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ABSTRACT
Automata processing is an efficient computation model for regular
expressions and other forms of sophisticated pattern matching. The
demand for high-throughput and real-time pattern matching in many
applications, including network intrusion detection and spam filters,
has motivated several in-memory architectures for automata pro-
cessing. Existing in-memory architectures focus on accelerating the
pattern-matching kernel, but either fail to support a practical report-
ing solution or optimistically assume that the reporting stage is not
the performance bottleneck. However, gathering and processing the
reports can be the major bottleneck, especially when the reporting
frequency is high. Moreover, all the existing in-memory architec-
tures work with a fixed processing rate (mostly 8-bit/cycle), and they
do not adjust the input consumption rate based on the properties of
the applications, which can lead to throughput and capacity loss.

To address these issues, we present Sunder, an in-SRAM pat-
tern matching architecture, to processes a reconfigurable number
of nibbles (4-bit symbols) in parallel, instead of fixed-rate process-
ing, by adopting an algorithm/architecture methodology to perform
hardware-aware transformations. Inspired by prior work, we trans-
form the commonly-used 8-bit processing to nibble-processing (4-
bit processing) to reduce hardware requirements exponentially and
achieve higher information density. This frees up space for storing
reporting data in place, which significantly eliminates host commu-
nication and reporting overhead. Our proposed reporting architecture
supports in-place report summarization and provides an easy access
mechanism to read the reporting data. As a result, Sunder enables a
low-overhead, high-performance, and flexible in-memory pattern-
matching and reporting solution. Our results confirm that Sunder
reporting architecture has zero performance overhead for 95% of the
applications and incurs only 2% additional hardware overhead.

CCS CONCEPTS
• Computer systems organization → Multiple instructions, sin-
gle data; • Hardware → Emerging architectures; • Theory of com-
putation → Formal languages and automata theory.
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1 INTRODUCTION
Pattern-based algorithms (pattern matching, pattern recognition, etc.)
are exceedingly common in network security [3, 7, 15, 23, 45, 62,
63], bioinformatics [8, 16, 31, 38, 49], data mining [10, 44, 50, 56,
57], machine learning [49], natural language processing [39, 64],
verification [51], and many other application domains. Patterns from
these applications are often massive in number, complex in struc-
ture, dynamic in behavior, and need to support a variety of inexact
matches. Besides, such applications are getting pushed further into
real-time scenarios (e.g., network processing), and in many cases,
sophisticated processing must be done in edge devices. However,
pattern matching is a memory-bound task, and off-the-shelf von Neu-
mann architectures struggle to meet today’s big-data and streaming
line-rate processing requirements.

One leading methodology for inexact pattern matching is to use
regular expressions to identify these complex patterns. Regular ex-
pressions are a widely used subset of pattern specification language,
and they are efficiently implemented via Finite Automata (FA) [22].
To address the memory-wall challenges [59], in-memory architec-
tures for automata processing have been introduced to benefit from
the massive internal memory bandwidth by performing massively-
parallel symbol matching using memory arrays [17, 41, 43, 47].
They all support the execution of Non-deterministic Finite Automata
(NFA) by providing a reconfigurable infrastructure to implement
finite automata in memory arrays. The massive bit-level parallelism
of memory arrays allows a large number of state machines to be
executed in parallel, leveraging the high density of memory arrays.
If device capacity is not enough for an application, either more
hardware units or multiple rounds of reconfigurations are required.
Many studies have shown in-memory automata processing provides
remarkable speedup over the existing software approaches, FPGA
solutions, and regex accelerators on a wide range of applications
[8, 10, 37–39, 44, 47, 49, 56, 57, 64].

In-memory automata processing has three processing stages; state
matching, state transition, and report gathering, and these can be
combined in a pipelined fashion. In the state-matching stage, the
current input symbol is decoded and all the states whose symbols
match against it are detected by reading the fetched memory row. In
the state-transition stage, active states’ successors are determined
by propagating activation signals via a programmable interconnect.
In the report-gathering phase, the report data are accumulated and
eventually analyzed for the final action or decision.
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Prior in-memory automata accelerators have mostly overlooked
the real cost of reporting stage and optimistically assumed that re-
porting is not a bottleneck [2, 32, 41, 47], thus, only evaluated the
first two stages (i.e., the kernel). However, reporting incurs a signifi-
cant cost when it is considered precisely. For example, the reporting
architecture in the Micron’s Automata Processor (AP) [17] has 40%
area overhead [21] and up to 46× performance overhead due to
stalls and host communications [54]. To improve the AP reporting
architecture, Wadden et al. [54] propose finer-grain reporting buffers
to reduce the report vector sparsity. However, their approach (1)
needs to store relatively large metadata, (2) requires more complex
peripherals to connect the smaller report buffers, (3) causes frequent
stalls in the execution because the reporting queue gets filled quickly
when an application reports frequently, and (4) does not have any
control to partially select or summarize the report data when needed;
all of which make their solution inefficient and hard to scale.

To address these issues, we propose Sunder, a highly reconfig-
urable in-SRAM automata processing design with a flexible, com-
pact, simple, and low-overhead memory-mapped reporting archi-
tecture. Inspired by Impala [41], we first transform the common,
fixed 8-bit automata processing rate (which requires 28 memory
rows) to a multiple of 4-bit automata or nibble processing (which
requires groups of 24 memory rows). This can greatly reduce the
required number of rows in each subarray in memory-based au-
tomata processing solutions. We opportunistically utilize the saved
memory rows in the state matching subarrays to store the reporting
data locally and densely in the same subarray as state-matching sym-
bols. The low-overhead benefits are achieved by re-using existing
memory rows and peripherals in state-matching subarrays, which
brings area benefit. This, in fact, provides exclusive in-place report-
ing buffers for each automaton and avoids shared bus conflicts (from
state-matching array to report buffers); thus, reducing the number of
stalls and achieving performance benefits.

Our reporting architecture (1) greatly eliminates data movement
and stalls due to reporting (zero stalls for 95% of the applications),
(2) reuses existing peripheral and circuitry in state matching sub-
arrays, thus, has minimal hardware overhead (less than 2%), (3)
provides an easy and flexible mechanism for the host to analyze
or summarize any portion of reporting data at any time, and (4)
efficiently supports both sparse and dense reporting behavior.

In addition, in contrast to all prior work, Sunder presents a recon-
figurable symbol processing rate for automata processing (i.e., 4-bit,
8-bit, and 16-bit symbols per cycle), which enables throughput and
density benefits for a diverse set of applications. This is facilitated by
packing multiple nibble processing in one memory subarray, which
allows for easy and low-overhead reconfiguration. This is unlike
Impala [41], where the processing rate is fixed in hardware and
multiple subarrays are used in parallel, which requires additional
hardware for aggregating the final results.

Liu et al. [32] demonstrated that not all the states in an NFA are
enabled during execution; thus do not need to be configured on the
hardware. This reduces the hardware resources for an automaton
on the in-memory automata accelerators (by splitting an automaton
between the CPU and the AP), which improves the performance
when the application is very large and would require several rounds
of reconfigurations. However, this approach generates more interme-
diate results (or reports), which need to be transferred to the CPU.

Our proposed reporting architecture is complementary to their tech-
nique and can significantly improve reporting efficiency when larger
intermediate reports are generated.

In summary, the paper makes the following contributions:
• We present a compact, simple, low overhead, and localized

memory-mapped reporting architecture for in-memory au-
tomata processing to significantly reduce data movement and
host communication. Our key insight is that nibble process-
ing, enabled by prior work [41], also enables reports to be
buffered directly in the same arrays that perform matching,
thus significantly minimizing stalls due to full report buffers.

• We present a low-overhead reconfigurable processing rate in
hardware for in-memory automata processing, by processing
multiple nibbles in one memory array and accumulating the
partial results with multi-row activation in memory. This
enables throughput vs. density trade-off across a set of diverse
applications.

• For the same state density, Sunder provides 9× larger re-
porting buffer than the Micron’s Automata Processor and at
the same time, has 2.2× lower overall area overhead in the
same technology size. Moreover, on average, Sunder provides
280× higher throughput compared to the Automate Processor
and 4-8× higher throughput compared to the state-of-the-art
SRAM-based solutions (Impala [41] and Cache Automaton
[47]), assuming an AP-style reporting architecture.

2 BACKGROUND AND MOTIVATION
2.1 In-memory Automata Processing
This section presents an abstract architecture for processing one
symbol per cycle in common in-memory automata architectures.
Generally, automata processing has three main stages for each input
symbol, state match, state transition, and reporting.

In Figure 1, an example of classic and homogeneous NFA is
presented. In a homogeneous NFA (STE: State Transition Element),
all transitions entering a state must happen on the same input symbol
[19]. For example, edges entering ST E3 happen if the input symbol
is G. This property maps well with the in-memory implementation
that finds matching states in one clock cycle and allows a label-
independent interconnect.

ST E0-ST E3 on the homogeneous example are one-hot encoded in
four memory columns. In the state matching phase, the current input
symbol is decoded, and the set of states whose rule (label) matches
that input symbol is recognized through reading a row of memory
(match vector). Then, the set of potential next states is combined
with the match vector, which represents the set of currently active
states that can initiate state transitions (i.e., these two vectors are
ANDed). During the state-transition phase, the potential next states
(to be activated for the next cycle) are detected by propagating
signals from the active state vector through the interconnect module
to update the active state vector.

In the example, the ST E1 matching symbol is C, and the corre-
sponding position in the memory column encoding ST E1 is set to
’1’ (i.e., in the third row). Because our example has four symbols
(i.e., A, T, C, and G), only four memory rows are enough for one-hot
encoding of symbols. Assume ST E0 is a current active state. The
potential next cycle active states are the states connected to ST E0,
which are ST E0, ST E1, and ST E2. Assume the input symbol is ’C’,
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Figure 1: (left) In-memory automata processing model, (right)
Classic NFA and it equivalent homogeneous NFA.

then, the third row (Row2) is read into the row buffer (match vector).
Bitwise AND on the match vector (i.e., 1100) and potential next
states (1110) determines ST E0 and ST E1 as the next active states.

Automata Reporting Stage: ST E3 is the reporting state. In Fig-
ure 1, every time ST E3 is set to ’1’, this indicates a matching has
occurred, and a report is generated, thus, the occurrence of the report
along with the report cycle information (i.e., metadata) should be
captured in a report buffer. For example, in real applications, when
a malicious network packet is matched with the intrusion detection
rules (and rules are represented by NFAs), a report will be gener-
ated in the system. In in-memory automata processing architectures,
many memory subarrays are working in parallel, each processing
one or a few NFAs, and they all can potentially generate reporting
data every cycle. For example, SPM [57] can generate up to 1394
reports per report-cycle - see Table 1. This causes many stalls in
the processing and negatively affect the performance. Theoretically,
each ST E can be a reporting state; thus, a sparse or dense report
vector from each subarray is generated (each time there is a least
one report) and will be sent to the host for further processing.

2.2 Existing Reporting Architectures
Existing in-memory automata processing architectures either (I)
optimistically assume that reporting is not a performance bottle-
neck [41, 42, 47], as they are focusing on improving the state
matching and interconnect stages (i.e., overall throughput is deter-
mined by f requency×bitscycle

reporting−overhead and prior work calculates f requency×
bitscycle as the overall performance), or (II) they fail to support a
low-overhead and scalable reporting solution [17, 54].

Micron’s Automata Processor (AP) [17] uses a hierarchical report-
ing architecture with two levels of buffers for offloading reporting
state bits. At the system level, the AP contains 32 D480 chips. Each
D480 chip (Fig. 2) contains two independent half-cores that have
independent automata states and edges. Each half-core has three
separate reporting regions, where each reporting region is responsi-
ble for a maximum of 1024 reporting ST Es. Each reporting STE is
routed to one if these three reporting regions.

At runtime, if any of the 1024 reporting bits are activated, a
full 1024-bit vector and 64-bit metadata, are offloaded to the L1
storage buffer assigned to the triggered report state as shown in
Figure 2. When an L1 storage buffer is full, its content is offloaded
to one of two L2 buffers shared with the other half-core for eventual
export off-chip. This architecture must stall during this offloading

Figure 2: The Automata Processor reporting architecture.

process because it does not support simultaneous push and pop
operations. These L2 buffers are then transferred to the host. The AP
reporting architecture can efficiently handle dense reporting, but it
is very ineffective when reporting is sparse and incurs a significant
performance overhead (up to 46× [54]).

To address the high cost of sparse reporting workloads on the AP,
Wadden et al. [54] introduce a reporting compression scheme, called
Report Aggregator Division (RAD), to break up a large output report
vector into smaller chunks in spatial automata architectures. This
approach reduces the amount of data sent from the spatial acceler-
ator to the host by offloading subsections of the report vector that
contain report bits, thus, improves the stall rate by using fine-grained
report vectors. However, their solution has several drawbacks: (1)
the cost of metadata is increased, as each smaller packet needs its
own metadata; (2) similar to the AP, it still uses the centralized and
shared reporting buffers with its negative impact on routing com-
plexity and high propagation delay of reporting signals from the
report states to the buffers; (3) it does not provide any summariza-
tion functionality in hardware to reduce the off-chip communication
for applications that do not need cycle-accurate report data; and
(4) it does not improve the reporting overhead for dense reporting
behavior (e.g., SPM).

The main contribution of this paper is designing an efficient and
flexible reporting architecture to gather, transfer, and summarize
reporting information at a very low cost for both dense and sparse
reporting behaviour.

2.3 Motivation
All previous memory-centric implementations for automata process-
ing [2, 9, 17, 18, 32, 41, 42, 47, 60] suffer from three problems.
First, they all work with a fixed (mostly 8-bit) symbol processing
rate decided at design time. Second, they all have either failed in
realizing an efficient report architecture design or overlook the real
cost of reporting stage for dense reporting behaviour. Third, their
rudimentary reporting architecture does not provide any support to
summarize reporting data in hardware.

Processing rate: existing in-memory automata accelerators have
a fixed processing rate set at design time—typically 8 bits [17, 42,
47]. Impala [41] investigates different processing rates (i.e., 4-bit,
8-bit, 16-bit); however, the processing rate is fixed at design time and
is not reconfigurable. This limits maximum capacity and throughput
utilization in a wide range of automata applications with different
symbol-set size. For example, genomics applications usually have
four symbols (i.e., A, T, C, and G), whereas data mining applications
(such as SPM [57]) can have millions of unique symbols [40].
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Table 1: Reporting behavior summary

Benchmark
Static Analysis Dynamic Behaviour (Input Dependent)

#Family #States #Report States #Report States/ #Reports #Report Cycles #Reports/Cycles #Reports/ #Report Cycles/
States (%) Report Cycles #Cycles (%)

Brill [55] Regex 42658 1962 4.6 1092388 118814 1.067 9.19 11.33%
Bro217 [6] Regex 2312 187 8.1 17219 17210 0.017 1.00 1.64%

Dotstar03 [6] Regex 12144 300 2.5 1 1 0.000 1.00 ≈ 0%
Dotstar06 [6] Regex 12640 300 2.4 2 2 0.000 1.00 ≈ 0%
Dotstar09 [6] Regex 12431 300 2.4 2 2 0.000 1.00 ≈ 0%

ExactMatch [6] Regex 12439 297 2.4 35 35 0.000 1.00 ≈ 0%
PowerEN [55] Regex 40513 3456 8.5 4304 4303 0.004 1.00 0.41 %
Protomata [55] Regex 42009 2365 5.6 127413 105722 0.124 1.21 10.08%
Ranges05 [6] Regex 12621 299 2.4 39 38 0.000 1.03 ≈ 0%
Ranges1 [6] Regex 12464 297 2.4 26 26 0.000 1.00 ≈ 0%
Snort [55] Regex 66466 4166 6.3 1710495 995011 1.670 1.72 94.89%
TCP [6] Regex 19704 767 3.9 103415 103198 0.101 1.00 9.84%

ClamAV [55] Regex 49538 515 1.0 0 0 0.000 0.00 ≈ 0%
Hamming [55] Mesh 11346 186 1.6 2 2 0.000 1.00 ≈ 0%

Levenshtein [55] Mesh 2784 96 3.4 4 4 0.000 1.00 ≈ 0%
Fermi [55] Widget 40783 2399 5.9 96127 13444 0.094 7.15 1.28%

RandomForest [55] Widget 33220 1661 5.0 21310 3322 0.021 6.41 0.32%
SPM [55] Widget 100500 5025 5.0 47304453 33933 46.19 1394 3.24%

EntityResolution [55] Widget 95136 1000 1.1 37628 28612 0.037 1.32 2.73%

#Report States: the number of states that are designed to be the report states in the application.
#Reports: the total number of reports when streaming 1MB of input data.
#Report Cycles: the number of cycles that at least one report is generated.

Reporting architecture issues: the reporting architecture is re-
sponsible for collecting per-cycle report information and storing
them in a buffer temporarily to be transferred to the host. Designing
such a hardware module is not straightforward because there are a
few concerns that need to be considered. (I) Report states are gen-
erated in different memory arrays and need to be routed toward the
global reporting buffers, potentially with high latency. (II) Choosing
the right buffer bit-width is challenging due to its effect on area cost.
A wide buffer solution (e.g., [17]) is attractive for an area-efficient
design, as many report states are combined to create a single row
of the report buffer, which results in smaller buffer control logic.
However, a wide buffer can be more troublesome for applications
with sparse and persistent reporting behavior, as the buffer gets filled
up frequently, mostly with 0s. On the other hand, a narrow buffer
solution (e.g., [54]) works effectively for applications with sparse re-
porting behavior and can physically be placed near where the report
states are generated. Because buffers are narrow and their capacity
is limited, we need many of them to cover all the report states. The
cost of the control and access logic of the reporting buffers from the
host becomes an issue as each needs to be controlled separately. We
believe the lack of a feasible and efficient reporting architecture in
prior work is one of the main concerns of integrating an efficient
automata processing accelerator in a system.

Reporting strategy: None of the prior work on reporting archi-
tecture provides report summarization support, which can help to
reduce the reporting I/O cost. Instead, they move the entire reporting
data from the reporting buffers to the host and have the software to
extract the information. For example, if an application only wants
to know if a specific state has been triggered since the last time the
report buffer was flushed, the host processor must first read all the
reporting data of the buffer associated with that state and calculate
the row-wise logical OR of the reporting cycles.

3 ANALYZING REPORTING BEHAVIOR
To motivate our efficient memory-mapped reporting architecture
design, we first analyze the reporting behavior of a wide range of

real-world automata benchmarks from ANMLZoo [55] and Regex
[6] benchmark suites using their associated input streams. We use
Virtual Automata Simulator (VASim) [53] to simulate the applica-
tions on the 1MB input stream provided with the benchmark suites
and track all the reports throughout automata execution.

Table 1 shows a summary of the automata report statistics and
behavior. #States represents the number of states in each application.
#Report States shows the number of states labeled as reporting states
in the application. As the fifth column represents, minimum 1% and
maximum 8.5% of the states in the applications are reporting state.
We use this observation to optimize the resources for our reporting
architecture. #Reports shows the total number of generated reports
across the entire execution of the application. #Report Cycle shows
the number of cycles in which at least one report is generated. For
example, ExactMatch generates exactly one report in 35 cycles. One
input symbol is processed per clock cycle; thus, the total number of
cycles for the entire application to run is 1,000,000 for 1MB input
stream. The last column shows the percentage of the cycles where at
least one report is generated.

Reporting behavior: as Table 1 suggests, the reporting behavior
varies significantly from application to application. Some applica-
tions report very infrequently (i.e., Dotstar03-09, ClamAV, Ranges05,
Ranges 1). This is mainly because the automata in these applications
are either a set of virus scanning signatures or detecting a bad behav-
ior in a network, and this reporting behavior is expected. Hamming
and Levenstein applications are designed for approximate string
matching. Their input is generated randomly, and only a few strings
within the scoring metrics were identified.

SPM reports nearly every 30 cycles (1,000,000/33,933), and in
each reporting cycle, 1394 reports out of 5025 report states are gen-
erated on average (i.e., 20% of the reporting states generate a report
every 30 cycles). This implies that the reporting architecture should
handle the bursty and dense reporting behavior of such applications
to avoid significant performance loss.

Snort reports nearly every cycle, and 1.72 reports are generated
on average in each reporting cycle. This implies that the reporting
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Figure 3: An 8-bit automaton (a) is converted to the minimized 1-bit automaton (b). The 4-bit automaton (c) is generated from the
1-bit automaton. Finally, the 4-bit automaton (C) is strided to a 16-bit processing (d) using nibble units.

architecture needs to handle frequent but sparse reporting behavior
efficiently. Other applications, such as Fermi, and RandomForest,
report less frequently (e.g., once every 3000 cycles), and generate
roughly 7 reports in each reporting cycle. They exhibit infrequent
and relatively less sparse reporting behavior. These all imply that
when designing a reporting architecture, hardware and application
considerations must have a stall-free, efficient, and general-purpose
solution for a variety of behaviors.

Application-specific report analysis: In addition to understand-
ing the reporting behavior, it is crucial to realize how and when the
generated reports for an application will be transferred to the host.
For example, in network security applications, the generated reports
(which demonstrate a malicious behavior in the network) should be
immediately sent back to the host to make a quick decision. More-
over, some applications, such as SPM [57], may need to check if
a range of input stream has generated a report or not, and they do
not need to know all the reports during the entire execution of an
application. Likewise, some applications only need to know if at
least one report has happened during a portion or entire execution of
the input stream; thus, a summarized reporting would be enough.

A well-designed reporting architecture should transfer the mini-
mal required reporting data (i.e., summarized, a portion, or the entire
reports) when the application needs it. To the best of our knowledge,
all the existing in-memory automata processing solutions send the
entire reporting data when the allocated buffers are filled as buffer
flush instruction, and there is no control from the host/application to
transfer data selectively. In Sunder, for the first time, our proposed
reporting architecture provides access from the host to request the
entire, a portion, or summarized reporting data at any point of time
efficiently and cost-effectively (Section 5.1.2).

Dependency to input stream: the reporting behavior in each
application changes with changing the size and characteristics of the
input stream (i.e., dynamic behavior), and therefore, the underlying
architecture should be robust and still efficient in these cases. The
sensitivity analysis of reporting is discussed in Section 7.5.

4 ALGORITHMIC TRANSFORMATION
Sunder leverages the fact that 4-bit automata consume exponentially
fewer memory rows for state encoding than 8-bit automata (24 vs.
28). The unused memory rows in a standard memory or cache subar-
ray can be used to store the reporting data at a minimal cost locally.
This section explains the algorithmic aspects of transforming an
NFA with m-bit symbols (m is usually 8 and 28 memory rows are
required for one-hot encoding of states) to 4-bit symbol automata
(i.e., nibble processing). 4-bit symbols only require 24 memory rows
for one-hot symbol encoding. We then stride the nibbles to achieve

our desired processing rate, and configure Sunder’s processing rate
accordingly.

Transforming to nibble processing: we use FlexAmata [40],
which is an automata transformation tool, and transforms an m-bit
automaton to an equivalent n-bit automaton. In our architecture, m
is an application-dependent (i.e., depends on the number of unique
symbols in the application, and this is usually 8 because of the byte-
oriented processing nature of the problems), and n is 4. The main
reason to transform to 4-bit automata (instead of 2-bit, 5-bit, etc.) is
that 4-bit processing has the lowest transformation overhead.

Figure 3 explains how an 8-bit NFA is transformed into a 4-bit
NFA. In the notation ST Ey

x , x is state index and y is the symbol size.
The original homogeneous NFA (a) has two states and accepts lan-
guage A|BC . FlexAmata generates a binary NFA (b) and minimizes
the states when possible. For example, the first 6 bits of symbols A
and B can be merged. Then, the 4-bit NFA (c) is generated from the
bit-automaton. In the 4-bit NFA, ST E4

0 is a start state and ST E4
3 is the

final state. Each state processes one or more 4-bit symbols. ST E1
13

in 1-bit-automata is equivalent to reaching the state ST E4
2 in the

4-bit automaton. Although this transformation seems intuitive in this
simple example, the real-word automata are very complex with loops
and different rule properties, making the conversion non-intuitive.

Temporal striding: as expected, the nibble processing scheme
halves the processing rate compared to the 8-bit automata. To in-
crease the throughput (equals or more than 8-bit processing), we
utilize the Vectorized Temporal Striding technique introduced in
Impala [41] to reshape the 4-bit automaton and find its equivalent au-
tomaton that processes multiple nibbles per cycle. Temporal Striding
[4, 12] and its vectorized version are transformations that repeatedly
square the input symbol of an automaton and adapt its matching
symbols and transition graph accordingly. Figure 3 (d) shows how
a 4-bit automaton is temporally strided to a 16-bit automaton with
nibble units (i.e., a vector of four 4-bit symbols) - see Impala [41]
for details. The State and transition overhead of nibble processing
transformation is discussed in Section 7.2.

5 SUNDER ARCHITECTURE
In this section, we explain how Sunder implements reconfigurable
nibble processing and reporting architecture together in the state
matching subarrays. Moreover, we explain how state transition (in-
terconnect) is implemented in Sunder. Figure 4 shows the Sunder
architecture for one processing unit (PU), which can accommodate
an NFA with up to 256 states. Each PU includes the state match-
ing and reporting array, state transition (interconnect) unit, and the
global memory-mapped switches to provide inter PU connecting
when processing larger automaton (with up to 1024 states).
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Figure 4: Sunder architecture for state matching/reporting (green), state transition or interconnect (pink), and additional modules to
enable reconfigurable nibble processing and reporting architecture (blue).

5.1 State Matching & Reporting Subarray
The green region in Figure 4 depicts one memory subarray of size
256×256, where matching symbols are encoded in the yellow region
(upper rows of the subarray), and the reporting data is stored in the
gray region (lower rows of the subarray) or partially in the yellow
region (depends on the configured processing rate). In prior solutions
[17, 42, 47], one memory subarray of size 256×256 is used to only
encode 8-bit symbols for state matching stage. However, Sunder
leverages nibble processing from prior work [41], and proposes to
utilize one memory subarray of size 256×256 to encode up to 16-bit
symbols (four 4-bit symbols in the first 64 rows of the subarray in
Figure 4) and to store up to 60Kb reporting data! This is achieved
only at the expense of 2% hardware overhead (the blue regions in
Figure 4) compared to prior solutions.

To perform state matching and to store reporting data in the same
subarrays in one cycle, we utilize the dual-port functionality of 8T
SRAM memeory cells [25], with two sets of sense amplifiers (SA)
and two sets of decoders. In the state matching/reporting subarray
of Figure 4 (green region), up to four 4-bit symbols are decoded
using the four 4:16 decoders on the right side of the subarray. The
bitwise NOR of multiple activated rows (up to four rows) are sensed
by the row buffer on the bottom of the subarray (i.e., Row-buffer B) -
see Section 5.1.3.

The reporting data is stored in and read from the same subarray
(i.e., the lower part of the state matching/reporting subarrays in
Figure 4) using the left-side 8:256 decoder and the row buffer on
the top of the subarrays (i.e., Row-buffer A). Moreover, the left-side
8:256 decoder is also used to write the state-matching data in the
Automata Mode (AM), and also read/write normal cache data in the
Normal Mode (NM).

5.1.1 Reconfigurable Nibble Processing. Different from all prior
work, Sunder supports a reconfigurable symbol processing rate (i.e.,
4-bit, 8-bit, and 16-bit symbols per cycle). This is unlike Impala [41],

where the processing rate is fixed in hardware (i.e., if the hardware
is designed for 16-bit processing, the 8-bit processing is not able to
utilize half of the subarrays). Each state is encoded in one memory
column by embedding multiple 4-bit symbols. The processing rate
can be determined by the user based on the application size and
requested throughput. If the application is small, automata can be
transformed to process more nibbles in one cycle, which results
in higher throughput at the expense of utilizing unused hardware
resources. On the other hand, if the application is large and several
rounds of reconfiguration are needed to process the entire set of
rules/automata, a smaller processing rate that avoids overhead from
extra states can be selected to optimize for space.

In the state matching/reporting subarray, Row[0:15] encodes the
first nibble, Row[16:31] encodes the second nibble, Row[32:47]
encodes the third nibble, and Row[48:63] encodes the fourth nib-
ble of the symbol. When the processing rate is 4 bits per cycle,
only the first 16 rows are used to encode the 4-bit symbols using a
one-hot encoding scheme; thus, only the associated decoder to the
first 16 rows will be enabled. This means the remaining rows (i.e.,
Row[16:255]) are used for storing the reporting data. Likewise, in
8-bit processing, the first 32 rows are used to encode two nibbles;
thus, the first two decoders are enabled, and the remaining rows can
be used for reporting data. Finally, when the processing rate is 16
bits per cycle, Row[0:63] will be used for state encoding (for four
nibbles), and their associated decoders will be enabled accordingly.
In this scenario, Row[64:255] can be used to store the reporting data.

The partial state matching results from nibbles are combined using
bitwise operations with multi-row activation of SRAM arrays. For
example, for the 16-bit processing, four memory rows are activated
(with the four 4:16 decoders), then their matching results are bitwise
ANDed to generate the final matching results. Jeloka et al. [26] have
shown the stability of simultaneously activating 64 wordlines on
SRAM subarrays by lowering the wordline voltage and verified this
across 20 fabricated chips.
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Figure 5: Mapping STEs to reporting/non-reporting regions

5.1.2 Reporting Architecture. Sunder proposes to localize the re-
porting data within the same memory subarrays performing the state
matching, with minimal hardware overhead. This helps to avoid
long wires from report states to buffers and their likely latency and
routing congestion. It also helps to share many of the report buffer
peripherals with the existing state-matching logic. Thanks to the
nibble processing technique, which exponentially saves the memory
footprint in the state matching subarrays, and the choice of dual-port
8T cells to isolate read port from write port (Section 5.1.3), Sunder
can store the reporting data in each cycle at the bottom rows of the
state-matching subarrays. Sunder introduces several unique features,
which can greatly reduce the overhead of reporting.

Storing reporting data in to the state matching/reporting sub-
array: assume the processing rate is 16-bit (i.e., four 4-bit nibbles);
therefore, the first 64 rows in the state matching/reporting subarray
in Figure 4 are used for encoding the states. We assume m reporting
states in each memory subarrays, and we map the reporting states
in an automaton to the m-reporting-enabled states in the memory
subarrays, which are the last m memory columns as shown in Figure
5 (ST E2 is a reporting state and is encoded in the reporting columns).
Having a pre-defined reporting region is necessary to efficiently
detect if there is at least one generated report.

At run-time, in the automata-mode, after the current active states
have been calculated, we check if there is at least reporting data is
generated. This is done by ORing the m-bit reporting states (Figure
4 - blue region - upper right side) driven from the active state vector
(pink region). If at least one report is generated, we need to write
the m-bit report data (out of 256 bit) and the cycle in which the
report has occurred (n-bit metadata) into the reporting rows. The
cycle count (i.e., n-bit metadata) is generated from a global counter
in the hardware.

Reporting data and metadata are written into the reporting region
row-wise, starting from row 64 in 16-bit processing (or starting from
row 32 in 8-bit processing). To track the currently available location
in the reporting region (i.e., the currently generated m-bit report is
written into which row and which columns), a local counter is used.
The counter size is calculated as:

Local Counter size= ⌈log#ReportRows⌉
⌈

log 256
mn

⌉
(1)

ReportRows is the number of rows configured for storing re-
porting data (i.e., in the 16-bit processing, 192 rows can be pre-
served for reporting data). m is the number of states in a subar-
ray that can be a reporting state (Figure 5), and n is the global

counter size. For example, in 16-bit processing, #ReportRows is
192, therefore, ⌈log#ReportRows⌉ is 8. Assuming 8 states out 256
states in a subarray can be reporting states (i.e., m=8) and 10MB
input size (i.e., n=24), the local counter is 16-bit. The 8-bit MSB
(i.e., ⌈log#ReportRows⌉) is used for the address decoder to activate

a row, and the 8-bit LSB (i.e.,
⌈

log 256
mn

⌉
) selects the bitlines for the

next available location in a row. Therefore, the corresponding bit-
lines are pre-charged to write m n-bit reporting data and metadata
into the selected columns. The address controller simply selects the
address from the host when writing the state matching data at the
configuration time, or from the local counter in the Automata Mode.
It also masks the row address depends on the number of reporting
rows at the configuration time.

As 8T cells have different ports for read and write, the state
matching phase and reporting phase (from the previous cycle) can
be pipelined. This approach does not need any additional hardware
resources such as an arbiter or global buffer, as report information is
locally stored in the same memory array as matching data has been
stored. This way, accessing the report information is much easier, as
it translates to simply reading data from memory.

Reporting architecture highlights: Sunder introduces unique
features that have never been explored before, and can greatly reduce
the overhead of reporting in automata processing applications.

Report summarization: an important concern in the reporting
architecture is the I/O cost. We observed that not all the applications
required cycle-accurate report information (such as SPM [57]). All
the previous accelerators are designed to read bulky cycle-accurate
report information and post-process them on the host. In Sunder,
report summarization is achieved by performing the column-wise
NOR operation among report rows using Port 2 in Figure 6, thanks
to wired-NOR functionality of the 8T SRAM subarrays (please note
that when report summarization is requested by the host, the state
matching is stalled for 1-2 cycles as Port 2 is used for the multi-row
activation required by summarization). This feature is beneficial for
applications that have a very frequent reporting behavior, where the
existence of a report in a specific duration matters. In other words,
the user does not care about the specific cycle that the report has
happened (Evaluation in Section 7.5).

Selective reporting: Sunder provides great freedom to the host
to read the report status of every state at any cycle with a constant
time while the conventional approaches fill the report buffers with
report data that might not be interesting at that particular time, and
this introduces more stalls to transfer reporting data.

Optimized for different reporting behaviors: when the application
has a dense but infrequent reporting behavior, the reporting region
has minimal usage. On the other hand, when the application has a
sparse but frequent reporting behavior, the reports are compacted in
the report-storing subarrays; thus reducing the number of stalls.

FIFO strategy for the reporting buffers: our study on real-world
applications reveals that they only generate at least one report in
less than 12% of total execution cycles (see Table 1). This implies
that in more than 88% of the cycles, no report is generated, and
nothing will be written in the subarray. We take advantage of this
observation and start reading the reporting data from the beginning
of the reporting region. This is enabled by using Port 1 (in Figure
6) for reading reporting data and using Port 2 for performing the
state matching, both at the same time. When the report buffer is full,



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Elaheh Sadredini, Reza Rahimi, Mohsen Imani, and Kevin Skadron

Figure 6: Dual port 8T SRAM cell
the reports will be written to the buffer starting from the head. If
the report generation rate is higher than consumption and the report
buffer is full, the execution is stalled.

5.1.3 Enabling In-Situ Reporting using Dual-PortMemory Cell Struc-
ture. To enable state matching and reading or writing reporting data
at the same time in one memory subarray, we utilize dual-port func-
tionality of 8T SRAM cells, presented in Figure 6. The cell supports
read/write operation through Port 1 and read-only operation through
Port 2. Port 1 is used for (1) writing initial automata configuration
(i.e., encoded symbol-set) to the state-matching subarray (i.e., the
upper yellow rows in Figure 4), and (2) reading/writing report data
from/to the report region (i.e., the lower gray rows in Figure 4). Port
2 is used for performing state matching operation by reading the
matching data from the memory rows. To perform state matching on
multiple nibbles (up to four), the four 4:16 decoder in Figure 4 are
used, each activate one row in the subarray, and BL2 calculates the
wired-NOR functionality of the activated rows (explained bellow).

An 8T SRAM cell consists of a classical 6T SRAM cell and two
additional transistors, which connect the memory cell to BL2. An
8T SRAM cell read operation from Port 2 starts by precharging
the bitline (BL2); then evaluation is done by two serial transistors,
one derived by enable bit value and the other (i.e., activator) by the
wordlines of the 4:16 decoders (Figure 4, right-side decoders). This
means the 6T cell drive the Port 2 bitline (BL2) only when the cell
holds ’1’ and the right row decoder has activated the target cell row.
Otherwise, it does affect the bitline (BL2) value. This implies the
BL2 implements the wired-NOR functionality of the activated rows.
The WWL wordlines are derived by the left-side decoder (8:256) in
Figure 4 for read/write operations (same functionality as classical 6T
SRAM cell). Sunder also benefits from the wired-NOR functionality
enabled by 8T cells for the multi-row activation in the full-crossbar
interconnect subarrays.

5.2 Interconnect
The interconnect allows active states to move forward in time to the
next states. If (I) the current input symbol matches the state S and (II)
any of parents of state S were activated in the previous cycle, then
the state S will be activated. The second condition implies that the
interconnect should provide the OR-functionality, which is feasible
with 8T SRAM switch cells. Similar to prior work [42, 47], we use
a memory-mapped full-crossbar interconnect based on 8T SRAM
memory cells, to provide wired-NOR functionally on bitlines. The
left-side blue wordlines are driven by the left-side decoder (and are
connected to WWL in 8T cells) for writing the connectivity data
into the enable bits at the configuration time (Figure 6). The right-
side purple wordlines are driven active state vector (see Figure 4),
which determines the currently active states, and are connected to the

activators in 8T cells. The bitlines (or columns) drive the same set
of states (i.e., one column per state). Since every column intersects
with every row, the interconnect provides connections between every
pair of 256 states, thus, avoiding interconnect congestion even for
highly connected NFA.

Figure 7: Memory-mapped local & global interconnect

6 SYSTEM INTEGRATION
Sunder can be realized by repurposing the last level cache (LLC) of
recent processors, such as Intel Xeon with large L3 cache capacity
(as Sunder’s subarrays have the same size as a conventional L3 cache
[14]). In the Sandy Bridge microarchitecture, the LLC is split into
independent slices (usually equal to the number of cores), connected
via a ring topology. To access the target slice, the physical address
should go through a hashing block. This hash block distributes ad-
dresses uniformly across the slices with the granularity of cache
lines, so it is possible to have two consecutive memory addresses
mapped to two different memory arrays in different slices. However,
to configure Sunder, we need flat accesses to certain arrays. Intel
has not published the details of the hashing function. To find physi-
cal addresses for the slices repurposed for Sunder, we can use the
existing efforts to reverse engineer the hash function [35]. Inside
a slice, to access the correct memory array in a certain cache way,
we use Cache Allocation Technology (CAT) [1] to restrict the ways
accessed by the program.

To cover all the addresses in a certain slice, we can set the page
size to 1GB using mmap at configuration time. To translate the vir-
tual addresses of the arrays to the physical addresses, page table
information in /proc/self/pagemap can be used. Automata are config-
ured in the cache by writing configuration values at these addresses.
At runtime, to collect the report information, the host application
issues load instruction at the regions assigned to the report arrays for
immediate processing or issues clflush to store the report data into
the DRAM for post-processing.

7 PERFORMANCE EVALUATION
7.1 Evaluation Methodology
NFA workloads: we use ANMLZoo [55] and Regex [6] benchmark
suites to evaluate Sunder. They present a range of applications, such
as network intrusion detection, natural language processing, and data
mining. A summary of the applications is represented in Table 1.

Experimental setup: we use our open-source in-house Automata
compiler and simulator1 to perform the preprocessing steps, and
1The reference to the tool is omitted due to the double-blind review.
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simulate Sunder, Cache Automaton (CA) [47], Impala [41], and the
Automata Processor (AP) [17], and also to perform the automata
transformation for nibble processing. The simulator takes NFA in
ANML format and processes the input cycle-by-cycle. Per-cycle
statistics are used to calculate the number of active states, the number
of reports, and communication overhead. To estimate area, delay,
and power of the memory subarray in Sunder, Cache Automaton,
and Impala model, we use a standard memory compiler (under NDA)
for 14nm technology and nominal voltage 0.8V (details in Table 2).
For example, Impala uses SRAM subarrays of size 16×16 with 6T
cells for state matching, or Sunder uses SRAM Subarrays of size
256×256 with 8T cells for both state matching and the interconnect.
The global wire-delays are calculated using SPICE modeling in CA.
Because the 8T-cell design has wider transistors than the 6T-cell
design in the memory compiler, 8T subarrays are faster and have a
higher area overhead than 6T subarrays.

Reporting architecture: Impala and CA overlook the real cost of
reporting, and they mainly evaluate the matching kernel. To provide
a fair and thorough comparison across different solutions, we assume
the AP-style reporting architecture for the CA and Impala.

Parameter selection: on average, 3.9% of the states are the re-
porting states (Table 1, fifth column). Therefore, on average, 10
out of 256 states (3.9%×256) are reporting states. Based on this
observation, we allocate 12 bits for the reporting data and 20 bit for
metadata (i.e., the global counter to count for 1Mb of input data),
depicted in Figure 4. To allow capturing the reporting information
for larger input, the stride value is concatenated with all zeros in the
reporting data and is written in the metadata + report data region.

AP-style reporting parameters: following [54], each L1 report
buffer size is 481Kb and each L2 report buffer size is 64KB (in total,
11.3MB L1 and 4MB L2).

Table 2: Subarray parameters for state-matching and intercon-
nect (including peripheral overhead) in 14nm technology.

Usage Cell Size Delay Read Power Area
Type (ps) (mW) (µm2)

State-matching (Impala) 6T 16×16 180 0.58 453
State-matching (CA) 6T 256×256 220 5.52 9394

Interconnect (CA, Impala, Sunder)
8T 256×256 150 6.07 20102

State-matching (Sunder)

7.2 State and Transition Overhead
This section discusses the state and transition overhead for different
processing rates (i.e., 1, 2, and 4-nibble processing). Table 3 shows
the number of states and transitions in each bitwidth, normalized to
the number of states and transition in the original 8-bit design. We
observed that benchmarks with higher symbol density (i.e., states
that accept larger alphabet), such as Brill, EntityResolution, Ham-
ming, Protomata, and RandomForest, have higher state and transition
overhead in different bitwidths.

On average, 1, 2, 4-nibble designs have 3.1×, 1.0×, and 1.2×
more states and 4.5×, 1.0×, and 1.8× more transitions over the
original 8-bit designs. The increase in the number of states translates
to utilizing more memory-column resources in in-memory designs.
The increase in the number of transitions translates to utilizing more
switches in our memory-mapped full crossbar interconnect (Figure
7) and does not incur extra resource overhead.

This means that compared to the original 8-bit processing, 4-
nibble processing (or 16-bit processing) provides 2× throughput

Table 3: Number of state and transitions in Sunder normalized
to the original 8-bit automata.

Benchmark
Sunder State Sunder Transition

1-nibble 2-nibble 4-nibble 1-nibble 2-nibble 4-nibble
(4-bit) (8-bit) (16-bit) (4-bit) (8-bit) (16-bit)

Brill 5.3× 1.0× 1.9× 11.9 × 1.0× 1.8×
Bro217 2.0× 1.0× 1.0× 2.1 × 1.0× 7.4×

Dotstar03 2.2× 1.0× 1.0× 2.6 × 1.0× 1.1×
Dotstar06 2.3× 1.0× 1.0× 3.0 × 1.0× 1.1×
Dotstar09 2.4× 1.0× 1.0× 3.5 × 1.0× 1.2×

ExactMatch 2.0× 1.0× 1.0× 2.0 × 1.0× 1.0×
PowerEN 2.3× 1.0× 1.1× 3.1 × 1.0× 1.0×
Protomata 6.0× 1.0× 1.2× 12.5 × 1.0× 1.1×
Ranges05 2.0× 1.0× 1.0× 2.1 × 1.0× 1.0×
Ranges1 2.1× 1.0× 1.0× 2.2 × 1.0× 1.0×

Snort 2.5× 1.0× 1.1× 3.8 × 1.0× 1.4×
TCP 2.5× 1.0× 1.1× 3.9 × 1.0× 1.3×

Hamming 6.5× 1.1× 1.3× 9.7 × 1.1× 1.4×
Levenshtein 2.8× 1.1× 2.2× 1.9 × 1.1× 3.5×

Fermi 2.2× 1.0× 1.0× 2.1 × 1.0× 1.3×
RandomForest 5.3× 1.0× 1.0× 9.4 × 1.0× 1.0×

SPM 2.7× 1.1× 2.3× 2.7 × 1.1× 4.6×
EntityResolution 3.2× 0.7× 0.9× 2.8 × 0.7× 1.6×

Average 3.1× 1.0× 1.2× 4.5 × 1.0× 1.8×

benefit only at the expense of 1.2× more memory columns. Moreover,
4-nibble processing requires 64 (4×24) memory rows to encode four
4-bit symbols, whereas the original 8-bit processing requires 256 (28)
memory rows to encode one 8-bit symbol. Sunder opportunistically
utilized the 192 (256-64) unused memory rows to store the reporting
data with a simple and compact solution. This confirms that our
algorithm/architecture methodology provides throughput and area
benefits compared to prior works.

7.3 Performance Overhead Analysis
Table 4 summarize the reporting overhead for Sunder (with and
without FIFO strategy), the AP, and the AP augmented with the
Report Aggregator Division (RAD) proposed by Wadden et al. [54]
(AP+RAD). For all these architectures, automata matching computa-
tions and communication happens within a single cycle. Therefore,
the "nominal" time it takes for the matching kernel (i.e., only state
matching and transition) to run automata on the input symbol stream
is equal to the symbol cycle time of the device multiplied by the num-
ber of symbols in the input symbol stream. To have apples-to-apples
comparison across different solutions, we assume the AP-style re-
porting architecture (Figure 2) for both Impala and CA (as they
overlook the real-cost of reporting overhead), and add the reporting
overhead to the "nominal" kernel execution cycles in CA and Impala.

Performance overhead: the number of flushes is the total num-
ber of times an application needs to flush the whole reporting region
due to overflow. While a subarrray is flushing out the reporting
data, the symbol processing for the whole application is stalled. The
reporting overhead (the stalls due to gathering and sending the re-
porting data to the host) represents the slowdown over the nominal
execution cycles. Some benchmarks have little or no reporting over-
heads, even on the AP reporting architecture (e.g., Dotstar, Ranges,
ClamAV). This is simply because these benchmarks report infre-
quently or not at all (Table 1). Some benchmarks incur extremely
large reporting overheads on the AP-style reporting. For example,
Snort incurs a 46× slowdown over ideal performance, and 7 out
of 19 benchmarks spend more time processing reporting overheads
than processing automata transitions. AP+RAD reduces the report-
ing overhead of the applications with sparse reporting behavior, such
as Snort and Protomata. However, it does not improve the overhead
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Table 4: Reporting overhead for four nibble processing.
Sunder w/o FIFO Sunder w/ FIFO AP (8-bit) AP+RAD (8-bit)

Benchmark #Flushes Reporting #Flushes Reporting Reporting Reporting
Overhead Overhead Overhead Overhead

Brill 666 1.04× 0 1× 7.07× 2.95×
Bro217 0 1× 0 1× 1.6× 1.3×

Dotstar03 0 1× 0 1× 1× 1×
Dotstar06 0 1× 0 1× 1× 1×
Dotstar09 0 1× 0 1× 1× 1×

ExactMatch 0 1× 0 1× 1× 1×
PowerEN 0 1× 0 1× 1.1× 1.05×
Protomata 0 1× 0 1× 5.8× 2.32×
Ranges05 0 1× 0 1× 1× 1×
Ranges1 0 1× 0 1× 1× 1×

Snort 1 1.01× 0 1× 46× 9×
TCP 0 1× 0 1× 3.8× 2.5×

ClamAV 0 1× 0 1× 1× 1×
Hamming 0 1× 0 1× 1× 1×

Levenshtein 0 1× 0 1× 1× 1×
Fermi 0 1× 0 1× 2.3× 1.5×

RandomForest 0 1× 0 1× 1.6× 1.3×
SPM 9212 1.06× 3870 1.03× 9.7× 9.7×

EntityResolution 0 1× 0 1× 2.25× 1.8×
Avg. Overhead NA 1× NA 1× 4.69× 2.23×

of dense reporting, such as SPM, mainly because RAD technique has
finer-grain reporting granularity that reduces the sparsity of sparse
reporting behavior and has almost no impact on dense reporting.

As expected, Sunder reporting architecture incurs negligible over-
head, which is less than 1.06× slowdown with no FIFO design, and
this can even further decrease to less than 1.03× when applying
the FIFO strategy (which reads from the beginning of the report
array during the application execution). This simply means that
Sunder’s end-to-end performance is almost equal to the kernel per-
formance, and minimizing the data movement overhead between
CPU and memory is an ultimate mission in processing-in-memory
architectures! Technically, Sunder does not incur stalls during the ex-
ecution of an application due to reporting, can be used for real-time
processing with a reliable and predictable performance.

SPM has extremely high-frequency reporting behavior and is the
only application that has reporting overhead in Sunder architecture
(3% reporting overhead - 6th column in Figure 4). Interestingly,
the SPM application mostly requires to know if a single report has
happened for specific input intervals with no interest in knowing
the exact cycles that report events have occurred. This means that
our report summarizing technique can further reduce the reporting
overhead for the applications with extremely high reporting behavior.

7.4 Comparison with Prior Work
Overall performance: The delays and frequencies of different
pipeline stages for Sunder, Impala, CA, and the AP are shown in
Table 5 (derived from Table 2). Sunder uses memory subarrays with
8T cells for both state matching and interconnect. Sunder, CA, and
Impala have similar hierarchical interconnect designs, and both local
and global switches are evaluated in parallel (Figure 4). We assume
an SRAM slice of 3.19mm× 3mm based on CA. As a result, the
distance between SRAM arrays and global switch is assumed to be
1.5mm. The wire delay was found to be 66psmm from SPICE mod-
eling; therefore, the wire delay for global switches is 99ps. Global
switch delay for CA and Sunder is 249 ps, composed of read-access
latency (150ps) and wire delay latency (99ps). Impala state-matching
subarray is ∼5X smaller; therefore, we assume 20ps wire-delay for
Impala. Therefore, the global switch delay for Impala is 170 ps.

The frequency is determined based on the slowest pipeline stage.
To consider potential estimation errors, we assume the operating

Table 5: Delays and operating frequency in pipleline stages. The
AP’s detail implementation is not publicly available.

Architecture State Local Global Max Operating
Matching Switch Switch Freq. (GHz) Freq. (GHz)

Sunder (14nm) 150 ps 150 ps 249 ps 4.01 3.6
Impala (14nm) 180 ps 150 ps 170 ps 5.55 5

CA (14nm) 220 ps 150 ps 249 ps 4.01 3.6
AP (50nm) - - - 0.133 0.133
AP (14nm)* - - - 1.69 1.69

* Projected to 14nm

Figure 8: Throughput of different automata accelerators.

frequency to be 10% less than what we have calculated. The AP is
designed in 50nm DRAM technology. To have a fair comparison,
we project the frequency to 14nm, which is an ideal assumption.

The overall throughput of in-memory automata processing archi-
tectures is determined by f requency×bitscycle

reporting−overhead . This is unlike prior work
that calculates f requency×bitscycle as the overall performance and
overlooks the reporting overhead. The reporting−overhead is the
average reporting overhead in Table 4, and is equal for CA, Impala,
and AP. Based on Table 4, Sunder’s reporting architecture has almost
no performance overhead across all the benchmarks, thus, through-
put for all the applications is fixed and calculated by multiplying
frequency (3.6 GHz) by the number bits processed per cycle (i.e.,
16 bits/cycle). Impala has a fixed 16-bit per cycle processing rate,
whereas Sunder has a reconfigurable 16-bit per cycle processing
rate. CA and AP design only work with 8-bit per cycle rate. Figure
8 compares the average throughput across the 19 benchmarks for
Sunder against Impala, CA, and the AP for both AP-style reporting
architecture and RAD reporting proposed in [54]. Sunder achieves
280× (133×), 22× (10.4×), 10× (4.8×), and 4× (1.9×) higher
throughput compared to the AP (50nm), AP (14nm), CA, and Im-
pala, respectively, with considering AP reporting architecture (with
considering AP+RAD reporting architecture). This benefit comes
from the fact that Sunder has almost no reporting overhead (i.e.,
reporting does not cause a slowdown in performance), which can
provide a deterministic throughput of one input symbol per cycle!

Area Overhead: Figure 9 compares the area overhead of state-
matching, interconnect, and reporting of Sunder with Impala, CA
and, and the AP (all in 14nm) for 32K STEs. Impala uses four
16×16 SRAM subarrays (6T cells) for the state matching, thus, has
the minimum area overhead for this stage. Impala and CA reporting
overhead are modeled after the AP reporting architecture. In Sunder,
the reporting architecture is infused in the state matching subarray,
and there is only an additional 2% overhead for the addition circuitry
(i.e., blue area in Figure 4). Both state matching and interconnect
switches in Sunder are designed with 8T SRAM subarrays, which
is 2.1× larger than the 6T subarrays (Table 2). Overall, Sunder
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Figure 9: Comparing area overhead for 32K STEs.

Figure 10: Performance slowdown for various reporting rates.

has 2.1×, 1.6×, and 1.5 lower area overhead than AP, Impala, and
CA, respectively. This benefit comes from the compact and in-place
reporting enabled by algorithmic transformation. Moreover, Sunder
incurs almost no performance penalty for the reporting, while the
other solutions cause up to 46× slowdown due to stalls for reporting.

7.5 Input Stream Sensitivity Analysis
Variations on the input steam change the reporting behavior. To
evaluate this, we perform a sensitivity analysis on the percentage
of reporting cycles, sweeping from 1% to 100%. We assume 12
reporting states in each subarray (based on the analysis in Table 1).
Figure 10 represents the performance slowdown with and without
summarization technique (Section 5.1.2). As expected, Sunder re-
porting architecture incurs negligible performance overhead when
the reporting cycles are less than 5%. In the absolute worst-case
scenario, which is reporting 100% of the times, Sunder with no
summarizing incurs only 7× performance overhead. However, if
the application only needs to know the report occurrence, then Sun-
der can summarize the reporting region in 16-row batches, which
improve the performance overhead to only 1.4×. However, the AP-
style reporting incurs up to 46× slowdown with only 3.24% of report
cycles (SPM in Table 1).

8 RELATED WORK
Data movement is highly expensive, much more expensive than
the computation [11, 28–30]. Generally, automata processing on
von Neumann architectures exhibits highly irregular memory access
patterns with poor temporal and spatial locality, which often leads
to poor cache and memory behavior [5, 13, 24, 52, 55, 58], and this
increases the cost of data movement.

Existing regular expression accelerators [18, 20, 34, 48] and
FPGA solutions [27, 52, 61, 62] are mainly targeting network se-
curity applications. However, recent effort on in-memory automata
processing architectures are optimizing for general-purpose pattern
matching, and they have shown their effectiveness on a wide-range
of applications [17, 36, 41, 46, 47] They all optimize for NFA pro-
cessing by exploiting the inherent bit-level parallelism of memory,
and these allow many patterns to be processed at the same time.

The Automata Processor (AP) [17] presented the first in-memory
automata processing solution by repurposing DRAM arrays. Wadden
et al. [54] introduce a reporting compression scheme (RAD) to
reduce the reporting overhead in spatial automata accelerators, such
as the AP. Impala [41] and Cache Automaton (CA) [47] repurpose a
portion of the LLC (when in automata mode) to lay out the patterns
in the cache subarrays, and thus, providing a solution that can be
on the same chip as the CPU, as well as higher-frequency operation
due to use of SRAM. Impala transforms automata to process four
4-bit symbols in parallel using smaller subarrays. However, Impala’s
processing rate is not reconfigurable. Moreover, both Impala and CA
overlook the real cost of reporting.

Prior work has already shown that the AP performs at least an
order of magnitude better than GPUs and multi-core processors
[10, 39, 44, 49, 56, 57], and CA performs at least an order of magni-
tude better than the AP [47]. Liu et al. [33] proposed an optimized
GPU solution for NFA processing by identifying the source of data
movement and achieved significant speedup over existing GPU solu-
tions, and even outperforming the AP for several applications. On
average, Sunder outperforms the AP 280×, and therefore, we do not
compare with the GPU solutions.

9 CONCLUSIONS
We introduce Sunder, a fully reconfigurable, efficient, and low over-
head in-SRAM pattern processing accelerator. Sunder integrates
our analysis of the prior architectures and sources of inefficiencies,
and our study of the static structure and dynamic behavior of real-
world applications, to implement the next-generation of in-memory
automata processing. Transforming an automaton for better hard-
ware utilization exponentially reduces memory usage and increases
information density. This frees up space in the memory subarrays
and creates an opportunity to store the reporting data locally in
each subarray to significantly reduce the host communication and
stabilize the processing throughput across the execution of an appli-
cation. Sunder’s reporting architecture incurs less than 2% hardware
overhead (as the reporting data are co-located in the state match-
ing subarrays and use shared resources). On average, Sunder has
two orders of magnitude higher throughput than Micron’s AP and
one order to magnitude higher throughput than the state-of-the-art
SRAM-based solutions.

Moreover, our software and hardware methodology enables three
orders of magnitude higher throughput per unit area compared to the
Micron’s AP, and this low-cost, high-throughput solution hopefully
shows a path toward commercial viability and unlocks the full poten-
tial of automata processing by making it accessible to an increasing
set of pattern processing applications with real-time requirements.

10 ACKNOWLEDGMENTS
We thank the anonymous reviewers whose comments helped im-
prove and clarify this manuscript. This work is funded, in part, by
CRISP, one of six centers in JUMP, a Semiconductor Research
Corporation (SRC) program sponsored by MARCO and DARPA,
the startup funding provided by the University of California, River-
side, SRC Task No. 2988.001, National Science Foundation (NSF)
2127780, and Department of the Navy, Office of Naval Research,
grant N00014-21-1-2225.



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Elaheh Sadredini, Reza Rahimi, Mohsen Imani, and Kevin Skadron

REFERENCES
[1] [n. d.]. Intel Cache Allocation Technology. https://software.intel.com/content/

www/us/en/develop/articles/introduction-to-cache-allocation-technology.html.
[online; accessed November 23, 2020].

[2] Kevin Angstadt, Arun Subramaniyan, Elaheh Sadredini, Reza Rahimi, Kevin
Skadron, Westley Weimer, and Reetuparna Das. 2018. ASPEN: A scalable In-
SRAM architecture for pushdown automata. In 51st Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO).

[3] Zachary K Baker and Viktor K Prasanna. 2004. Time and area efficient pattern
matching on FPGAs. In 12th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays.

[4] Michela Becchi and Patrick Crowley. 2008. Efficient regular expression evaluation:
theory to practice. In 4th ACM/IEEE Symposium on Architectures for Networking
and Communications Systems. ACM.

[5] Michela Becchi and Patrick Crowley. 2013. A-dfa: A time-and space-efficient dfa
compression algorithm for fast regular expression evaluation. ACM Transactions
on Architecture and Code Optimization (TACO) (2013).

[6] Michela Becchi, Mark Franklin, and Patrick Crowley. 2008. A workload for
evaluating deep packet inspection architectures. In IEEE International Symposium
on Workload Characterization (IISWC).

[7] Michela Becchi, Charlie Wiseman, and Patrick Crowley. 2009. Evaluating regular
expression matching engines on network and general purpose processors. In 5th
ACM/IEEE Symposium on Architectures for Networking and Communications
Systems.

[8] Chunkun Bo, Vinh Dang, Elaheh Sadredini, and Kevin Skadron. 2018. Searching
for Potential gRNA Off-Target Sites for CRISPR/Cas9 using Automata Processing
across Different Platforms. In 24th International Symposium on High-Performance
Computer Architecture. IEEE.

[9] Chunkun Bo, Vinh Dang, Ted Xie, Jack Wadden, Mircea Stan, and Kevin Skadron.
2019. Automata processing in reconfigurable architectures: In-the-cloud deploy-
ment, cross-platform evaluation, and fast symbol-only reconfiguration. ACM
Transactions on Reconfigurable Technology and Systems (TRETS) (2019).

[10] Chunkun Bo, Ke Wang, Jeffrey J Fox, and Kevin Skadron. 2016. Entity resolution
acceleration using the Automata Processor. In IEEE International Conference on
Big Data.

[11] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia,
Kevin Hsieh, Krishna T Malladi, Hongzhong Zheng, and Onur Mutlu. 2016.
LazyPIM: An efficient cache coherence mechanism for processing-in-memory.
IEEE Computer Architecture Letters 16, 1 (2016).

[12] Benjamin C Brodie, David E Taylor, and Ron K Cytron. 2006. A scalable archi-
tecture for high-throughput regular-expression pattern matching. ACM SIGARCH
Computer Architecture News 34, 2 (2006).

[13] Niccolo’ Cascarano, Pierluigi Rolando, Fulvio Risso, and Riccardo Sisto. 2010.
iNFAnt: NFA pattern matching on GPGPU devices. ACM SIGCOMM Computer
Communication Review 40, 5 (2010).

[14] Wei Chen, Szu-Liang Chen, Siufu Chiu, Raghuraman Ganesan, Venkata Lukka,
Wei Wing Mar, and Stefan Rusu. 2013. A 22nm 2.5 MB slice on-die L3 cache
for the next generation Xeon® processor. In 2013 Symposium on VLSI Circuits.
IEEE.

[15] Young H Cho and William H Mangione-Smith. 2005. A pattern matching co-
processor for network security. In 42nd Design Automation Conference. IEEE.

[16] Yoginder S Dandass, Shane C Burgess, Mark Lawrence, and Susan M Bridges.
2008. Accelerating string set matching in FPGA hardware for bioinformatics
research. BMC bioinformatics 9, 1 (2008), 197.

[17] Paul Dlugosch, Dean Brown, Paul Glendenning, Michael Leventhal, and Harold
Noyes. 2014. An efficient and scalable semiconductor architecture for parallel
automata processing. IEEE Transactions on Parallel and Distributed Systems 25,
12 (2014).

[18] Yuanwei Fang, Tung T Hoang, Michela Becchi, and Andrew A Chien. 2015.
Fast support for unstructured data processing: the unified automata processor. In
Microarchitecture (MICRO), 48th Annual IEEE/ACM International Symposium
on.

[19] Victor Mikhaylovich Glushkov. 1961. The abstract theory of automata. Russian
Mathematical Surveys (1961).

[20] Vaibhav Gogte, Aasheesh Kolli, Michael J Cafarella, Loris D’Antoni, and
Thomas F Wenisch. 2016. HARE: Hardware accelerator for regular expres-
sions. In 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO).

[21] Linley Gwennap. 2014. New Chip Speeds NFA Processing Using DRAM Archi-
tectures. In In Microprocessor Report.

[22] John E Hopcroft. 2008. Introduction to automata theory, languages, and computa-
tion. Pearson Education India.

[23] Nen-Fu Huang, Hsien-Wei Hung, Sheng-Hung Lai, Yen-Ming Chu, and Wen-
Yen Tsai. 2008. A GPU-based multiple-pattern matching algorithm for network
intrusion detection systems. In 22nd International Conference on Advanced Infor-
mation Networking and Applications-Workshops (aina workshops). IEEE.

[24] Intel. [n. d.]. https://github.com/01org/hyperscan.
[25] Satoshi Ishikura, Marefusa Kurumada, Toshio Terano, Yoshinobu Yamagami,

Naoki Kotani, Katsuji Satomi, Koji Nii, Makoto Yabuuchi, Yasumasa Tsukamoto,

Shigeki Ohbayashi, et al. 2008. A 45nm 2-port 8T-SRAM using hierarchical
replica bitline technique with immunity from simultaneous R/W access issues.
IEEE Journal of Solid-State Circuits 43, 4 (2008).

[26] Supreet Jeloka, Naveen Bharathwaj Akesh, Dennis Sylvester, and David Blaauw.
2016. A 28 nm configurable memory (TCAM/BCAM/SRAM) using push-rule
6T bit cell enabling logic-in-memory. IEEE Journal of Solid-State Circuits 51, 4
(2016).

[27] Vlastimil Košar and Jan Korenek. 2014. Multi-stride nfa-split architecture for reg-
ular expression matching using FPGA. In 9th Doctoral Workshop on Mathematical
and Engineering Methods in Computer Science.

[28] Marzieh Lenjani, Patricia Gonzalez, Elaheh Sadredini, Shuangchen Li, Yuan Xie,
Ameen Akel, Sean Eilert, Mircea R. Stan, and Kevin Skadron. 2020. Fulcrum: a
Simplified Control and Access Mechanism toward Flexible and Practical in-situ
Accelerators. The 26th IEEE International Symposium on High-Performance
Computer Architecture (2020).

[29] Marzieh Lenjani, Patricia Gonzalez, Elaheh Sadredini, M Arif Rahman, and
Mircea R. Stan. 2019. An Overflow-free Quantized Memory Hierarchy in General-
purpose Processors. IEEE International Symposium on Workload Characterization
(2019).

[30] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. 2016.
Pinatubo: A processing-in-memory architecture for bulk bitwise operations in
emerging non-volatile memories. In 53rd Annual Design Automation Conference.
ACM.

[31] Alan Wee-Chung Liew, Hong Yan, and Mengsu Yang. 2005. Pattern recognition
techniques for the emerging field of bioinformatics: A review. Pattern Recognition
38, 11 (2005).

[32] Hongyuan Liu, Mohamed Ibrahim, Onur Kayiran, Sreepathi Pai, and Adwait Jog.
2018. Architectural Support for Efficient Large-Scale Automata Processing. In
51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[33] Hongyuan Liu, Sreepathi Pai, and Adwait Jog. 2020. Why GPUs are slow at
executing NFAs and how to make them faster. In Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems.

[34] Jan Van Lunteren, Christoph Hagleitner, Timothy Heil, Giora Biran, Uzi Shvadron,
and Kubilay Atasu. 2012. Designing a programmable wire-speed regular-
expression matching accelerator. In 45th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO).

[35] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann, Olivier Heen,
and Aurélien Francillon. 2015. Reverse engineering Intel last-level cache complex
addressing using performance counters. In International Symposium on Recent
Advances in Intrusion Detection. Springer.

[36] Reza Rahimi, Elaheh Sadredini, Mircea Stan, and Kevin Skadron. 2020. Grapefruit:
An Open-Source, Full-Stack, and Customizable Automata Processing on FPGAs.
In IEEE 28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM).

[37] Indranil Roy and Srinivas Aluru. 2014. Finding motifs in biological sequences
using the micron automata processor. In IEEE 28th International Parallel and
Distributed Processing Symposium.

[38] Indranil Roy and Srinivas Aluru. 2016. Discovering motifs in biological sequences
using the micron automata processor. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 13, 1 (2016).

[39] Elaheh Sadredini, Deyuan Guo, Chunkun Bo, Reza Rahimi, Kevin Skadron, and
Hongning Wang. 2018. A scalable solution for rule-based part-of-speech tagging
on novel hardware accelerators. In 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining.

[40] Elaheh Sadredini, Reza Rahimi, Marzieh Lenjani, Mircea Stan, and Kevin Skadron.
2020. FlexAmata: A universal and efficient adaption of applications to spatial
automata processing accelerators. In Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems.

[41] Elaheh Sadredini, Reza Rahimi, Marzieh Lenjani, Mircea Stan, and Kevin Skadron.
2020. Impala: Algorithm/architecture co-design for in-memory multi-stride pattern
matching. In IEEE International Symposium on High Performance Computer
Architecture (HPCA).

[42] Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea Stan, and Kevin Skadron.
2019. eAP: A scalable and efficient in-memory accelerator for automata process-
ing. In 52nd Annual IEEE/ACM International Symposium on Microarchitecture.

[43] Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea Stan, and Kevin Skadron.
2019. Scalable and Efficient in-Memory Interconnect Architecture for Automata
Processing. IEEE Computer Architecture Letters (2019).

[44] Elaheh Sadredini, Reza Rahimi, Ke Wang, and Kevin Skadron. 2017. Frequent
subtree mining on the automata processor: challenges and opportunities. In Inter-
national Conference on Supercomputing (ICS). ACM.

[45] Tian Song, Wei Zhang, Dongsheng Wang, and Yibo Xue. 2008. A memory
efficient multiple pattern matching architecture for network security. In IEEE
INFOCOM -The 27th Conference on Computer Communications.

[46] Arun Subramaniyan and Reetuparna Das. 2017. Parallel automata processor. In
2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA).

https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://github.com/01org/hyperscan


Sunder: Enabling Low-Overhead and Scalable Near-Data Pattern Matching Acceleration MICRO ’21, October 18–22, 2021, Virtual Event, Greece

[47] Arun Subramaniyan, Jingcheng Wang, Ezhil R. M. Balasubramanian, David
Blaauw, Dennis Sylvester, and Reetuparna Das. 2017. Cache Automaton. In 50th
Annual IEEE/ACM International Symposium on Microarchitecture.

[48] Prateek Tandon, Faissal M Sleiman, Michael J Cafarella, and Thomas F Wenisch.
2016. Hawk: Hardware support for unstructured log processing. In IEEE 32nd
International Conference on Data Engineering (ICDE).

[49] II Tommy Tracy, Mircea Stan, Nathan Brunelle, Jack Wadden, Ke Wang, Kevin
Skadron, and Gabe Robins. 2015. Nondeterministic finite automata in hard-
ware—the case of the Levenshtein automaton. Architectures and Systems for Big
Data (ASBD), in conjunction with ISCA (2015).

[50] Tommy Tracy, Yao Fu, Indranil Roy, Eric Jonas, and Paul Glendenning. 2016.
Towards machine learning on the Automata Processor. In International Conference
on High Performance Computing. Springer.

[51] Tommy Tracy II, Lucas M Tabajara, Moshe Vardi, Kevin Skadron, et al. 2020.
Runtime Verification on FPGAs with LTLf Specifications. In 20th Conference on
Formal Methods in Computer-Aided Design –FMCAD, Vol. 1. TU Wien Academic
Press.

[52] Lucas Vespa, Ning Weng, and Ramaswamy Ramaswamy. 2010. MS-DFA:
Multiple-stride pattern matching for scalable deep packet inspection. Comput. J.
54, 2 (2010).

[53] Jack Wadden. [n. d.]. Virtual Automata Simulator - VASim. https://github.com/
jackwadden/vasim.

[54] Jack Wadden, Kevin Angstadt, and Kevin Skadron. 2018. Characterizing and miti-
gating output reporting bottlenecks in spatial automata processing architectures.
In IEEE International Symposium on High Performance Computer Architecture
(HPCA).

[55] Jack Wadden, Vinh Dang, Nathan Brunelle, Tommy Tracy II, Deyuan Guo, Ela-
heh Sadredini, Ke Wang, Chunkun Bo, Gabriel Robins, Mircea Stan, et al. 2016.
ANMLzoo: a benchmark suite for exploring bottlenecks in automata process-
ing engines and architectures. In IEEE International Symposium on Workload

Characterization (IISWC).
[56] Ke Wang, Elaheh Sadredini, and Kevin Skadron. [n. d.]. Hierarchical Pattern

Mining with the Micron Automata Processor. In International Journal of Parallel
Programming (IJPP). 2017.

[57] Ke Wang, Elaheh Sadredini, and Kevin Skadron. 2016. Sequential pattern min-
ing with the Micron automata processor. In ACM International Conference on
Computing Frontiers.

[58] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geoff Langdale, Jiayu
Hu, and Heqing Zhu. 2019. Hyperscan: a fast multi-pattern regex matcher for
modern CPUs. In 16th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 19).

[59] Wm A Wulf and Sally A McKee. 1995. Hitting the memory wall: implications of
the obvious. ACM SIGARCH Computer Architecture News 23, 1 (1995).

[60] Ted Xie, Vinh Dang, Jack Wadden, Kevin Skadron, and Mircea Stan. 2017.
REAPR: Reconfigurable engine for automata processing. In 27th International
Conference on Field Programmable Logic and Applications (FPL). IEEE.

[61] Norio Yamagaki, Reetinder Sidhu, and Satoshi Kamiya. 2008. High-speed reg-
ular expression matching engine using multi-character NFA. In International
Conference on Field Programmable Logic and Applications (FPL). IEEE.

[62] Yi-Hua Yang and Viktor Prasanna. 2012. High-performance and compact archi-
tecture for regular expression matching on FPGA. IEEE Trans. Comput. 61, 7
(2012).

[63] Fang Yu, Zhifeng Chen, Yanlei Diao, TV Lakshman, and Randy H Katz. 2006.
Fast and memory-efficient regular expression matching for deep packet inspection.
In ACM/IEEE symposium on Architecture for Networking and Communications
Systems.

[64] Keira Zhou, Jeffrey J Fox, Ke Wang, Donald E Brown, and Kevin Skadron. 2015.
Brill tagging on the micron automata processor. In International Conference on
Semantic Computing (ICSC). IEEE.

https://github.com/jackwadden/vasim
https://github.com/jackwadden/vasim

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 In-memory Automata Processing
	2.2 Existing Reporting Architectures
	2.3 Motivation

	3 Analyzing Reporting Behavior
	4 Algorithmic Transformation
	5 Sunder Architecture
	5.1 State Matching & Reporting Subarray
	5.2 Interconnect

	6 System Integration
	7 Performance Evaluation
	7.1 Evaluation Methodology
	7.2 State and Transition Overhead
	7.3 Performance Overhead Analysis
	7.4 Comparison with Prior Work
	7.5 Input Stream Sensitivity Analysis

	8 Related Work
	9 Conclusions
	10 Acknowledgments
	References

