

Semiconductor Corporation

A Scalable and Efficient in-Memory Interconnect Architecture for Automata Processing

Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea Stan, Kevin Skadron

University of Virginia elaheh@virginia.edu

Task: 2780.001

Processor / Memory Performance Gap

Source: David Patterson, UC Berkeley

Processor / Memory Performance Gap

Source: David Patterson, UC Berkeley

Scalable and High-Performance Techniques Are Needed for Pattern Processing

Incoming packet is checked against every single rule of the database

Scalable and High-Performance Techniques Are Needed for Pattern Processing

Incoming packet is checked against every single rule of the database

Network security

Network security

Bioinformatics

Network security

Bioinformatics

Data mining

Network security

Bioinformatics

Data mining

NLP

Network security

Bioinformatics

Data mining

NLP

Patterns are often complex

Network security

Bioinformatics

Data mining

NLP

Patterns are often complex

Thousands of patterns need to be processed in parallel

Network security

Bioinformatics

Data mining

Patterns are often complex

Thousands of patterns need to be processed in parallel

Regular Expressions = Finite Automata

Task: 2780.001

Existing Automata Processing Solution

Existing Automata Processing Platforms

Existing Automata Processing Platforms

Custom ASIC

Problem: von Neumann processors easily become memory bound

- Unpredictable behavior
 Branch mispredictions
- Irregular access pattern Cache-miss
- Many parallel state transitions Saturate memory bandwidth

Existing Automata Processing Platforms

State Matching

State Transition

State Transition

Problems: interconnect inefficiency in the existing memory-centric architectures

Automata Processor [15]

Routing matrix congestion

13% state utilization for applications with complex routing!

Cache Automaton [16]

Full-crossbar is excessive for interconnect

On average, only 0.53% of switches are utilized!

Designing a **low-overhead**, yet flexible routing architecture for automata processing and mapping it to a **right memory technology**

Full-Crossbar interconnect

An Example Automaton

Full-Crossbar interconnect

Full-Crossbar interconnect

Task: 2780.001

Solution: Minimizing Full-Crossbar

Task: 2780.001

Observation: Union Heatmap of Routing Switches with BFS Labeling

• 17 out of 19 benchmark applications show diagonal property

Observation: Union Heatmap of Routing Switches with BFS Labeling

• 17 out of 19 benchmark applications show diagonal property

Solution: Reduced Crossbar Interconnect

Reduced Crossbar

		7,6			
	6,5	6,6			
5,4	5,5	5,6			
4,4	4,5	4,3		9,8	9,9
3,4	3,2	3,3	8,7	8,8	8,9
2,1	2,2	2,3	7,7	7,8	
1,1	1,2		6,7		

9 × **9**

6 × 6

Solution: Reduced Crossbar Interconnect

Solution: Reduced Crossbar Interconnect

Mapping to Memory Technology

- Non-destructive read is necessary to implement OR functionality
- 2T1D cell has lower area overhead than 8T cell

Cache Automaton use 8T SRAM cell We propose to use 2T1D cell (a type of gain cell)

Summary of Performance Evaluation

- Incorporate both architectural contribution and technology contribution
- eAP_2T1D has 1.7X, 3.3X and 210X better throughput per unit area than eAP_8T, CA, and the AP

Thanks for Listening!

Questions? Please stop by my poster

This work was supported in part by Semiconductor Research Corporation (SRC).

