
ASPEN: A Scalable In-SRAM Architecture for
Pushdown Automata

Kevin Angstadt,
∗

Arun Subramaniyan,
∗

Elaheh Sadredini,
†

Reza Rahimi,
†

Kevin Skadron,
†

Westley Weimer,
∗

Reetuparna Das,
∗

∗
Computer Science and Engineering

†
Department of Computer Science

University of Michigan University of Virginia

Ann Arbor, MI USA Charlottesville, VA USA

{angstadt, arunsub, weimerw, reetudas}@umich.edu {elaheh, rahimi, skadron}@virginia.edu

Abstract—Many applications process some form of tree-
structured or recursively-nested data, such as parsing XML or
JSON web content as well as various data mining tasks. Typical
CPU processing solutions are hindered by branch misprediction
penalties while attempting to reconstruct nested structures and
also by irregular memory access patterns. Recent work has
demonstrated improved performance for many data process-
ing applications through memory-centric automata processing
engines. Unfortunately, these architectures do not support a
computational model rich enough for tasks such as XML parsing.

In this paper, we present ASPEN, a general-purpose, scalable,
and reconfigurable memory-centric architecture for processing
of tree-like data. We take inspiration from previous automata
processing architectures, but support the richer deterministic
pushdown automata computational model. We propose a custom
datapath capable of performing the state matching, stack manip-
ulation, and transition routing operations of pushdown automata,
all efficiently stored and computed in memory arrays. Further, we
present compilation algorithms for transforming large classes of
existing grammars to pushdown automata executable on ASPEN,
and demonstrate their effectiveness on four different languages:
Cool (object oriented programming), DOT (graph visualization),
JSON, and XML.

Finally, we present an empirical evaluation of two application
scenarios for ASPEN: XML parsing, and frequent subtree
mining. The proposed architecture achieves an average 704.5 ns
per KB parsing XML compared to 9983 ns per KB in a state-of-
the-art XML parser across 23 benchmarks. We also demonstrate
a 37.2x and 6x better end-to-end speedup over CPU and GPU
implementations of subtree mining.

Index Terms—pushdown automata, emerging technologies
(memory and computing), accelerators

I. INTRODUCTION

Processing of tree-structured or recursively-nested data is

intrinsic to many computational applications. Data serializa-

tion formats such as XML and JSON are inherently nested

(with opening and closing tags or braces, respectively), and

structures in programming languages, such as arithmetic ex-

pressions, form trees of operations. Further, the grammatical

structure of English text is tree-like in nature [1]. Reconstruct-

ing and validating tree-like data is often referred to as parsing.

Studies on data processing and analytics in industry demon-

strate both increased rates of data collection and also increased

demand for real-time analyses [2], [3]. Therefore, scalable and

high-performance techniques for parsing and processing data

are needed to keep up with industrial demand. Unfortunately,

parsing is an extremely challenging task to accelerate and

falls within the “thirteenth dwarf” in the Berkeley parallel

computation taxonomy [4]. Software parsing solutions often

exhibit irregular data access patterns and branch mispredic-

tions, resulting in poor performance. Custom accelerators exist

for particular parsing applications (e.g., for parsing XML [5]),

but do not generalize to multiple important problems.

We observe that deterministic pushdown automata (DPDA)

provide a general-purpose computational model for processing

tree-structured data. Pushdown automata extend basic finite

automata with a stack. State transitions are determined by

both the next input symbol and also the top of stack value.

Determinism precludes stack divergence (i.e., simultaneous

transitions never result in different stack values) and admits

efficient hardware implementation. While somewhat restric-

tive, we demonstrate that DPDAs are powerful enough to parse

most programming languages and serialization formats as well

as mine for frequent subtrees within a dataset.

In this paper, we present ASPEN, the Accelerated in-SRAM

Pushdown ENgine, a realization of deterministic pushdown au-

tomata in Last Level Cache (LLC). Our design is based on the

insight that much of the DPDA processing can be architected

as LLC SRAM array lookups without involving the CPU.

By performing DPDA computation in-cache, ASPEN avoids

conventional CPU overheads such as random memory accesses

and branch mispredictions. Execution of a DPDA with ASPEN

is divided into five stages: (1) input symbol match, (2) stack

symbol match, (3) state transition, (4) stack action lookup, and

(5) stack update, with each stage making use of SRAM arrays

to encode matching and transition operations.

To scale to large DPDAs with thousands of states, ASPEN

adopts a hierarchical architecture while still processing one in-

put symbol in one cycle. Further, ASPEN supports processing

of hundreds of different DPDAs in parallel as any number of

LLC SRAM arrays can be re-purposed for DPDA processing.

This feature is critical for applications such as frequent subtree

mining which require parsing several trees in parallel.

To support direct adaptation of a large class of legacy

parsing applications, we implement a compiler for converting

existing grammars for common parser generators to DPDAs

executable by ASPEN. We propose two key optimizations

for improving the runtime of parsers on ASPEN. First, the

architecture supports popping a reconfigurable number of

values from the stack in a single cycle, a feature we call

921

2018 51st Annual IEEE/ACM International Symposium on Microarchitecture

978-1-5386-6240-3/18/$31.00 ©2018 IEEE
DOI 10.1109/MICRO.2018.00079

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

multipop. Second, our compiler implements a state merging

algorithm that reduces chains containing ε-transitions. Both of

these optimizations reduce stalls in input symbol processing.

To summarize, this work makes the following contributions:

• We propose ASPEN, a scalable execution engine which

re-purposes LLC slices for DPDA acceleration.

• We develop a custom data path for DPDA processing

using SRAM array lookups. ASPEN implements state

matches, state transition, stack updates, includes efficient

multipop support, and can parse one token per cycle.

• We develop an optimizing compiler for transforming

existing language grammars into DPDAs. Our compiler

optimizations reduce the number of stalled cycles dur-

ing execution. We demonstrate this compilation on four

different languages: Cool (object oriented programming),

DOT (graph visualization), JSON, and XML.

• We empirically evaluate ASPEN on two application

scenarios: a tightly coupled XML tokenizer and parser

pipeline and also a highly parallelized subtree miner.

First, results demonstrate an average of 704.5 ns per KB

parsing XML compared to 9983 ns per KB in a state-of-

the-art XML parser across 23 XML benchmarks. Second,

we demonstrate 37.2× and 6× better end-to-end speedup

over CPU and GPU implementations of subtree mining.

II. BACKGROUND AND MOTIVATION

In this section, we review automata theory relevant to

ASPEN. We then introduce two real-world applications that

motivate accelerated pushdown automata execution.

A. Automata Primer

A non-deterministic finite automaton (NFA) is a state ma-

chine represented by a 5-tuple, (Q,Σ, δ, S, F), where Q is a

finite set of states, Σ is a finite set of symbols, δ is a transition

function, S ⊆ Q are initial states, and F ⊆ Q is a set of final or

accepting states. The transition function determines the next

states using the current active states and the next input symbol.

If the automaton enters into an accept state, the current input

position is reported. In a homogeneous NFA, all transitions

entering a state must occur on the same input symbol [6].

Homogeneous NFAs (and traditional NFAs) are equivalent in

representative power to regular expressions [7], [8].

Pushdown automata (PDAs) extend basic finite automata by

including a stack memory structure. A PDA is represented by

a 6-tuple, (Q,Σ,Γ, δ, S, F), where Γ is the finite alphabet of

the stack, which need not be the same as the input symbol

alphabet. The transition function, δ, is extended to consider

stack operations. The transition function for a PDA considers

the current state, the input symbol, and the top of the stack and

returns a new state along with a stack operation (one of: push

a specified symbol, pop the top of the stack, or no operation).

B. Deterministic Pushdown Automata

In this paper, we restrict attention to deterministic pushdown
automata (DPDAs), which limit the transition function to only

allow a single transition for any valid configuration of the

DPDA and an input symbol. This restriction prevents stack

divergence, a property we leverage for efficient implementa-

tion in hardware. Some transitions perform stack operations

without considering the next input symbol, and we refer to

these transitions as epsilon- or ε-transitions. To maintain the

determinism, all ε-transitions take place before transitions

considering the next input symbol.

Unlike basic finite automata, where non-deterministic and

deterministic machines have the same representative power

(any NFA has an equivalent DFA and vice versa), DPDAs

are strictly weaker than PDAs [7]. DPDAs, however, are still

powerful enough to parse most programming languages and

serialization formats as well as mine for frequent subtrees

within a dataset. We leave the exploration of hardware im-

plementations of PDAs for future work.

For hardware efficiency, we extend the definition of homo-

geneous finite automata to DPDA. In a homogeneous DPDA

(hDPDA), all transitions to a state occur on the same input

character, stack comparison, and stack operation. Concretely,

for any q, q
′
, p, p

′ ∈ Q, σ, σ
′ ∈ Σ, γ, γ

′ ∈ Γ, and op, op
′

that are operations on the stack, if δ(q, σ, γ) = (p, op) and

δ(q
′
, σ

′
, γ

′
) = (p

′
, op

′
), then

p = p
′
⇒ σ = σ

′ ∧ γ = γ
′ ∧ op = op

′
.

This restriction on the transitions function does not limit

computational power, but may increase the number of states

needed to represent a particular computation.

Claim 1. Given any DPDA A = (Q,Σ,Γ, δ, S, F), the number
of states in an equivalent hDPDA is bounded by O(∣Σ∣∣Q∣

2
).

Proof. We consider the worst case: A is fully-connected with

∣Σ∣⋅∣Q∣ incident edges to each state and each of these incoming

edges performs a different set of input/stack matches and stack

operations. Therefore, we must duplicate each node ∣Σ∣(∣Q∣ −
1) times to ensure the homogeneity property. For any node

q ∈ Q, we add ∣Σ∣ ⋅ ∣Q∣ copies of q to the equivalent hDPDA,

one node for each of the different input/stack operations on

incident edges. Therefore, there are at most ∣Σ∣ ⋅ ∣Q∣ ⋅ ∣Q∣ =
∣Σ∣∣Q∣

2
vertices in the equivalent hDPDA.

In practice, DPDAs tend not to be fully-connected and have

a fixed alphabet, resulting in less than quadratic growth. Even

in the worst case, hDPDAs do not significantly increase the

number of states (cf. the exponential NFA to DFA transforma-

tion). Figure 1 provides an example DPDA and hDPDA for

odd-length palindromes with a known middle character.

C. Parsing of XML Files

A common data processing task that makes use of PDAs

is parsing. Parsing, or syntactic analysis, is the process of

validating and reconstructing tree (nested) data structures from

a sequence of input tokens. In natural language, this process

relates to validating that a sequence of words forms a valid

sentence structure, and for a programming language, a parser

will verify that a statement has the correct form (e.g., a

conditional in C contains the correct keywords, expressions,

922

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

q0start q1 q2

0,⊥/0⊥ 1,⊥/1⊥
0, 0/00 0, 1/01
1, 0/10 1, 1/11

0, 0/ε
1, 1/ε

c,⊥/⊥
c, 0/0
c, 1/1

ε,⊥/⊥

(a)

0
∗

Pop 0
Push ‘0

′

start

1
∗

Pop 0
Push ‘1

′

start

c
∗

Pop 0
No Push

0
0

Pop 1
No Push

1
1

Pop 1
No Push

ε
⊥

Pop 0
No Push

(b)

Fig. 1: Equivalent DPDA (a) and hDPDA (b) for recognizing odd-length palindromes with a given center character. For

simplicity, we consider strings formed from Σ = {0, 1} with center character c. Transition rules for the DPDA (a) are written

as a, b/c, where a is the matched input symbol, b is the matched stack symbol, and c is the top of the stack after a push or

ε for a pop. Note that ⊥ is a special symbol to represent the bottom of the stack. The hDPDA (b) lists (in order) the input

symbol match (ε for no match), stack symbol match (∗ is a wildcard match), number of symbols to pop, and symbol to push.

0
5

10
15
20
25
30
35
40
45
50

ebay (Low) psd7003 (Med) soap (High)

CP
U

cy
cle

s p
er

 b
yt

e

Expat Xerces

0

5

10

15

20

25

30

ebay (Low) psd7003 (Med) soap (High)

Br
an

ch
 In

st
ru

ct
io

ns
 p

er
 b

yt
e

Expat Xerces

(a) (b)

Fig. 2: Conventional parser performance. (a) CPU cycles per

byte. (b) Branch instructions per byte

and statements in the correct order). In this paper, we focus

on the task of parsing XML files, which is common to

many applications. Parsing XML produces a special tree data

structure called the Document Object Model (DOM).

Parsers are typically implemented as the second stage of a

larger pipeline. In the first stage, a lexer, tokenizer, or scanner

reads raw data and produces a list of tokens (i.e., a lexer

converts a stream of characters into a stream of words), which

are passed to the parser. The parser produces a tree from these

input tokens, which can be further validated and processed

by later pipeline stages. For example, an XML parser will

validate that tags are properly nested, but a later stage in the

pipeline performs semantic checks, such as verifying that text

in opening and closing tags match.

Parsing performance on CPUs: Conventional software-

based parsers exhibit complex input-dependent data and con-

trol flow patterns resulting in poor performance when executed

on CPUs. Figure 2 (b) shows two state-of-the-art open-source

XML parsers, Expat [9] and Xerces [10], which can require

∼6–25 branch instructions to process a single byte-of-input

depending on the markup density of the input XML file (i.e.,

ratio of syntactic markup to document size). These overheads

result from nested switch-case statements that determine the

next parsing state. Furthermore, as the parser alternates be-

tween markup processing and processing of variable-length

content, there is little data reuse, leading to high cache miss

rates (∼100 L1 caches misses per kB for Xerces). As a result of

Fig. 3: An example of subtrees (I = Induced, E = Embedded,

O = Ordered, U = Unordered)

both high branch misprediction and cache miss rates, software

parsers take ∼12–45 CPU cycles to parse a single input byte

(see Figure 2 (a)). In contrast, ASPEN, by virtue of performing

DPDA computation in-cache, does not incur these overheads.

D. Frequent Subtree Mining

Another application that may make use of the DPDA com-

putational model is frequent subtree mining. This analysis is

used in natural language processing, recommendation systems,

improving network packet routing, and querying text databases

[11], [12]. The core kernel of this task is subtree inclusion,

which we consider next.

Subtree inclusion problem: Assume S and T are two

rooted, labeled, and ordered trees. Define t1, t2, ..., tn to be

the nodes in T and s1, s2, ..., sm be the nodes in S. Then, S
is an embedded subtree of T if there are matching labels of

the nodes ti1 , ti2 , ..., tim such that (1) label(sk) = label(tik)
for all k = 1, 2, ...,m; and (2) for every branch (sj , sk) in S,

tij should be an ancestor of tik in T . The latter condition

preserves the structure of S in T . We also consider induced
subtrees, which occur when restricting the ancestor-descendant

relationship to parent-child relationships in T for the second

condition. Figure 3 shows examples of subtrees. Sadredini et

al. [13] proposed an approximate subtree inclusion checking

kernel for an NFA hardware accelerator that can lead to false

positives. We focus on exact subtree inclusion checking, which

can use a deterministic pushdown automaton to count the

923

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

S

Exp

Term

int * Term

(Exp

Term

int

+ Exp

Term

int

)

⊣

(b)

S → Exp ⊣

Exp → Term + Exp

∣ Term

Term → int * Term

∣ (Exp)

∣ int(a)

Fig. 4: An example CFG (a) and parse tree (b). The grammar

represents a subset of arithmetic expressions. We use ⊣ to

signify the endmarker for a given token stream, which is

needed for transformation to a DPDA. The parse tree given in

(b) is for the expression 3∗ (4+ 5). Note that integer numbers

are transformed to int tokens prior to deriving the parse tree.

length of a possible branch when searching for a subtree in

the input tree.

III. COMPILING GRAMMARS TO PUSHDOWN AUTOMATA

In this section, we describe context-free grammars, our

algorithms to compile such grammars to pushdown automata,

and our prototype implementation.

A. Context-Free Grammars

While DPDAs provide a functional definition of computa-

tion, it can often be helpful to use a higher-level represen-

tation that generates the underlying machine. Just as regular

expressions can be used to generate finite automata, context-
free grammars (CFGs) can be used to generate pushdown

automata. We briefly review relevant properties of these gram-

mars (the interested reader is referred to references such as [7],

[14]–[16] for additional details).

CFGs allow for the definition of recursive, tree-like struc-

tures using a collection of substitution rules or productions. A

production defines how a symbol in the input may be legally

rewritten as another sequence of symbols (i.e., the right-hand

side of a production may be substituted for the symbol given in

the left-hand side). Symbols that appear on the left-hand side

of productions are referred to as non-terminals while symbols

that do not are referred to as terminals. The language of a CFG

is the set of all strings produced by recursively applying the

productions to a starting symbol until only terminal symbols

remain. The sequential application of these productions to an

input produces a derivation or parse tree, where all internal

nodes are non-terminals and all leaf nodes are terminals.

An example CFG for a subset of arithmetic operations is

given in Figure 4 (a). This particular grammar demonstrates

recursive nesting (balanced parentheses), operator precedence

(multiplication is more tightly bound than addition), and

associativity (multiplication and addition are left-associative

in this grammar). Figure 4 (b) depicts the parse tree given by

the grammar for the equation 3 ∗ (4 + 5).

B. Compiling Grammars to DPDAs

Next, we consider the process of compiling an input CFG

to a DPDA. As noted in Section II-A, PDAs and DPDAs

do not have equal representative power. Therefore, there are

CFGs that cannot be recognized by a DPDA. We focus on

support for a strict subset of CFGs known as LR(1) grammars,

which are of practical importance and supported by DPDAs.

Most programming language grammars have a deterministic

representation [7], and many common parser generator tools

focus on supporting LR(1) grammars [17]–[19]. By targeting

this class of grammars, we can therefore support parsing

common languages such as XML, JSON, and ANSI C.

Existing parser generators (e.g., YACC or PLY) are unsuit-

able for compiling to ASPEN because these tools do not pro-

duce hDPDAs (or even DPDAs!). Instead, they generate source

code that makes use of the richer set of operations supported

by CPUs. We do, however, demonstrate how existing tools

may be leveraged for a portion of our compilation process.

This transformation from grammar to hDPDA is broken

down into three stages: (1) parsing automaton generation, (2)

hDPDA generation, and (3) optimization.

Parsing Automaton Generation: Parsing of input accord-

ing to an LR(1) grammar makes use of a DFA known as

a parsing automaton,
1

a state machine that processes input

symbols and determines the next production to apply. This

machine encodes shift and reduce operations. Shifts occur

when another input token is needed to determine the next

production and are encoded as transitions between states in the

parsing automaton. Reduce operations (the reverse applications

of productions) occur when the machine has seen enough input

to determine which substitution rule in the grammar to apply

and are encoded as accepting states in the DFA. Each accepting

state represents a different production. Determining the correct

shift or reduce operation may require inspecting the current

input symbol and also a subsequent lookahead symbol.

We leverage off-the-shelf tools to generate parsing au-

tomata. Concretely, we support parsing automata generated

by the GNU Bison2
and PLY3

parser generator tools. These

two tools produce CPU-based parsers and generate parsing

automata as an intermediate output.

Conceptually, parsing proceeds by processing input symbols

using the parsing automaton and pushing symbols to the stack

until an accepting state is reached. The input string is rewritten

by popping symbols from the stack. The most recently-pushed

symbols are replaced by the left-hand-side of the discovered

substitution rule. Processing is then restarted from the begin-

ning of the rewritten input, repeating until only the starting

non-terminal symbol remains. With this classical approach,

1
Also referred to as DK in the literature after its creator, Donald Knuth [7].

2
https://www.gnu.org/software/bison/

3
http://www.dabeaz.com/ply/

924

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

parsing requires multiple iterations over (and transformations

to) the input symbols.
hDPDA Generation: To improve the efficiency of parsing,

we simulate the execution of the parsing automaton using a

DPDA [7, Lemmas 2.58, 2.67] to process input tokens in a

single pass with no transformations to the input. With this

approach, input symbols are not pushed to the stack. Instead,

the stack of the hDPDA is used to track the sequence of states

visited in the parsing automaton. Shift operations push the

destination parsing automaton state to the stack (shifts are

transitions to other states in the parsing automaton). When a

reduce operation rewriting n symbols to a single non-terminal

symbol is performed by the parsing automaton, the hDPDA

pops n symbols off the stack. The symbol at the top of

the hDPDA stack is the state of the parsing automaton that

immediately preceded the shift of the first token from the

reduced rule. In other words, popping the stack for a reduction

“runs the parsing automaton in reverse” to undo shifting the

symbols from the matched rule. The hDPDA then continues

simulation of the parsing automaton from this restored state.
Our prototype compiler generates an hDPDA by first read-

ing in the textual description of the parsing automaton gen-

erated by Bison or PLY. Next, for each state in the parsing

automaton, we generate hDPDA states for each terminal and

non-terminal in the grammar. A separate state is needed for

each terminal and non-terminal symbol because the homo-

geneity property only supports a single pushdown automata

operation per state (see Section II-A):

• For each terminal symbol, we generate two states: one

state matches the lookahead symbol (i.e., lookahead sym-

bols are stored in “positional” memory) and one state

encodes the relevant shift or reduce operation. A shift

operation pushes parsing automaton states on the stack,

while a reduce operation pops a symbol from the stack

and generates an output signal.

• For each non-terminal symbol, only one state is gener-

ated: the state performing the shift/reduce operation. In

addition, this state must also match the top of the stack

to validate undoing shift operations.

Then, we add additional states to perform stack pop op-

erations for the reduce operations, one pop for each symbol

reduced from the right-hand side of a production. Finally, we

connect the states with transitions according to transition rules

from the parsing automaton.
The final hDPDA is emitted in the MNRL file format.

MNRL is an open-source JSON-based state machine seri-

alization format that is used within the MNCaRT automata

processing and research ecosystem [20]. We extend the MNRL

schema to support hDPDA states, encoding the stack opera-

tions with each state. Using MNRL admits the reuse of many

analyses from MNCaRT with minimal modification.
Optimization: While our algorithm to transform the parsing

automaton to a DPDA is direct, the resulting DPDA contains

a large number of ε-transitions and extraneous states. First,

we remove all unreachable states (states with no incoming

transitions). Then, we perform optimizations to reduce the

⋯

[A-Z]

∗
Pop 0

No Push

ε
∗

Pop 1

Push ‘a
′

⋯ ⇒ ⋯

[A-Z]

∗
Pop 1

Push ‘a
′

⋯

(a)

⋯

ε
∗

Pop 1
No Push

ε
∗

Pop 1
No Push

ε
∗

Pop 1
No Push

ε
∗

Pop 1
No Push

⋯

⇓

⋯

ε
∗

Pop 4
No Push

⋯

(b)

Fig. 5: Two compiler optimizations for reducing the number

stalls incurred by ε-transitions. Epsilon merging (a) attempts

to combine states to perform non-overlapping operations.

Multipop (b) allows for the stack pointer to be moved a

configurable distance in one operation.

total number of ε-transitions within the hDPDA. Recall that

ε-transitions occur when stack operations take place without

reading additional input (e.g., when popping the stack during

a reduce operation and transitioning to another state). We

make two observations about the hDPDA produced by our

compilation algorithm.

First, the algorithm produces separate states to “read in”

input symbols and to perform stack operations. In many

cases, these states may be combined, or merged, to match

the input and perform stack operations simultaneously. After

producing the initial hDPDA, we perform a post-order depth-

first traversal of the machine and merge such connected states

when possible. We call this optimization epsilon merging and

apply it conservatively: only states that occur on a linear chain

are merged. Figure 5 (a) shows an example in which a state

performing input matching on capital letters and a state (with

no input comparison) performing a pop and a push are merged.

Second, our basic algorithm assumes a computational model

that only supports popping one symbol at a time. On reduction

operations for productions containing several symbols on the

right-hand side, this results in long-duration stalls. Note, how-

ever, that no comparisons are made with these intermediate

stack symbols. If our architecture can support moving the

stack pointer by a variable amount, then a reduction may

be performed in one step. We refer to this as multipop.

Figure 5 (b) demonstrates a reduction of four states to one

state with multipop.

C. Compilation Summary

We presented an overview of CFGs, a high-level language

representation that may be used to generate pushdown au-

tomata. Then, we described an algorithm for compiling an

important subset of CFGs (LR(1) grammars) to hDPDAs.

We leverage existing tools to produce an intermediate parser

representation (the parsing automaton), which we then encode

in an hDPDA for execution with ASPEN. We also introduce

925

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

two optimizations, epsilon merging and multipop, to reduce

stalls while processing input. Our approach supports and

accelerates existing parser specifications without modification.

This means that parsers do not have to be redesigned to take

advantage of ASPEN’s increased parsing performance.

IV. ARCHITECTURAL DESIGN

In this section, we describe the ASPEN architecture that

augments LLC slices with support for DPDA processing. We

also discuss the design of a DPDA processing pipeline based

on ASPEN and the tradeoffs involved.

A. Cache Slice Design

The proposed ASPEN architecture augments the last level

cache slices of a general purpose processor to support in-situ

DPDA processing. Figure 6 (a) shows an 8-core enterprise

Xeon-E5 processor with LLC slices connected using a ring

interconnect (not shown in figure). Typically, the Intel Xeon

family includes 8-16 such slices [21]–[23]. Each last-level

cache slice macro is 2.5 MB and consists of a centralized

cache control box (CBOX). A slice is organized into 20 ways,

with each way further organized as five 32 kB banks, four

of which constitute data arrays, while the fifth one is used

to store the tag, valid and LRU state (Figure 6 (b)). All the

ways of the cache are interconnected using a hierarchical bus

supporting a bandwidth of 32 bytes per cycle. Internally, each

bank consists of four 8 kB SRAM arrays (256 × 256).

A bank can accommodate up to 256 states and a DPDA

can span several banks. We repurpose two of the four arrays in

each bank to perform the different stages of DPDA processing.

The remaining two arrays (addressed by the PA[16] bit)

can be used to store regular cache data. State-transitions

are encoded in a hierarchical memory-based interconnect,

consisting of local and global crossbar switches (L-switch, G-

switch). A 256-bit register is used to track the active states in

each cycle (Active State Vector in Figure 6 (c)). We provision

input buffers in the C-BOX to broadcast input symbols or

tokens to different banks. Output buffers are also provided to

track the report events generated every processing cycle.

B. Operation

This subsection provides the details of DPDA processing.

Recall that, in a DPDA, only a single state is active in every

processing cycle, and initially, only the start state is active.

Each input symbol from the DPDA input buffer is processed

in five phases. In the input match and stack match phases,

we identify the active DPDA state which has the same label

as that of the input symbol and the top of stack (TOS)

symbol respectively. In the stack action lookup phase, the stack

action defined for that state is determined (i.e., push symbol

or number of symbols to pop from the stack). The stack is

updated in the following phase (stack update). Finally, in the

state-transition phase, a hierarchical transition interconnect

matrix determines the next active state.

Cycles in which states with an ε-transition are active require

special handling. These states do not consume an input symbol

but perform a stack action in that cycle (i.e., push or pop). A

256-bit ε-mask register tracks the ε-states in each bank. A

logical AND of the ε-mask register and Active State Vector is

used to determine if an ε-state is active in the next processing

cycle. If an ε-state is active, a 1-bit ε-stall signal is sent to the

C-BOX to stall the input for the next processing cycle.

While a single stack action per cycle is sufficient to support

DPDA functionality, reducing stalls to the input stream can

significantly improve performance. The multipop optimization,

discussed in Section III-B, reduces stalls due to ε-transitions

and is supported in hardware by manipulating the stack pointer

and encoding the number of popped symbols in the stack

action lookup phase. We now proceed to discuss the different

stages involved in DPDA processing.

(1) Input-Match (IM): We adapt the state-match design of

memory-centric automata processing models [24], [25] for the

input-match phase. Each state is mapped to a column of an

SRAM array as shown in Figure 6 (c). A state is given a

256-bit input symbol label which is the one-hot encoding of

the ASCII symbol that it matches against. The homogeneous

representation of DPDA states ensures that each state matches

a single input symbol and each state can be represented using

a single SRAM column. The input symbol is broadcast as the

row address to the SRAM arrays using 8-bits of global wires.

By reading out the contents of the row into the Input Match
Vector, the set of states with the same label as the input symbol

can be determined in parallel.

(2) Stack-Match (SM): In contrast to NFAs, where all active

states that match the input symbol are candidates for state-

transition, DPDA states have valid transitions defined only

for those states that match both the input symbol and the

symbol on the top of the stack (8-bit TOS in Figure 6). We

re-purpose an SRAM array in each bank to determine the set

of DPDA states that match the top of stack (TOS) symbol.

Similar to Input-Match, we provision 8 bits of global wires

to broadcast the TOS symbol as the row address to SRAM

arrays. By reading out the contents of the row into the TOS
Match Vector and performing a logical AND with the Input
Match Vector and the Active State Vector, the candidate states

for state-transition are determined. We refer to these candidate

states simply as active states.

We leverage sense-amplifier cycling techniques [25] to

accelerate the IM and SM stages.

(3) Stack Action Lookup (AL): Each DPDA state is also

associated with a corresponding stack action. The supported

stack actions are push, pop and multipop. The stack action

is encoded with 16 bits. Each push action uses 8 bits to

indicate the symbol to be pushed onto the stack. The remaining

8 bits are used by the pop action to indicate the number of

symbols to be popped from the stack (> 1 for multipop).

The stack action corresponding to each state is packed along

with the IM SRAM array in each bank. However, in the AL

stage, we lookup this SRAM array using the 256-bit result

vector obtained after logical AND in the previous step (see

Figure 6). This removes the decoding overhead from the array

access time. We reserve 16 bits of global wires to communicate

926

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

CBOX

Way 20

16kB
Subarray
(x 2)

32kB
data
bank

Tag,
State,
LRU

Way 2 Way 1

AP AP

AP APAP AP

AP APAP AP

AP AP AP AP

(a)

Ro
w

 D
ec

od
er

S0 S1 S2 S239
0

255

8-bit
input

IM Vector

Ro
w

 D
ec

od
er

0

255

Local
TOS

SM Vector

256b 256b
Active State Vector 256b

Input
Match (IM)

Stack
Match (SM)

From G-switch
32b

Stack Action
Lookup (AL)

8b8b

Push
symbol

Pop #

240b

255240 S0 S1 S2 S239 255240

Stack
Update (SU)

TOS + 1

Stack pointer

8b
8b

EN

TOS

Global
TOS

240b
4:1 column mux 4:1 column mux

288 x 256
6-T SRAM
L-switch

256b To G-switch32b

} }

256b

ε-mask
ε-stall

To C-BOX

G-switch (256 x 256) G-stack

(b) (c)

AP AP

Fig. 6: The figure shows (a) 8-core Xeon processor, (b) one 2.5MB Last-Level Cache (LLC) slice and (c) Internal organization

of one 32kB bank with two 8kB SRAM arrays repurposed for DPDA processing.

the stack action results from each bank to the stack control

logic in the C-BOX.

(4) State Transition (ST): The state-transition phase

determines the set of states to be activated in the next cycle.

We observe that the state transition function can be compactly

encoded using a hierarchy of local and global memory-based

crossbar switches. The state transition interconnect is designed

to be flexible and scales to several thousand states. The L-

switches provide dense connectivity between states mapped to

the same bank while the G-switch provides sparse connectivity

between states mapped to multiple banks. A graph partitioning

based algorithm [26] is used to satisfy the local and global

connectivity constraints while maximizing space utilization.

The crossbar switches consisting of N input and output

ports and N×N cross-points are implemented using regular

6-T SRAM arrays (e.g., L-switch in Figure 6 (c)). The 6-

T bitcell holds the state of each cross-point. A flip-flop or

register can also be used for this purpose but these are typically

implemented using 24 transistors making them area inefficient.

A ‘1’ is stored in bitcell (i, j) if there is a valid transition

defined from state i to state j. All the cross-points are

programmed once during initialization and used for processing

several MBs to GBs of input symbols. The set of active states

from the previous phase serve as inputs to the crossbar switch.

For DPDAs, only a single state can be active every cycle and

we can use 6-T SRAM arrays for state transition, since only

a single row is activated.

(5) Stack Update (SU): To allow for parallel processing

of small DPDAs, (e.g., in subtree mining), we provide a local

stack in each bank. We repurpose 8 columns of the SM array

to accommodate the local stack. Larger DPDAs (e.g., in XML

parsing) make use of a global stack to keep track of parsing

state. The global stack is implemented in the C-BOX using a

256×8 register file and is shared by all the DPDAs mapped to

two adjacent ways. Providing a stack depth of 256 is sufficient

for our parsing applications (see Section VI). Note that only

one sort of stack (local or global) is enabled at configuration

time based on the DPDA size. The stack pointer is stored in

an 8-bit register and is used to address the stack. We also store

Fig. 7: DPDA processing on ASPEN. (a) Dependency graph

between stages. (b) Serial processing of input symbols.

the symbols at stack positions TOS and TOS+1 in separate 8-

bit registers. This optimization saves a write and read access

to the larger stack register file and ensures early availability

of the top-of-stack symbol for the next processing cycle. The

push operation writes the stack symbol to TOS+1. A lazy

mechanism is used to update the stack with the contents of

TOS. Similarly, the pop operation copies TOS to TOS+1,

while lazily reading the stack register file to update TOS.

C. Critical Path

ASPEN’s performance depends on two critical factors: (1)

the time taken to process each symbol in the input stream

(i.e., clock period) and (2) the time spent stalling due to ε-

transitions. The multipop optimization reduces stalls due to

ε-transitions. We now consider the clock period.

In a naı̈ve approach, each input symbol would be processed

sequentially in five phases, leading to a significant increase in

the clock period. However, not all phases are dependent on

each other and need to be performed sequentially. Figure 7

(a) shows the dependency graph for the DPDA processing

stages. The intra-symbol dependencies are shown in black,

while the inter-symbol dependencies are marked in red. Using

the dependency graph, each of the five stages can be scheduled

as shown in Figure 7 (b), where the propagation through

the interconnect (wire and switches) for state-transition is

overlapped with stack action lookup and stack update. Since

the top of stack cannot be determined until the stack has been

updated based on the previous input symbol, DPDA processing

is serial. We contrast this to NFA processing, which has two

927

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

independent stages (input-match and state-transition) which

can be overlapped to design a two-stage pipeline [25]. We

find that the critical path delay (clock period) of ASPEN is the

time spent for input/stack-match and the time taken for stack

action lookup and update. The time spent in state-transition

is fully overlapped with stack related operations. Section V-B

discusses the pipeline stage delays and operating frequency.

D. Support for Lexical Analysis

Two critical steps in parsing are lexical analysis, which

partitions the input character stream to generate a token stream,

and parsing, where different grammar rules are applied to ver-

ify the well-formedness of the input tokens (see Section II-C).

ASPEN can accelerate both these phases. We leverage the

NFA-computing capabilities of the Cache Automaton architec-

ture [25] for lexical analysis. To identify the longest matching

token, we run each NFA until there are no active states. When

the Active State Vector is zero, a state exhaustion signal is sent

to the lexer control logic in the C-BOX. The symbol cycle and

reporting state ID of the most recent report are tracked in a

64-bit report register in the C-BOX. A 256-bit reporting mask

register is used to mask out certain reports based on lexer state.

On receiving the state exhaustion signal from all banks, the

lexer control logic resets the reporting mask, reloads the NFA

input buffer for the next token and generates a token stream to

be written into the DPDA input buffer (using a lookup table

to convert report codes to tokens).

E. System Integration

ASPEN shares the last level cache with other CPU pro-

cesses. By restricting DPDA computation to only 8 ways of

an LLC slice, we allow for regular operation in other ways.

Furthermore, the cache ways dedicated to ASPEN may be

used as regular cache ways for non-parsing workloads. Cache

access latency is unaffected since DPDA-related routing logic

uses additional wires in the global metal layers.

DPDAs are (1) placed and routed for ASPENs hardware

resources, and (2) stored as a bitmap containing states and

stack actions. At runtime, the driver loads these binaries into

cache arrays and memory mapped switches using standard

load instructions and Intel Cache Allocation Technology [27].

The input/output buffers for ASPEN are also memory-mapped

to facilitate input streaming and output reporting, and ISA

extensions are used to start/stop DPDA functions. We disable

LLC slice hashing at configuration time. The configuration

overheads are small, especially when processing MBs or

GBs of input, but are included in our reported results. To

support automata-based applications that require counting, we

provision four 16-bit counters per way of the LLC.

Post-processing of output reports takes place on the CPU.

For XML parsing pipelines, a DOM tree representation (see

Section II-C) can be constructed by performing a linear pass

over the DPDA reports. Richer analyses (such as verifying

opening and closing tags match for XML parsing supporting

arbitrary tags) may be implemented as part of tree construc-

TABLE I: Subtree Mining Datasets

Dataset #Trees Ave Node #Items Max Depth #Subtrees

T1M 1M 5.5 500 13 9825
T2M 2M 2.95 100 13 3711
TREEBANK 52581 68.03 1387266 38 5280

Ave Node = Average number of nodes per tree
#Items = Frequent label set size
Max Depth = Maximum tree depth in the dataset

tion. Although the CPU-ASPEN pipeline can support this, we

leave evaluation of DOM tree construction for future work.

V. EXPERIMENTAL METHODOLOGY

A. Experimental Setup

We describe our XML parsing workload, followed by fre-

quent subtree mining. All CPU-based evaluations use a 2.6

GHz dual-socket Intel Xeon E5-2697-v3 with 28 cores in total,

GPU-based evaluations use NVIDIAs’s TITAN Xp. We used

PAPI [28] and Intel’s RAPL tool [29] to obtain performance

and power measurements and NVIDIA’s nvprof utility [30]

to profile the GPU. We utilize the METIS graph partitioning

framework [26] to map DPDA states to cache arrays.

XML Parsing: We evaluate ASPEN against the widely-

used open-source XML tools Expat (v.2.0.1) [9], a non-

validating parser, and Xerces-C (v.3.1.1) [10], a validating

parser and part of the Apache project. The validation applica-

tion used is SAXCount, which verifies the syntactic correctness

of the input XML document and returns a count of the number

of elements, attributes and content bytes. We restrict our analy-

sis to the SAX interface and WFXML scanner of Xerces-C and

filter out all non-ASCII characters in the input document. We

do not include DOM tree generation in our evaluation. This

is consistent with prior work and evaluations (e.g., Parabix,

Xerces SAX, and Expat). We assume that input data is already

loaded into main memory. Our XML benchmark dataset is

derived from Parabix [31], Ximpleware [32] and the UW

XML repository [33]. We only evaluate XML files larger

than 512 kB in size, as we were unable to obtain reliable

energy estimations when baseline benchmark execution time

was under 1 ms. To evaluate the lexing-parsing pipeline,

we extend the open-source, cycle-accurate virtual automata

simulator, VASim [34], to support DPDA computation and

derive per-cycle statistics. The tight integration of the lexer

and parser in the LLC enables ASPEN to largely overlap the

parsing time. Each lexing report can be processed and used to

generate the token stream for the DPDA in 2 cycles.

Frequent Subtree Mining: We compare ASPEN against

TreeMatcher [35], a single-threaded CPU implementation,

and GPUTreeMiner [13], a GPU implementation. Both em-

ploy a breadth-first iterative search to find frequent subtrees.

We evaluate using three different datasets, one real-world

(TREEBANK
4
), and two synthetically generated by the tree

generation program provided by Zaki
5

(T1M and T2M). Table

I shows the details of the datasets. TREEBANK is widely used

4
http:// www.cs.washington.edu/research/xmldatasets/

5
http://www.cs.rpi.edu/˜zaki/software/

928

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Stage Delays and Operating Frequencies

Design IM/SM ST AL SU Max Freq. Freq Oper.

ASPEN 438 ps 573 ps 349 ps 349 ps 880 MHz 850 MHz
CA 250 ps 250 ps - - 4 GHz 3.4 GHz

in computational linguistics and consists of XML documents.

It provides a syntactic structure for English text and uses part-

of-speech tags to represent the hierarchical structure of the

sentences. T1M and T2M are generated based on a mother

tree with a maximal depth and fan-out of 10. The total

number of nodes in T1M and T2M are 1,000,000 and 100,000,

respectively. The datasets are then generated by creating

subtrees of the mother tree. First, the database is converted

to a preorder traversal labelled sequence representation. Then,

for each subtree node, depending on its label and position, a

set of predefined rules determines the corresponding DPDA.

Detailed information on these rules can be found in Iváncsy

and Vajk [36]. The total number of subtrees summed over all

the iterations of the frequent subtree mining problem is given

in the #Subtrees column.

B. ASPEN parameters

Each 256 × 256 6-T SRAM array in the Xeon LLC can

operate at 4 GHz [22], [23]. In the absence of publicly-

available data on array area and energy, we use the standard

foundry memory compiler at 0.9 V in the 28nm technology

node to estimate the power and area of a 256×256 6-T SRAM

array. The energy to read out all 256 bits was calculated

as 22 pJ. Since ASPEN is based on a Xeon-E5 processor

modeled at 22nm, we scale down the energy per access to

13.6 pJ. The area of each array and 6-T crossbar switch were

estimated to be 0.015 mm
2

and 0.017 mm
2

respectively. Each

LLC slice contains 32 L-switches and 4 G-switches to support

DPDA computation in up to 8 ways. These switches can

leverage standard 6-T SRAM push-rules to achieve a compact

layout and have low area overhead (∼6.4% of LLC slice area).

Being 6-T SRAM based, these switches can also be used to

store regular data when not performing DPDA computation.

Similar to the Cache Automaton [25], we use global wires to

broadcast input/stack symbols and propagate state transition

signals. These global wires with repeaters have a 66ps/mm

delay and an energy consumption of 0.07pJ/mm/bit.

Table II shows the stage delays for DPDA processing

on ASPEN. The IM/TM phases leverage sense-amplifier cy-

cling [25] and take 438 ps. The ST stage requires 573 ps,

composed of 198 ps wire delay and 375 ps due to local

and global switch traversal. AL and SU each take 349 ps,

composed of 99 ps wire delay and 250 ps for array access.

VI. EVALUATION

In this section, we evaluate ASPEN on real-world ap-

plications with indicative workloads. First we evaluate the

generality of ASPEN and our proposed optimizations by com-

piling several parsers for the architecture. Second, we evaluate

runtime and energy for our two motivating applications.

TABLE III: Description of Grammars

Token Grammar Parsing Aut.
Language Description Types Productions States

Cool Programming language 42 61 147
DOT Graph visualization 22 53 81
JSON Data interchange 13 19 29
XML Data interchange 13 31 64

TABLE IV: Compilation Results. Our optimizations reduce

the number of epsilon states by an average of 65%.

hDPDA Epsilon Average Compilation
Language Optimizations States States Time (sec)

Cool None 3505 2733 0.88
Mutlipop + Eps 1666 894 2.75

DOT None 1690 1494 0.34
Mutlipop + Eps 1062 866 0.98

JSON None 764 619 0.16
Mutlipop + Eps 461 316 0.5

XML None 2068 1653 0.36
Mutlipop + Eps 865 450 0.88

A. Parsing Generality

We first demonstrate compilation of four different lan-

guages: Cool, an object oriented programming language
6
;

DOT, the language used by the GraphViz graph visualization

tool [37]; JSON; and XML. We selected these benchmarks

because grammar specifications (for either PLY or Bison)

were readily available. Importantly, no modification to exist-

ing legacy grammars was necessary to support compilation

to ASPEN. The architecture is general-purpose enough to

support these diverse applications, and our prototype compiler

supports a large class of existing parsers. Details for each of

these languages, including number of token types, number of

grammar rules, and the size of the parsing automaton, are

provided in Table III. Higher numbers of parsing automata

states (see Section III) indicate more complex computation

for determining which grammar production rule to apply. This

complexity is related both to the number of token types as well

as the total number of productions in the grammar.

In Table IV, we present compilation statistics using our

prototype compiler. We report the average time across ten

runs of our compiler and optimizations. Compilation of all

grammars, including optimization, is well below 5 seconds,

meaning that compilation of grammars is not a significant

bottleneck with ASPEN. With both our multipop and epsilon

reduction optimizations enabled, we observe a 47%, on aver-

age, decrease in the number of states. The number of epsilon

states is reduced by 65% on average. As noted in Section III,

reducing epsilon states reduces input stalls. Note that the

numbers reported here are prior to placement and routing of

the design for ASPEN. The final hDPDA may contain more

states to reduce fan-in or fan-out complexity; however, the

length of epsilon chains will neither increase nor decrease.

Next, we evaluate the performance of XML parsing using

our compiled XML grammar. While we expect performance

6
https://en.wikipedia.org/wiki/Cool (programming language)

929

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

results to generalize, for space considerations, we do not

evaluate the other parsers in detail.

B. XML Parsing

Using the graph partitioning framework METIS, we find

that the XML parser hDPDA (with optimizations) maps to 8

cache arrays and results in an LLC cache occupancy of 128KB.

Figure 8 compares ASPEN’s performance and energy

against Expat and Xerces on the SAXCount application (lower

is better). We evaluate two DPDA configurations: (1) ASPEN-

MP has both multipop and epsilon merging optimizations

enabled and (2) ASPEN, which only enables epsilon merging.

We group our XML datasets based on markup density which

is an indirect measure of XML document complexity. Perfor-

mance of Expat and Xerces drops as the markup density of the

input XML document increases, because complex documents

tend to produce a large number of tokens for verification.

ASPEN also sees a slight increase in runtime with increase in

markup density, but the dependence is less pronounced. There

is a noticeable trend in performance and energy benefits of

ASPEN-MP over ASPEN as markup density increases. As the

density increases, tokens are generated more frequently, and ε-

transition stalls are less likely to be masked by the tokenization

stage of the pipeline. ASPEN-MP reduces the number of

stalling cycles during parsing, thus improving performance

with high markup density. ASPEN-MP achieves 30% improve-

ment in both performance and energy over ASPEN.

Overall, averaged across the datasets evaluated, ASPEN-MP

takes 704.5 ns/kB and consumes 20.9 μJ/kB energy. When

compared with Expat, a 14.1× speedup and 13.7× energy

saving is achieved. ASPEN-MP also achieves 18.5× speedup

and consumes 16.9× lower energy than Xerces for SAXCount.

Even after considering the idle power of the CPU core, XML

parsing on ASPEN takes 20.15 W, which is well within the

TDP of the Xeon-E5 processor core (160 W). The low power

consumed can be attributed to: (1) removal of data movement

and instruction processing overheads present in a conventional

core, and (2) only a single bank of the cache being active in

any processing cycle, due to the deterministic nature of the

automaton, resulting in energy savings.

C. Subtree Inclusion

To evaluate the benefits of DPDA hardware acceleration

for the subtree inclusion kernel, we consider the frequent

subtree mining (FTM) problem, where the major computation

is subtree inclusion checking. FTM is composed of two

steps. In the first step, the subtree candidates of size k + 1
((k+1)-candidates) are generated from the frequent candidates

of size k (k-frequent-candidates), where k is the number of

nodes in a subtree. Candidate-generation details and a proof of

correctness are provided by Zaki [35]. In the second stage, for

each candidate subtree, we count the number of occurrences

(inclusions) of that subtree in the dataset. If the count exceeds

a specified support threshold, we report the candidate as

frequent and use it as a seed in the next generation step.

TABLE V: Architectural Parameters for Subtree Inclusion

Dataset Automata Alphabets Stack Alphabets Stack-Size

T1M 16 17 29
T2M 38 39 49
TREEBANK 100 101 110

Table V lists the architectural parameters for the FTM ap-

plication on different datasets. This application is compatible

with the hardware restrictions, including maximum stack depth

and supported alphabet size. In contrast to XML parsing, there

are no ε-transitions in the subtree inclusion DPDAs, which

means that runtime is linear in the length of the input data.

The homogeneous DPDAs designed for FTM have an average

node fan-out of 2.2 (maximum of 4).

Figure 9 shows the kernel and total speedup of ASPEN over

CPU and GPU baselines. For ASPEN, we include timing for

pre-processing, intermediate processing (between iterations)

on the CPU, loading time (transferring data from DRAM

to LLC), and reporting time (moving report vectors back to

DRAM), in addition to the kernel time.

ASPEN shows 67.2× and 6× end-to-end performance im-

provement over CPU and GPU (Figure 9). TREEBANK

consists of larger trees with higher average node out-degree,

which makes its processing difficult on the CPU and GPU.

In particular, TREEBANK has an uneven distribution of

trees with different sizes in the database, which causes the

synchronization overhead between the threads in a warp to

increase. In addition, larger trees also increase the thread

divergence in a warp, because the possibility of checking a

subtree node against different labels in the input tree of the

same warp increases. Therefore, GPUs are not an attractive

solution for larger trees. On the other hand, GPUs show 2×
speedup over ASPEN on T1M. This is because the T1M

dataset consists of small and evenly sized trees. Unlike CPUs

or GPUs, the complexity of subtree inclusion checking in

ASPEN is independent of the input dataset.

Figure 10 shows the total energy for ASPEN, CPU, and

GPU implementations. The trends in energy are similar to

that of performance. The unevenly-sized large trees in TREE-

BANK increase the runtime of CPU and GPU, leading to an

increase in total energy. On average, ASPEN achieves 3070×
and 6279× improvements in total energy when compared to

CPU- and GPU-based implementations, respectively.

VII. RELATED WORK

To the best of our knowledge, this is the first work that

demonstrates and evaluates pushdown automata processing

implemented in last-level cache. We position our work in

context with respect to related efforts and approaches.

Finite Automata Accelerators: A recent body of work

studies the acceleration of finite automata (NFA and DFA)

processing across multiple architectures. Becchi et al. have

developed a set of tools and algorithms for efficient CPU-

based automata processing [38]. Several regular-expression-

matching and DFA-processing ASIC designs have also been

proposed [39]–[42]. Some (e.g., [43]) incorporate regular ex-

pression matching into an extract-transform-load pipeline, sup-

930

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: (Left): ASPEN performance (in ns/kB) and (Right): ASPEN energy on SAXCount compared to Expat and Xerces.

→

Fig. 9: Speedup of ASPEN over CPU and GPU.

→

Fig. 10: Total Energy of ASPEN compared to CPU and GPU.

porting a richer set of applications. Most closely-related to AS-

PEN are memory-centric architectures for automata process-

ing, such as Micron’s D480 Automata Processor (AP) [24],

Parallel Automata Processor (PAP) [44], Subramaniyan et al.’s

Cache Automaton (CA) [25], and Xie et al.’s REAPR [45].

While the performance of these finite automata processing

accelerators is quite promising, the underlying computational

model is not rich enough to support the parsing or mining

applications discussed in this paper. Finite automata processors

can perform regular expression processing, but lack the stack

memory needed for nested data structures.

Software Parser Generators: CPU algorithms for parsing

input data according to a grammar have remained largely

unchanged over the years. These algorithms generate a parsing

automaton (as described in Section III), which is encoded

as a lookup table. Early optimization efforts focused on

compression algorithms to allow the lookup tables to fit in

the limited memory of period systems [46]–[48]. There have

also been efforts to support different classes of grammars, such

as Generalized LR, and LL(k) [49], [50]. These parser gen-

erators, however, typically require grammars to be rewritten

and redesigned, precluding legacy support.

XML-Parsing Acceleration: Our evaluation demonstrates

that ASPEN is competitive with custom XML accelerators [5],

[51], [52] which achieve at best 4096 ns/KB. Moreover,

ASPEN supports more applications than just XML parsing,

which we demonstrate in this paper by compiling parsers

for several languages and also evaluating subtree inclusion.

Generality is preferable in a datacenter setting, where compute

resources are rented to clients and more than one parsing

application is likely to be performed. ASPEN is derived by

re-purposing cache arrays and can be used as additional cache

capacity for applications that do not use pushdown automata.

Parabix [31] is a programming framework that also supports

acceleration of XML parsing and achieves 1063 ns/KB (with

2.6 GHz CPU), while ASPEN achieves 709.5 ns/KB. Parabix

also often requires a redesign of grammar specifications for

use with parsing. Orthogonal to the proposed work, Ogden et

al. [53] propose an enumerative parallelization approach for

XML stream processing that can also benefit ASPEN.
Subtree Inclusion: Recently, Sadredini et al. [13] proposed

an approximate subtree inclusion checking kernel on the AP.

The authors convert the tree structure to a set of simpler

sequence representations and use the AP to prune the huge

candidate search space. This approach may introduce a small

percentage of false positives. ASPEN performs exact subtree

mining and therefore produces no false positives.

VIII. CONCLUSION

We present ASPEN, a general-purpose, scalable, and re-

configurable memory-centric architecture that supports rich

push-down automata processing for tree-like data. We design

a custom datapath that performs state matching, stack update,

and transition routing using memory arrays. We also develop

a compiler for transforming large classes of existing grammars

to pushdown automata executable on ASPEN.
Our evaluation against state-of-the-art CPU and GPU tools

shows that our approach is general (supporting multiple lan-

guages and kernel tasks), highly performant (up to 18.5× faster

for parsing and 37.2× faster for subtree inclusion), and energy

efficient (up to 16.9× lower for parsing and 3070× lower for

subtree inclusion). By providing hardware support for DPDA,

ASPEN brings the efficiency of recent automata acceleration

approaches to a new class of applications.

ACKNOWLEDGMENTS

This work is funded, in part, by the NSF (1763674, 1619098, CAREER-
1652294 and CCF-1629450); Air Force (FA8750-17-2-0079); and CRISP,
one of six centers in JUMP, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA.

931

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] N. Chomsky and G. A. Miller, “Introduction to the formal analysis of
natural languages,” in Handbook of Mathematical Psychology, 1963,
vol. 2, ch. 11, pp. 269–322.

[2] Computer Sciences Corporation, “Big data universe beginning to
explode,” http://www.csc.com/insights/flxwd/78931-big data universe
beginning to explode, 2012.

[3] DNV GL, “Are you able to leverage big data to boost your produc-
tivity and value creation?” https://www.dnvgl.com/assurance/viewpoint/
viewpoint-surveys/big-data.html, 2016.

[4] K. Asanović, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick, “The landscape of parallel computing research: A view
from berkeley,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006.

[5] Z. Dai, N. Ni, and J. Zhu, “A 1 cycle-per-byte xml parsing accelerator,”
in Proceedings of the 18th annual ACM/SIGDA international symposium
on Field programmable gate arrays. ACM, 2010.

[6] V. M. Glushkov, “The abstract theory of automata,” Russian Mathemat-
ical Surveys, 1961.

[7] M. Sipser, Introduction to the Theory of Computation, 3rd ed. Cengage
Learning, 2013.

[8] P. Caron and D. Ziadi, “Characterization of Glushkov automata,” Theo-
retical Computer Science, vol. 233, 2000.

[9] J. Clark, “The Expat XML parser,” http://expat.sourceforge.net.
[10] A. S. Foundation, “Xerces C++ XML parser,” http://xerces.apache.org/

xerces-c/.
[11] P. Kilpeläinen et al., “Tree matching problems with applications to

structured text databases,” 1992.
[12] Y. Chi, R. R. Muntz, S. Nijssen, and J. N. Kok, “Frequent subtree

mining—an overview,” Fundamenta Informaticae, vol. 66, 2005.
[13] E. Sadredini, R. Rahimi, K. Wang, and K. Skadron, “Frequent subtree

mining on the automata processor: challenges and opportunities,” in
International Conference on Supercomputing, 2017.

[14] S. A. Greibach, “A new normal-form theorem for context-free phrase
structure grammars,” J. ACM, vol. 12, Jan. 1965.

[15] M. M. Geller, M. A. Harrison, and I. M. Havel, “Normal forms of
deterministic grammars,” Discrete Mathematics, vol. 16, 1976.

[16] M. A. Harrison and I. M. Havel, “Real-time strict deterministic lan-
guages,” SIAM Journal on Computing, vol. 1, 1972.

[17] J. Levine and L. John, Flex & Bison, 1st ed. O’Reilly Media, Inc.,
2009.

[18] D. Beazley, “PLY (python lex-yacc),” http://www.dabeaz.com/ply/index.
html.

[19] INRIA, “Lexer and parser generators (ocamllex, ocamlyacc),” http:
//caml.inria.fr/pub/docs/manual-ocaml-4.00/manual026.html.

[20] K. Angstadt, J. Wadden, V. Dang, T. Xie, D. Kramp, W. Weimer,
M. Stan, and K. Skadron, “MNCaRT: An open-source, multi-architecture
automata-processing research and execution ecosystem,” IEEE Com-
puter Architecture Letters, vol. 17, Jan 2018.

[21] W. J. Bowhill, B. A. Stackhouse, N. Nassif, Z. Yang, A. Raghavan,
O. Mendoza, C. Morganti, C. Houghton, D. Krueger, O. Franza, J. Desai,
J. Crop, B. Brock, D. Bradley, C. Bostak, S. Bhimji, and M. Becker,
“The Xeon® processor E5-2600 v3: a 22 nm 18-core product family,”
J. Solid-State Circuits, vol. 51, 2016.

[22] W. Chen, S.-L. Chen, S. Chiu, R. Ganesan, V. Lukka, W. W. Mar, and
S. Rusu, “A 22nm 2.5 mb slice on-die l3 cache for the next generation
Xeon® processor,” in Symposium on VLSI Technology, 2013.

[23] M. Huang, M. Mehalel, R. Arvapalli, and S. He, “An energy efficient
32-nm 20-mb shared on-die L3 cache for Intel® Xeon® processor E5
family,” J. Solid-State Circuits, vol. 48, 2013.

[24] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes,
“An efficient and scalable semiconductor architecture for parallel au-
tomata processing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, 2014.

[25] A. Subramaniyan, J. Wang, E. R. M. Balasubramanian, D. Blaauw,
D. Sylvester, and R. Das, “Cache automaton,” in International Sym-
posium on Microarchitecture, 2017.

[26] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM J. Scientific Computing, vol. 20,
1998.

[27] Intel, “Cache Allocation Technology,” 2017. [Online]. Avail-
able: https://software.intel.com/en-us/articles/introduction-to-cache-
allocation-technology

[28] “Performance Application Programming Interface.”
http://icl.cs.utk.edu/papi/.

[29] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “Rapl:
Memory power estimation and capping,” in International Symposium on
Low-Power Electronics and Design, 2010.

[30] “nvprof profiling tool,” http://docs.nvidia.com/cuda/profiler-users-guide/
index.html#nvprof-overview.

[31] D. Lin, N. Medforth, K. S. Herdy, A. Shriraman, and R. D. Cameron,
“Parabix: Boosting the efficiency of text processing on commodity
processors,” in International Symposium on High Performance Computer
Architecture, 2012.

[32] “Ximpleware XML dataset,” http://www.ximpleware.com/xmls.zip.
[33] “XML Data Repository,” http://aiweb.cs.washington.edu/research/

projects/xmltk/xmldata/www/repository.html.
[34] J. Wadden and K. Skadron, “VASim: An open virtual automata sim-

ulator for automata processing application and architecture research,”
University of Virginia, Tech. Rep. CS2016-03, 2016.

[35] M. J. Zaki, “Efficiently mining frequent trees in a forest,” in knowledge
Discovery and Data Mining, 2002.

[36] R. Iváncsy and I. Vajk, “Automata theory approach for solving frequent
pattern discovery problems,” Journal of Computer, Electrical, Automa-
tion, Control and Information Engineering, vol. 1, 2007.

[37] J. Ellson, E. Gansner, L. Koutsofios, S. North, G. Woodhull, S. De-
scription, and L. Technologies, “Graphviz— open source graph drawing
tools,” in Lecture Notes in Computer Science. Springer-Verlag, 2001.

[38] M. Becchi, “Regular expression processor,” http://regex.wustl.edu, 2011,
accessed 2017-04-06.

[39] J. van Lunteren, C. Hagleitner, T. Heil, G. Biran, U. Shvadron, and
K. Atasu, “Designing a programmable wire-speed regular-expression
matching accelerator,” in International Symposium on Microarchitecture,
2012.

[40] P. Tandon, F. M. Sleiman, M. J. Cafarella, and T. F. Wenisch, “HAWK:
hardware support for unstructured log processing,” in International
Conference on Data Engineering, 2016.

[41] V. Gogte, A. Kolli, M. J. Cafarella, L. D’Antoni, and T. F. Wenisch,
“HARE: hardware accelerator for regular expressions,” in International
Symposium on Microarchitecture, 2016.

[42] Y. Fang, T. T. Hoang, M. Becchi, and A. A. Chien, “Fast support
for unstructured data processing: the unified automata processor,” in
International Symposium on Microarchitecture, 2015.

[43] Y. Fang, C. Zou, A. J. Elmore, and A. A. Chien, “UDP: a programmable
accelerator for extract-transform-load workloads and more,” in Interna-
tional Symposium on Microarchitecture. ACM, 2017.

[44] A. Subramaniyan and R. Das, “Parallel automata processor,” in Inter-
national Symposium on Computer Architecture, New York, NY, USA,
2017.

[45] T. Xie, V. Dang, J. Wadden, K. Skadron, and M. R. Stan, “REAPR:
Reconfigurable engine for automata processing,” in International Con-
ference on Field-Programmable Logic and Applications, 2017.

[46] V. B. Schneider and M. D. Mickunas, “Optimal compression of parsing
tables in a parsergenerating system,” Purdue University, Tech. Rep. 75-
150, 1975.

[47] P. Dencker, K. Dürre, and J. Heuft, “Optimization of parser tables for
portable compilers,” ACM Trans. Program. Lang. Syst., vol. 6, Oct. 1984.

[48] E. Klein and M. Martin, “The parser generating system PGS,” Software:
Practice and Experience, vol. 19, 1989.

[49] S. McPeak and G. C. Necula, “Elkhound: A fast, practical GLR parser
generator,” in Compiler Construction, 2004.

[50] T. Parr and K. Fisher, “LL(*): The foundation of the ANTLR parser
generator,” in Programming Language Design and Implementation,
2011. [Online]. Available: http://doi.acm.org/10.1145/1993498.1993548

[51] J. Van Lunteren, T. Engbersen, J. Bostian, B. Carey, and C. Larsson,
“Xml accelerator engine,” in The First International Workshop on High
Performance XML Processing, 2004.

[52] A. Krishna, T. Heil, N. Lindberg, F. Toussi, and S. VanderWiel,
“Hardware acceleration in the IBM PowerEN processor: Architecture
and performance,” in Proceedings of the 21st international conference
on Parallel architectures and compilation techniques. ACM, 2012.

[53] P. Ogden, D. Thomas, and P. Pietzuch, “Scalable XML query processing
using parallel pushdown transducers,” Proceedings of the VLDB Endow-
ment, vol. 6, 2013.

932

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

