design.

As discussed in Section 5.3.1, the UPMEM-
Precomputation scheme is not included here because
it is not suitable for dynamic applications.

Since the TEE is trusted, Yao circuits in logistic regression
can be generated without requiring any encryption. Addi-
tionally, there is a 2× inputs_size B increase in the memory
overhead and 2× inputs_size B reduction in the communi-
cation overhead. For example, with an input size of 16000
(integer), a feature size of 16, and 1000 epochs, the switch-
ing overhead is about 846 ms, which is approximately 9%
of the total execution time. This switching results in a 32
KB increase in memory overhead, while the communication
overhead between the CPU and PIM is reduced by 32 KB.

As illustrated in Fig. 16, the arithmetic to Yao sharing
approach (UPMEM-Runtime-A2Y) exhibits superior perfor-
mance compared to the arithmetic sharing strategy (UPMEM-
Runtime-A). This improvement stems from a reduction in the
volume of data communication between the CPU and DPUs.

Linear Regression performance analysis: Gupta et
al. [25] implement various homomorphic operations to en-
sure secure computation over UPMEM. Fig. 17 compares
our scheme with their homomorphic-based implementation
of linear regression on CPU, GPU, and UPMEM. Our scheme
shows significant performance improvements over their ap-
proach, primarily due to the computational intensity of homo-
morphic operations. Compared to the UPMEM-Insecure, the
overhead of our MPC-based approach is significantly low.

Figure 17: Comparison of homomorphic-based and MPC-
based implementations of linear regression with varying num-
bers of samples. Our MPC-based approach consistently out-
performs the HE-based method.

As illustrated in Fig. 18, in linear regression training, our
method’s performance improves as the number of samples
increases compared to the CPU-Insecure approach. For ex-
ample, the speedup of the runtime scheme compared to CPU-
Insecure and CPU-Secure is 1.73× and 1.78× for 409600
samples, increasing to 2.57× and 2.64× for 819200 sam-
ples. This improvement is due to memory constraints be-
coming more prominent with a larger number of samples.
However, our method involves transferring data to the CPU
mid-computation for result consolidation before returning
them to UPMEM. Enabling TEE on the CPU for logistic re-
gression implementation results in an average slowdown of
only 2%, which is negligible.

Thus, our approach does not achieve the efficiency of
UPMEM-Insecure due to extra inter-DPU data transfers be-
tween each iteration, resulting in a 9.20× slowdown com-
pared to UPMEM-Insecure. However, UPMEM-Runtime-CV
still outperforms the CPU-Insecure.

Figure 18: Comparing different linear regression training im-
plementations with different numbers of samples. By increas-
ing the number of samples, UPMEM-Runtime can achieve
higher performance compared to CPU-Secure.

Unlike in previous applications, UPMEM-Enc/Dec-V per-
forms better than UPMEM-Runtime-CV in linear regression.
This is because, in UPMEM-Enc/Dec-V, once the data is sent
to the PIM for each iteration, no inter-DPU communication is
needed. However, in both of our schemes, we need to merge
the dot product results in the CPU before starting the gra-
dient descent computation. This results in more inter-DPU
communication.

7.2 Robustness Under Threat Model
In this section, we discuss how our proposed framework ro-
bustly counters the defined threat model, ensuring both con-
fidentiality and integrity in untrusted PIM architectures. In
our proposed scheme, we consider an adversary A capable
of attempting to gain unauthorized access to private data or
tamper with data outside the TEE. The system’s robustness
under the defined threat model is evaluated as follows:
A. Unauthorized Observation:

• Threat: The adversary might eavesdrop on data stored in
off-chip memory or during transmission (bus snooping).
In addition, it might perform cold boot attack on either
standard memory or PIM-enabled DRAM.

• Robustness: Our scheme employs counter-mode encryp-
tion and the private data is masked with OTPs. Therefore,



data remains secret during transmission between mem-
ory and the CPU as well as inside the memory. Even if an
adversary intercepts the data, it is indistinguishable with-
out the secret key. Additionally, we are using arithmetic
secret sharing and Yao’s sharing for performing com-
putations. In both schemes, the TEE holds one share of
the computation, which does not reveal any information
about its share of the data or the secret keys.

Security guarantees for these techniques are rooted in cryp-
tographic principles validated by prior work (TEE [10], arith-
metic secret sharing and counter-mode encryption [79], and
Yao’s sharing [49]).
B. Unauthorized Modifications:

• Threat: The adversary may attempt to modify the data in
memory or during transmission between memory and the
CPU, or might try to alter the result of the computation
in the PIM. Untrusted PIMs can also seek to inject faults
into the computation.

• Robustness: The MACs generated in our scheme ensure
the integrity of private data by detecting any unautho-
rized modifications made outside the TEE. Addition-
ally, by performing computations on the generated tags,
we verify the authenticity of computations performed
outside the TEE. This is achieved by comparing the
retrieved results against the expected valid outputs, as
described in [79]. The hashing scheme employed in our
framework, based on the collision-resistant design of
SecNDP [79], further guarantees data integrity by ensur-
ing that no two different inputs produce the same hash.
This robust combination of MACs and collision-resistant
hashing mechanisms provides a strong safeguard against
data tampering and unauthorized modifications.

8 Expanding Real-World Applications

Our scheme is designed to address computational bottlenecks
in a variety of real-world applications by securely offloading
intensive computations to PIM hardware while maintaining
the necessary security guarantees. In these scenarios, PIM
accelerates the bottleneck, while lighter computations are
handled by the CPU under the same threat model.

In DNNs, the computational bottlenecks primarily arise
from linear operations such as GEMV, GEMM, and Convolu-
tion. Our proposed secure PIM framework can be extended
beyond GEMV (implemented for MLPs) to efficiently sup-
port GEMM and Convolution operations for more complex
networks, including CNNs and Transformers.

For Convolution, the input matrix can be unrolled based on
the kernel size and stride (Fig. 19(a)), transforming the opera-
tion into GEMV computations that can be securely offloaded
to PIM. Similarly, GEMM operations in Transformer models,
such as in the attention mechanism, can be split into smaller
GEMV tasks to fit the PIM’s parallel processing capabilities,
as illustrated in Fig. 19(b). For example, the computation in

the attention layer of Transformers is given by:
Attention(Q,K,V ) = Softmax

(
QK⊤
√

dk

)
V ,

where the quadratic complexity of the GEMM operations
(e.g., QK⊤) dominates the computational workload. Our
framework securely partitions these GEMM tasks into

GEMVs, leveraging the PIM for efficient parallel execution.
If Softmax is also required on the PIM, a GC-friendly

approximation of Softmax [49] can be utilized, allowing
secure computation using Yao’s Garbled Circuits.

By demonstrating scalability across various workloads and
extending to operations like GEMM and Convolution in large-
scale DNNs, our framework integrates seamlessly into real-
world application scenarios while maintaining robust security
guarantees under the defined threat model.

*
K0 K1

K2 K3 Unrolling

K0

K1

K2

K3

.

*
A0

A2

A4

.

DPU0
K0

K1

K2

.
K3

K4

K5

A1

A3

A5

A0 A3

A12 A15

K3 K4 K5

A0

A2

A4

A1

A3

A5

A1 A2

A13 A14

A4 A7

A8 A11

A5 A6

A9 A10

K0 K1 K2

A0

A3

A10 A15

A1

A2

A11 A14

A4

A7

A8 A13

A5

A6

A9 A12

(a)

(b)

A0

A2

A4

A1

A3

A5

DPU 1

Figure 19: (a) Unrolling the matrix for performing 2×2 con-
volution with stride = 2. (b) Performing GEMM on DPUs
using GEMV kernel.

9 Conclusions

Processing-in-Memory is an approach to address the perfor-
mance limitations caused by memory wall constraints. How-
ever, off-chip memory is considered untrusted based on cur-
rent TEE threat models. This study introduces a low-cost
method for secure computing on untrusted PIMs, which en-
ables the offloading of computations to PIM while preserving
confidentiality and allowing for the verification of the com-
putations. We evaluated our scheme on UPMEM using data-
intensive applications. The results demonstrated significant
performance improvements, with up to a 14.28× speedup
compared to insecure CPU when offloading linear computa-
tions to the PIM, and up to a 5.85× speedup when offload-
ing both linear and nonlinear computations to the PIM. Our
scheme not only guarantees security but also achieves the
acceleration benefits of outsourcing the computation to the
PIM-enabled memory.

Acknowledgments

This work is funded, in part, by NSF Career Award #2339317,
NSF #2235398, the initial complement fund from UCR, and
the Hellman Fellowship from the University of California.
We appreciate the use of hardware resources provided by
the UPMEM. We thank Prof. Nael Abu-Ghazaleh for his
insightful comments.



Ethics Considerations

Our research focuses on securely offloading computation to an
off-chip, untrusted PIM architecture using multi-party compu-
tation techniques. This research adheres to the ethical guide-
lines provided by USENIX Security. All authors of this paper
have reviewed and fully agree with this statement. Our re-
search does not compromise user privacy or safety, and all
data used in our experiments is either synthetic or randomly
generated. Therefore, no personally identifiable information
(PII), sensitive data, or human subjects were involved.

We built our research upon publicly available baseline im-
plementations. We properly acknowledged and cited the orig-
inal creators and respected any licensing agreements.

Our research utilized UPMEM PIMs provided by UPMEM,
which were integral to conducting our experiments. This hard-
ware was used following the provider’s guidelines and licens-
ing agreements, and we have properly acknowledged their
contribution to our research.

Compliance with Open Science Policy

Our research adheres to the USENIX Open Science policy by
making all code and scripts used in our experiments publicly
available to ensure transparency and reproducibility. In the
following, we outline the artifacts that will be shared:

Description: To ensure transparency and reproducibility,
we provide all necessary source code, configuration files, and
scripts. Using these resources, the performance results for
UPMEM-Precompute-C(V), UPMEM-Runtime-C(V), and
UPMEM-Runtime-A(2Y)-C(V) presented in Figures 13 to 18
can be reproduced.

Access: The code is open-source and hosted on a GitHub
public repository to facilitate reuse. Additionally, it is archived
on Zenodo. We encourage other researchers to explore, repro-
duce, and modify our code, provided they give appropriate
credit.

URL:

• GitHub: github.com/Secure-UPMEM/SecUPMEM.git.

• Zenodo: zenodo.org/records/14736864.

All data and models used in our experiments and performance
evaluations are randomly generated.

References

[1] Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and
Mauro Conti. A survey on homomorphic encryption
schemes: Theory and implementation. ACM Comput.
Surv., 51(4):1–35, July 2018.

[2] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur
Mutlu, and Kiyoung Choi. A scalable processing-in-
memory accelerator for parallel graph processing. In

2015 ACM/IEEE 42nd Annual International Symposium
on Computer Architecture (ISCA), pages 105–117, 2015.

[3] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur
Mutlu, and Kiyoung Choi. A scalable processing-in-
memory accelerator for parallel graph processing. In
Proceedings of the 42nd Annual International Sympo-
sium on Computer Architecture, ISCA ’15, pages 105–
117, New York, NY, USA, June 2015. Association for
Computing Machinery.

[4] Md Tanvir Arafin and Zhaojun Lu. Security challenges
of processing-in-memory systems. In Proceedings of the
2020 on Great Lakes Symposium on VLSI, GLSVLSI
’20, page 229–234, New York, NY, USA, 2020. Associ-
ation for Computing Machinery.

[5] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan
Picek. Csi nn: Reverse engineering of neural network
architectures through electromagnetic side channel. In
Proceedings of the 28th USENIX Conference on Secu-
rity Symposium, SEC’19, page 515–532, USA, 2019.
USENIX Association.

[6] Amirali Boroumand, Saugata Ghose, Youngsok Kim,
Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur,
Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy
Ranganathan, and Onur Mutlu. Google workloads for
consumer devices: Mitigating data movement bottle-
necks. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’18, page
316–331, New York, NY, USA, 2018. Association for
Computing Machinery.

[7] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo
Zhang, Arvind, and Srinivas Devadas. Mi6: Secure
enclaves in a speculative out-of-order processor. In
Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO ’52,
page 42–56, New York, NY, USA, 2019. Association
for Computing Machinery.

[8] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez,
Salman Ahmed, Zhongshu Gu, Hani Jamjoom, Hubertus
Franke, and James Bottomley. Intel TDX demystified:
A Top-Down approach. arXiv preprint, March 2023.
Available at https://arxiv.org/abs/2303.15540.

[9] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen
Zhao, Yongpan Liu, Yu Wang, and Yuan Xie. PRIME:
a novel processing-in-memory architecture for neural
network computation in ReRAM-based main memory.
SIGARCH Comput. Archit. News, 44(3):27–39, June
2016.

https://github.com/Secure-UPMEM/SecUPMEM.git
https://zenodo.org/records/14869014
https://arxiv.org/abs/2303.15540


[10] Victor Costan and Srinivas Devadas. Intel SGX ex-
plained. Cryptology ePrint Archive, 2016. Available at:
https://eprint.iacr.org/2016/086.pdf.

[11] David R Cox. The regression analysis of binary se-
quences. Journal of the Royal Statistical Society: Series
B (Methodological), 20(2):215–232, 1958.

[12] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah
Zakarias. Multiparty computation from somewhat ho-
momorphic encryption. In Proceedings of the 32nd
Annual Cryptology Conference on Advances in Cryp-
tology — CRYPTO 2012 - Volume 7417, page 643–662,
Berlin, Heidelberg, 2012. Springer-Verlag.

[13] Prangon Das, Purab Ranjan Sutradhar, Mark Indovina,
Sai Manoj Pudukotai Dinakarrao, and Amlan Ganguly.
Implementation and evaluation of deep neural networks
in commercially available processing in memory hard-
ware. In 2022 IEEE 35th International System-on-Chip
Conference (SOCC), pages 1–6, 2022.

[14] Fabrice Devaux. The true processing in memory acceler-
ator. 2019 IEEE Hot Chips 31 Symposium (HCS), pages
1–24, 2019.

[15] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine,
Kristin Lauter, Michael Naehrig, and John Wernsing.
Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy. In Proceedings of
the 33rd International Conference on International Con-
ference on Machine Learning - Volume 48, ICML’16,
page 201–210. JMLR.org, 2016.

[16] Cynthia Dwork and Frank McSherry. Differential pri-
vacy. Encyclopedia of Cryptography and Security, pages
338–340, 2011.

[17] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. The algorithmic foundations of differ-
ential privacy. In Proceedings of the 3rd Theory of
Cryptography Conference (TCC), 2006.

[18] Junfeng Fan and Frederik Vercauteren. Somewhat prac-
tical fully homomorphic encryption. Cryptology ePrint
Archive, Paper 2012/144, 2012. https://eprint.
iacr.org/2012/144.

[19] Saugata Ghose, Kevin Hsieh, Amirali Boroumand,
Rachata Ausavarungnirun, and Onur Mutlu. Enabling
the adoption of processing-in-memory: Challenges,
mechanisms, future research directions. arXiv preprint
https://arxiv.org/abs/1802.00320, 2018.

[20] Christina Giannoula, Ivan Fernandez, Juan Gómez Luna,
Nectarios Koziris, Georgios Goumas, and Onur Mutlu.
Sparsep: Towards efficient sparse matrix vector multi-
plication on real processing-in-memory architectures.

Proc. ACM Meas. Anal. Comput. Syst., 6(1), February
2022.

[21] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine,
Kristin Lauter, Michael Naehrig, and John Wernsing.
Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy. In Maria Florina Bal-
can and Kilian Q. Weinberger, editors, Proceedings of
The 33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 201–210, New York, New York, USA,
20–22 Jun 2016. PMLR.

[22] J. Gomez-Luna, I. El Hajj, I. Fernandez, C. Giannoula,
G. F. Oliveira, and O. Mutlu. Benchmarking memory-
centric computing systems: Analysis of real processing-
in-memory hardware. In 2021 12th International Green
and Sustainable Computing Conference (IGSC), pages
1–7, Los Alamitos, CA, USA, oct 2021. IEEE Computer
Society.

[23] CMU-SAFARI Research Group. Pim-ml: A benchmark
suite for machine learning workloads on processing-
in-memory architectures. https://github.com/
CMU-SAFARI/pim-ml, 2024.

[24] CMU-SAFARI Research Group. Prim bench-
marks: A benchmark suite for processing-in-memory
architectures. https://github.com/CMU-SAFARI/
prim-benchmarks, 2024.

[25] Harshita Gupta, Mayank Kabra, Juan Gómez-Luna, Kon-
stantinos Kanellopoulos, and Onur Mutlu. Evaluating
homomorphic operations on a real-world processing-
in-memory system. In 2023 IEEE International Sym-
posium on Workload Characterization (IISWC), pages
211–215, 2023.

[26] Juan Gómez-Luna, Yuxin Guo, Sylvan Brocard, Julien
Legriel, Remy Cimadomo, Geraldo F. Oliveira, Gagan-
deep Singh, and Onur Mutlu. An experimental evalua-
tion of machine learning training on a real processing-in-
memory system. arXiv preprint https://arxiv.org/
abs/2207.07886, 2023.

[27] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez,
Christina Giannoula, Geraldo F. Oliveira, and Onur
Mutlu. Benchmarking a new paradigm: An experimen-
tal analysis of a real processing-in-memory architec-
ture. arXiv preprint https://arxiv.org/abs/2105.
03814, 2021.

[28] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez,
Christina Giannoula, Geraldo F. Oliveira, and Onur
Mutlu. Benchmarking Memory-centric Computing Sys-
tems: Analysis of Real Processing-in-Memory Hard-
ware. In 2021 12th International Green and Sustainable
Computing Conference (IGSC). IEEE, 2021.

https://eprint.iacr.org/2016/086.pdf
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://arxiv.org/abs/1802.00320
https://github.com/CMU-SAFARI/pim-ml
https://github.com/CMU-SAFARI/pim-ml
https://github.com/CMU-SAFARI/prim-benchmarks
https://github.com/CMU-SAFARI/prim-benchmarks
https://arxiv.org/abs/2207.07886
https://arxiv.org/abs/2207.07886
https://arxiv.org/abs/2105.03814
https://arxiv.org/abs/2105.03814


[29] J Alex Halderman, Seth D Schoen, Nadia Heninger,
William Clarkson, William Paul, Joseph A Calandrino,
Ariel J Feldman, Jacob Appelbaum, and Edward W Fel-
ten. Lest we remember: cold-boot attacks on encryption
keys. Communications of the ACM, 52(5):91–98, May
2009.

[30] Shai Halevi and Hugo Krawczyk. Mmh: Software mes-
sage authentication in the gbit/second rates. In Fast
Software Encryption, 4th International Workshop, FSE
’97, Haifa, Israel, January 20-22, 1997, Proceedings, vol-
ume 1267 of Lecture Notes in Computer Science, pages
172–189. Springer, 1997.

[31] David Harriman. Trusted execution environments
(tees) and the responsibilities of a secure device, 2024.
Available at: https://pcisig.com/trusted-execution-
environments-tees-and-responsibilities-secure-device,
Accessed: 2024-03-27.

[32] Hanieh Hashemi, Yongqin Wang, and Murali An-
navaram. Darknight: A data privacy scheme for training
and inference of deep neural networks. arXiv preprint
https://arxiv.org/abs/2006.01300, 2020.

[33] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi.
Cryptodl: Deep neural networks over encrypted
data. arXiv preprint https://arxiv.org/abs/1711.
05189, 2017.

[34] Geoffrey E. Hinton. Learning translation invariant
recognition in massively parallel networks. In Pro-
ceedings of the Parallel Architectures and Languages
Europe, Volume I: Parallel Architectures PARLE, page
1–13, Berlin, Heidelberg, 1987. Springer-Verlag.

[35] Yan Huang, David Evans, Jonathan Katz, and Lior
Malka. Faster secure two-party computation using
garbled circuits. In Proceedings of the 20th USENIX
Conference on Security, SEC’11, page 35, USA, 2011.
USENIX Association.

[36] Yan Huang, Jonathan Katz, and David Evans. Efficient
secure two-party computation using symmetric cut-and-
choose. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology – CRYPTO 2013, pages 18–35,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[37] Intel. Intel® xeon® silver 4110 processor, n.d. Available
at: https://www.intel.com, Accessed: 2024-02-30.

[38] Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethu-
madhavan, and Jaehyuk Huh. Heterogeneous isolated
execution for commodity gpus. In Proceedings of the
Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’19, page 455–468, New York,
NY, USA, 2019. Association for Computing Machinery.

[39] JEDEC. Ddr4 sdram standard. Standard JESD79-
4, 2012. Available at: https://xdevs.com/doc/
Standards/DDR4/JESD79-4%20DDR4%20SDRAM.pdf.

[40] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha
Chandrakasan. Gazelle: A low latency framework for
secure neural network inference. arXiv preprint https:
//arxiv.org/abs/1801.05507, 2018.

[41] David Kaplan, Jeremy Powell, and Tom Woller. AMD
memory encryption. White paper, page 13, 2016.

[42] Tadayoshi Kohno, John Viega, and Doug Whiting. Cwc:
A high-performance conventional authenticated encryp-
tion mode. In Bimal Roy and Willi Meier, editors, Fast
Software Encryption, pages 408–426, Berlin, Heidel-
berg, 2004. Springer Berlin Heidelberg.

[43] Kokke. tiny-aes-c: Small portable aes128/192/256 in c.
https://github.com/kokke/tiny-AES-c, 2024.

[44] Marzieh Lenjani, Patricia Gonzalez, Elaheh Sadredini,
Shuangchen Li, Yuan Xie, Ameen Akel, Sean Eilert,
Mircea R Stan, and Kevin Skadron. Fulcrum: A sim-
plified control and access mechanism toward flexible
and practical in-situ accelerators. In 2020 IEEE Inter-
national Symposium on High Performance Computer
Architecture (HPCA), pages 556–569. IEEE, 2020.

[45] K S Lhee and S J Chapin. Buffer overflow and format
string overflow vulnerabilities. Software: practice &
experience, 2003.

[46] David A. McGrew and John Viega. The security and per-
formance of the galois/counter mode (gcm) of operation.
In Anne Canteaut and Kapaleeswaran Viswanathan, edi-
tors, Progress in Cryptology - INDOCRYPT 2004, pages
343–355, Berlin, Heidelberg, 2005. Springer Berlin Hei-
delberg.

[47] Fatemehsadat Mireshghallah, Mohammadkazem Taram,
Praneeth Vepakomma, Abhishek Singh, Ramesh Raskar,
and Hadi Esmaeilzadeh. Privacy in deep learning: A sur-
vey. arXiv preprint https://arxiv.org/abs/2004.
12254, 2020.

[48] Payman Mohassel and Peter Rindal. Aby3: A mixed
protocol framework for machine learning. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, page 35–52,
New York, NY, USA, 2018. Association for Computing
Machinery.

[49] Payman Mohassel and Yupeng Zhang. Secureml: A
system for scalable privacy-preserving machine learn-
ing. Cryptology ePrint Archive, Paper 2017/396, 2017.
https://eprint.iacr.org/2017/396.

https://pcisig.com/trusted-execution-environments-tees-and-responsibilities-secure-device
https://pcisig.com/trusted-execution-environments-tees-and-responsibilities-secure-device
https://arxiv.org/abs/2006.01300
https://arxiv.org/abs/1711.05189
https://arxiv.org/abs/1711.05189
https://www.intel.com/content/www/us/en/products/sku/123547/intel-xeon-silver-4110-processor-11m-cache-2-10-ghz/specifications.html
https://xdevs.com/doc/Standards/DDR4/JESD79-4%20DDR4%20SDRAM.pdf
https://xdevs.com/doc/Standards/DDR4/JESD79-4%20DDR4%20SDRAM.pdf
https://arxiv.org/abs/1801.05507
https://arxiv.org/abs/1801.05507
https://github.com/kokke/tiny-AES-c
https://arxiv.org/abs/2004.12254
https://arxiv.org/abs/2004.12254
https://eprint.iacr.org/2017/396


[50] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and
Rachata Ausavarungnirun. Processing data where it
makes sense: Enabling in-memory computation. Micro-
processors and Microsystems, 67:28–41, 2019.

[51] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and
Rachata Ausavarungnirun. A modern primer on pro-
cessing in memory. arXiv preprint https://arxiv.
org/abs/2012.03112, 2020.

[52] Michael Naehrig, Kristin Lauter, and Vinod Vaikun-
tanathan. Can homomorphic encryption be practical? In
Proceedings of the 3rd ACM workshop on Cloud com-
puting security workshop, CCSW ’11, pages 113–124,
New York, NY, USA, October 2011. Association for
Computing Machinery.

[53] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael
Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo
Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu,
Alisson G Azzolini, Dmytro Dzhulgakov, Andrey Mal-
levich, Ilia Cherniavskii, Yinghai Lu, Raghuraman
Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko,
Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay
Rao, Bill Jia, Liang Xiong, and Misha Smelyanskiy.
Deep learning recommendation model for personaliza-
tion and recommendation systems. arXiv preprint, May
2019. Available at https://arxiv.org/abs/1906.
00091.

[54] Bernard Ngabonziza, Daniel Martin, Anna Bailey, Hae-
hyun Cho, and Sarah Martin. TrustZone explained: Ar-
chitectural features and use cases. In 2016 IEEE 2nd
International Conference on Collaboration and Internet
Computing (CIC), pages 445–451. ieeexplore.ieee.org,
November 2016.

[55] Joel Nider, Craig Mustard, Andrada Zoltan, John Rams-
den, Larry Liu, Jacob Grossbard, Mohammad Dashti,
Romaric Jodin, Alexandre Ghiti, Jordi Chauzi, and
Alexandra Fedorova. A case study of Processing-in-
Memory in off-the-Shelf systems. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pages
117–130. USENIX Association, July 2021.

[56] S.K. Pal and S. Mitra. Multilayer perceptron, fuzzy
sets, and classification. IEEE Transactions on Neural
Networks, 3(5):683–697, 1992.

[57] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and
Stephen C. Williams. Secure two-party computation
is practical. In Mitsuru Matsui, editor, Advances in
Cryptology – ASIACRYPT 2009, pages 250–267, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[58] Dayane Alfenas Reis, Jonathan Takeshita, Taeho Jung,
Michael Thaddeus Niemier, and Xiaobo Sharon Hu.

Computing-in-memory for performance and energy-
efficient homomorphic encryption. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems,
28:2300–2313, 2020.

[59] Phillip Rogaway. Authenticated-encryption with
associated-data. In Proceedings of the 9th ACM Confer-
ence on Computer and Communications Security, CCS
’02, page 98–107, New York, NY, USA, 2002. Associa-
tion for Computing Machinery.

[60] Brian Rogers, Milos Prvulovic, and Yan Solihin. Ef-
ficient data protection for distributed shared memory
multiprocessors. In Proceedings of the 15th Interna-
tional Conference on Parallel Architectures and Com-
pilation Techniques, PACT ’06, page 84–94, New York,
NY, USA, 2006. Association for Computing Machinery.

[61] Elaheh Sadredini, Reza Rahimi, Mohsen Imani, and
Kevin Skadron. Sunder: Enabling low-overhead and
scalable near-data pattern matching acceleration. In
MICRO-54: 54th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 311–323, 2021.

[62] Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea
Stan, and Kevin Skadron. eap: A scalable and efficient
in-memory accelerator for automata processing. In Pro-
ceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 87–99, 2019.

[63] Sina Sayyah Ensan, Karthikeyan Nagarajan, Moham-
mad Nasim Imtiaz Khan, and Swaroop Ghosh. Scare:
Side channel attack on in-memory computing for re-
verse engineering. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 29(12):2040–2051,
2021.

[64] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk
Lee, Rachata Ausavarungnirun, Gennady Pekhimenko,
Yixin Luo, Onur Mutlu, Phillip B. Gibbons, Michael A.
Kozuch, and Todd C. Mowry. Rowclone: Fast and
energy-efficient in-dram bulk data copy and initializa-
tion. In 2013 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 185–
197, 2013.

[65] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan
Hassan, Amirali Boroumand, Jeremie Kim, Michael A.
Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C.
Mowry. Ambit: In-memory accelerator for bulk bitwise
operations using commodity dram technology. In 2017
50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 273–287, 2017.

[66] Naresh R Shanbhag and Saion K Roy. Benchmarking In-
Memory computing architectures. IEEE open journal
of the Solid-State Circuits Society, 2:288–300, 2022.

https://arxiv.org/abs/2012.03112
https://arxiv.org/abs/2012.03112
https://arxiv.org/abs/1906.00091
https://arxiv.org/abs/1906.00091


[67] Weidong Shi, H.S. Lee, M. Ghosh, Chenghuai Lu, and
A. Boldyreva. High efficiency counter mode security
architecture via prediction and precomputation. In
32nd International Symposium on Computer Architec-
ture (ISCA’05), pages 14–24, 2005.

[68] Xiaogang Su, Xin Yan, and Chih-Ling Tsai. Linear
regression. Wiley Interdisciplinary Reviews: Computa-
tional Statistics, 4, 05 2012.

[69] G. Edward Suh, Dwaine Clarke, Blaise Gassend,
Marten van Dijk, and Srinivas Devadas. Efficient mem-
ory integrity verification and encryption for secure pro-
cessors. In Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO
36, page 339, USA, 2003. IEEE Computer Society.

[70] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten
van Dijk, and Srinivas Devadas. Aegis: Architecture for
tamper-evident and tamper-resistant processing. In Pro-
ceedings of the 17th Annual International Conference
on Supercomputing, ICS ’03, page 160–171, New York,
NY, USA, 2003. Association for Computing Machinery.

[71] Adrian Tang, Simha Sethumadhavan, and Salvatore
Stolfo. Heisenbyte: Thwarting memory disclosure at-
tacks using destructive code reads. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’15, pages 256–267, New
York, NY, USA, October 2015. Association for Comput-
ing Machinery.

[72] Florian Tramèr and Dan Boneh. Slalom: Fast, verifi-
able and private execution of neural networks in trusted
hardware. arXiv preprint https://arxiv.org/abs/
1806.03287, 2018. arXiv.org perpetual, non-exclusive
license.

[73] UBC-ECE-Sasha. Pim-embedding-lookup reposi-
tory, n.d. https://github.com/UBC-ECE-Sasha/
PIM-Embedding-Lookup.

[74] UPMEM. Upmem official website, 2020. https://
www.upmem.com.

[75] UPMEM. Pim-embedding-lookup repository (mul-
ticol branch), n.d. https://github.com/upmem/
PIM-Embedding-Lookup/tree/multicol.

[76] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno.
Graviton: Trusted execution environments on GPUs.
In 13th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 18), pages 681–696,
Carlsbad, CA, October 2018. USENIX Association.

[77] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Se-
curenn: 3-party secure computation for neural network
training. Proceedings on Privacy Enhancing Technolo-
gies, 2019:26–49, 07 2019.

[78] Wm A Wulf and Sally A McKee. Hitting the memory
wall: implications of the obvious. SIGARCH Comput.
Archit. News, 23(1):20–24, March 1995.

[79] Wenjie Xiong, Liu Ke, Dimitrije Jankov, Michael
Kounavis, Xiaochen Wang, Eric Northup, Jie Amy Yang,
Bilge Acun, Carole-Jean Wu, Ping Tak Peter Tang,
G. Edward Suh, Xuan Zhang, and Hsien-Hsin S. Lee.
Secndp: Secure near-data processing with untrusted
memory. In 2022 IEEE International Symposium
on High-Performance Computer Architecture (HPCA),
pages 244–258, 2022.

[80] Andrew C. Yao. Protocols for secure computations. In
23rd Annual Symposium on Foundations of Computer
Science (sfcs 1982), pages 160–164, 1982.

[81] Andrew Chi-Chih Yao. How to generate and exchange
secrets. In Proceedings of the 27th Annual Symposium
on Foundations of Computer Science, pages 162–167.
IEEE, 1986.

[82] Niloofar Zarif. Offloading embedding lookups to
processing-in-memory for deep learning recommender
models. PhD thesis, University of British Columbia,
2023.

[83] Jingyao Zhang, Mohsen Imani, and Elaheh Sadredini.
Bp-ntt: Fast and compact in-sram number theoretic trans-
form with bit-parallel modular multiplication. In 2023
60th ACM/IEEE Design Automation Conference (DAC),
pages 1–6. IEEE, 2023.

[84] Jingyao Zhang, Hoda Naghibijouybari, and Elaheh
Sadredini. Sealer: In-sram aes for high-performance and
low-overhead memory encryption. In Proceedings of
the ACM/IEEE International Symposium on Low Power
Electronics and Design, pages 1–6, 2022.

[85] Jingyao Zhang and Elaheh Sadredini. Inhale: En-
abling high-performance and energy-efficient in-sram
cryptographic hash for iot. In Proceedings of the
41st IEEE/ACM International Conference on Computer-
Aided Design, pages 1–9, 2022.

[86] Jianping Zhu, Rui Hou, XiaoFeng Wang, Wenhao Wang,
Jiangfeng Cao, Boyan Zhao, Zhongpu Wang, Yuhui
Zhang, Jiameng Ying, Lixin Zhang, and Dan Meng. En-
abling rack-scale confidential computing using hetero-
geneous trusted execution environment. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 1450–
1465, 2020.

https://arxiv.org/abs/1806.03287
https://arxiv.org/abs/1806.03287
https://github.com/UBC-ECE-Sasha/PIM-Embedding-Lookup
https://github.com/UBC-ECE-Sasha/PIM-Embedding-Lookup
https://www.upmem.com
https://www.upmem.com
https://github.com/upmem/PIM-Embedding-Lookup/tree/multicol
https://github.com/upmem/PIM-Embedding-Lookup/tree/multicol


A Artifact Appendix

A.1 Abstract

Our artifact contains all necessary source codes and scripts
for evaluating our proposed security scheme. This paper lever-
ages Multi-Party Computation (MPC) techniques, specifically
arithmetic secret sharing, and Yao’s garbled circuits, to se-
curely outsource bandwidth-intensive computation to PIM.
Additionally, we employ precomputation optimizations to
prevent the CPU’s portion of the MPC from becoming a bot-
tleneck. We provided all the source codes and scripts for
evaluating our scheme using UPMEM, the first publicly avail-
able PIM, over four data-intensive applications: Multilayer
Perceptron inference (MLP), Deep Learning Recommenda-
tion Model inference (DLRM), linear regression training, and
logistic regression training. This artifact allows researchers to
reproduce our results, explore this area further, and expand
our work. With this artifact, researchers can regenerate the per-
formance results for UPMEM-Precompute-C(V), UPMEM-
Runtime-C(V), and UPMEM-Runtime-A(2Y)-C(V), as pre-
sented in figures 13 to 18.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Our research does not compromise user privacy or safety, and
all data used in our experiments is either synthetic or randomly
generated. Therefore, no Personally Identifiable Information
(PII), sensitive data, or human subjects were involved.

A.2.2 How to access

The code is open-source and hosted on a GitHub public repos-
itory to facilitate reuse. Additionally, it is archived on Zenodo.
We encourage other researchers to explore, reproduce, and
modify our code, provided they give appropriate credit.

• GitHub: github.com/Secure-UPMEM/SecUPMEM.git.
• Zenodo: zenodo.org/records/14869014.

A.2.3 Hardware dependencies

To evaluate our method, we utilize UPMEM PIM hardware,
which primarily consists of standard DDR4-2400 DIMMs
integrated with DPUs. Our setup includes 20 PIM-enabled
DIMMs, providing a total of 160GB of MRAM and 2560
DPUs working in parallel at a clock frequency of 350 MHz.
The host server for the UPMEM system is equipped with a
2-socket Intel Xeon Silver 4110 CPU. To accurately repro-
duce our results, access to the actual hardware is necessary.
UPMEM’s PIM data centers are accessible upon request at
https://www.upmem.com/developer.

A.2.4 Software dependencies

All the implemented applications require the UPMEM SDK,
which can be installed based on the hardware specifications
and is accessible at https://sdk.upmem.com. For depen-
dencies related to MLP, DLRM, logistic regression, and linear
regression, please refer to our baseline implementations as
our work is built upon them.

• MLP (Link)
• DLRM (Link 1, Link 2)
• Logistic and Linear Regression (Link 1, Link 2)

A.2.5 Benchmarks

Our scheme is evaluated using MLP inference, DLRM infer-
ence, logistic regression training, and linear regression train-
ing. To evaluate our implementation, we use randomly gener-
ated inputs.

A.3 Set-up

A.3.1 Installation

To run this artifact on your local device, the UPMEM SDK
must first be installed, which is available at https://sdk.
upmem.com. However, as previously mentioned, reproducing
our results requires access to real hardware (20 UPMEM
PIMs) rather than the simulator. Once the UPMEM SDK is
installed, the artifact can be downloaded from GitHub and
Zenodo.

A.3.2 Basic Test

Script run_functionality.sh, in the root directory, can be
used to perform a simple functionality check. This file ex-
ecutes a basic test on all the applications sequentially and
outputs execution time. To run a specific application, the
run_functionality.sh script in the corresponding folder can be
executed.

A.4 Evaluation workflow

A.4.1 Major Claims

Our major claim is as follows:
(C1): Compared to a secure CPU implementation, our frame-

work achieves speedups of 14.66×, 9.80×, 2.64×, and
5.85× for MLP inference, DLRM inference, Linear Re-
gression training, and Logistic Regression training, re-
spectively. This is proven by the experiment (E1) de-
scribed in Section 7.1 whose results are illustrated in
Figures 14, 15, 16, 18.

https://github.com/Secure-UPMEM/SecUPMEM.git
https://zenodo.org/records/14869014
https://www.upmem.com/developer.
https://sdk.upmem.com.
https://github.com/CMU-SAFARI/prim-benchmarks
https://github.com/UBC-ECE-Sasha/PIM-Embedding-Lookup
https://github.com/upmem/PIM-Embedding-Lookup/tree/multicol/upmem
https://github.com/CMU-SAFARI/pim-ml
https://github.com/CMU-SAFARI/prim-benchmarks
https://sdk.upmem.com
https://sdk.upmem.com
https://github.com/Secure-UPMEM/SecUPMEM.git
https://zenodo.org/records/14736864


A.4.2 Experiments

(E1): [30 human-minutes + 2.5 compute-hour + 32GB disk]:
How to: Our results can be reproduced by following
the three steps below.
Preparation: Install the UPMEM SDK, as described in
Section A.2.4, then clone our artifact.
Execution: Script ./run_reproduce.sh, in the root di-
rectory, can be used to regenerate our results. This
file executes all the applications with our configu-
ration sequentially and outputs execution time for
UPMEM-Precompute-C(V), UPMEM-Runtime-C(V),
and UPMEM-Runtime-A(2Y)-C(V), as presented in Fig-
ures 13 to 18. To reproduce the results for a specific
application, the ./run_reproduce.sh script in the corre-
sponding folder can be executed.
This script compiles and links the host and DPU source
codes for a specific number of DPUs and tasklets. There
is a Makefile for each application that facilitates the
compilation and linking of the source codes.
Results: After running our script, the final execution
time is reported. Table 2 explains the different notations
used for manually determining execution times. The
execution time is calculated using the formula provided
below:
PIM Time=CPU −DPU +PIM kernel+DPU −CPU

Kernel time = Max[CPU Time,PIM Time]

Execution time = Kernel time+Merge+Veri f ication

Table 2: List of timing notations
Timing notations Explanation

CPU −DPU CPU to DPUs transfer time
DPU −CPU DPUs to CPU transfer time
PIM kernel Kernel execution time on DPUs
CPU Time Kernel execution time on CPU
Kernel time The maximum of CPU Time and PIM Time

Merge Merging time of CPU and PIM results
Veri f ication Verification time

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Introduction
	Threat Model
	Background
	Processing-in-Memory (PIM)
	UPMEM PIM Architecture
	Trusted Execution Environment Extension
	Multi-Party Computation (MPC)
	Message Authentication Codes (MAC)

	Related Work
	blackProposed Secure PIM Computation 
	Overview
	Preliminaries and Notations
	blackEncryption Scheme
	Secure outsourcing of linear functions
	blackSecure outsourcing of non-linear functions

	blackVerification Scheme
	Evaluation Baselines 
	Security Argument

	Evaluation Methodology
	Workload
	Hardware Settings

	Evaluation Result
	Performance Analysis
	Robustness Under Threat Model

	Expanding Real-World Applications
	Conclusions
	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


