
eAP: A Scalable and Efficient in-Memory Accelerator
for Automata Processing

Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea Stan, and Kevin Skadron
University of Virginia

<elaheh,rahimi,vv8dn,mircea,skadron>@virginia.edu

ABSTRACT
Accelerating finite automata processing benefits regular-ex-
pression workloads and a wide range of other applications
that do not map obviously to regular expressions, including
pattern mining, bioinformatics, and machine learning. Exist-
ing in-memory automata processing accelerators suffer from
inefficient routing architectures. They are either incapable of
efficiently place-and-route a highly connected automaton or
require an excessive amount of hardware resources.

In this paper, first, we propose a compact, low-overhead,
and yet flexible interconnect architecture that efficiently im-
plements routing for next-state activation, and can be applied
to the existing in-memory automata processing architectures.
Then, we present eAP (embedded Automata Processor), a
high-throughput and scalable in-memory automata process-
ing accelerator. Performance benefits of eAP are achieved
by (1) exploiting subarray-level parallelism in memory, (2)
a compact memory-based interconnect architecture, (3) an
optimal pipeline for state matching and state transition, and
(4) efficiently mapping to appropriate memory technologies.

Overall, eAP achieves 5.1× and 207× better throughput
per unit area compared to Cache Automaton and Micron’s
Automata Processor, respectively, as well as lower power
consumption and better scaling.

CCS CONCEPTS
• Computer systems organization → Multiple instructions,
single data; • Hardware → Emerging architectures; • The-
ory of computation → Formal languages and automata the-
ory.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MICRO-52, October 12–16, 2019, Columbus, OH, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358324

KEYWORDS
processing-in-memory, embedded DRAM, automata process-
ing, reconfigurable computing, interconnect

ACM Reference Format:
Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea Stan, and
Kevin Skadron. 2019. eAP: A Scalable and Efficient in-Memory Ac-
celerator for Automata Processing. In The 52nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-52), Octo-
ber 12–16, 2019, Columbus, OH, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3352460.3358324

1 INTRODUCTION
Data collection and the need for real-time analytics are rising
rapidly [13, 15]. Pattern matching is an important operation
used in many big-data applications such as network security,
data mining, and genomics. These patterns are often complex,
needing to support a variety of inexact matches. One leading
methodology for inexact pattern matching is therefore to use
regular expressions or equivalent finite automata to identify
these complex patterns. The consequent demand for acceler-
ated pattern matching has motivated many recent studies to
utilize automata processing hardware accelerators for deep
packet inspection [27], natural language processing [34, 49],
bioinformatics [7, 33], pattern mining [36, 44, 45], machine
learning [8, 40], and even particle physics [46]. Since 2014,
more than 2000 papers and patents have been published on
automata processing and its applications.

Researchers are increasingly exploiting in-memory accel-
erators as performance growth in conventional processors
is slowing down. Finite automata processing on CPUs and
GPUs exhibit irregular memory access patterns (which dis-
able prediction and data forwarding techniques [26]) and
unpredictable memory bandwidth [42, 43]. Therefore, von
Neumann architectures struggle to meet today’s big-data and
streaming line-rate pattern processing requirements.

The Micron Automata Processor (AP) [14] and Cache Au-
tomaton (CA) [37] propose in-memory hardware accelerators
for automata processing. They both allow native execution of
non-deterministic finite automata (NFAs), an efficient com-
putational model for regular expressions, by providing a re-
configurable substrate to lay out the rules in hardware. This
allows a large number of patterns to be executed in parallel,
up to the hardware capacity.

https://doi.org/10.1145/3352460.3358324
https://doi.org/10.1145/3352460.3358324


MICRO-52, October 12–16, 2019, Columbus, OH, USA Sadredini, et al.

For NFA processing in memory-centric architecture mod-
els, each input requires two processing phases: state matching,
where the input symbol is decoded and the states whose rules
match the input symbol are detected through reading a row
of memory, and state transition, where successor states are
activated by propagating signals through the interconnect.
The interconnect design of existing automata processing ac-
celerators are either incapable of efficient place-and-route of
a highly-connected automaton or over-provision hardware
resources for interconnect, at the expense of resources for
state-matching [35]. However, real-world benchmarks are
quite large in terms of the number of states, too big to fit in a
single hardware unit, and thus, usually need multiple rounds
of reconfiguration and re-processing of the data. This incurs
significant performance penalties and makes state-matching
resources a scarce resource.

The AP repurposes DRAM arrays for the state-matching
and proposes a hierarchical interconnect design. Our study on
a diverse set of 21 automata benchmarks reveals that conges-
tion in the AP routing matrix cripples efficient state utiliza-
tion, especially for the difficult-to-route automata. This means
that only 13% of the state matching resources are utilized in
Levenstein automata, and the remaining 87% cannot be used
because there are not enough routing resources left. Moreover,
although the density of DRAM memory is high, an AP chip
can only store 1.5MB of data (state matching rules), whereas
a conventional DRAM of an equal area can store 25MB of
data [19, 37]. This implies that a majority of the area is likely
spent for the interconnect and hiding DRAM latency.

Recently, Subramaniyan et al. [37] proposed an in-SRAM
automata processing accelerator, Cache Automaton (CA), by
repurposing last-level cache for the state-matching and using
8T SRAM cells for the interconnect. To address routing con-
gestion in the AP, CA proposes to use a full-crossbar (FCB)
topology for the interconnect to support full connectivity in
an automaton, meaning there can be an edge between every
two states. This implies a full-crossbar of size 256 needs 2562

switches. This means that more than 50% of the hardware
resources in CA are spent for interconnect! However, our
study of 21 automata benchmarks reveals that on average,
only 0.53% (maximum 1.15%) of the switches are utilized.
Therefore, full crossbars are extremely inefficient and costly
for automata processing applications. This expensive inter-
connect has an opportunity cost in terms of using that area
for state matching.

To address the interconnect inefficiencies in the existing in-
memory automata processing architectures, this paper presents
a reduced-crossbar (RCB) design, a low-overhead and yet
flexible interconnect architecture that efficiently implements
state-transition. RCB design is inspired by intrinsic properties
of real-world automata connectivity patterns. RCB requires

at least 7× fewer switches compared to the FCB design used
in CA. This, in turn, reduces the wire length, which results
in shorter latency and lower power consumption. In addition,
the area efficiency of RCB provides an opportunity to design
a denser state matching resources, which can accommodate
more states and results in fewer rounds of reconfiguration and
re-processing of data.

Across 21 application from ANMLZoo[42] and Regex [5]
benchmark suites, 17 of them can entirely map to RCB design
and no FCB is required. To provide a general interconnect
solution for every connectivity topology, we design a reconfig-
urable memory array for state-matching, in which blocks can
be repurposed as an FCB to provide full connectivity when
needed (at the expense of some state capacity). In addition,
to support an automaton with a larger number of states, we
design global switches that provide inter-block connectivity
between RCBs and FCBs blocks.

To efficiently allow many-to-many transitions in an au-
tomaton, the underlying memory technology for eAP should
be able to support logical OR functionality within memory
rows in a subarray. This requires memory cells (a) to provide
non-destructive read, and (b) to drive output to a "stable"
state (logical OR in this case) when multiple bitcells drive
a common bitline. 8T SRAM cells [9] and gain-cell embed-
ded DRAM (GC-eDRAM) [10, 11] are examples of feasible
memories to implement eAP. Note that conventional DRAM
and Reduced-Latency DRAM [32] cannot be used for this
purpose. They have destructive reads and the value of the
simultaneously-activated rows cannot be recovered in the
write-back phase.

CA design uses 8T SRAM cells. In this paper, we evaluate
eAP on both 8T and 2T1D (2 transistors 1 diode) memory
cells. The 2T1D cell is a GC-eDRAM designed and fabri-
cated by [48]. 2T1D uses fewer transistors than an 8T cell and
thus, incurs lower area overhead, which results in higher state
density and therefore better throughput (due to the reduced
rounds of reconfiguration and re-streaming of input). The scal-
ability of gain-cells has been studied in FinFET technology
[4, 6, 22], which show gain-cells have the potential to scale
to smaller technology nodes in FinFETs.

Interestingly, the wired-OR capability of 8T or 2T1D mem-
ory arrays can also be utilized for in-situ computation of other
important kernels in neural networks and graph processing.
For example, recent studies explore the potential of process-
ing binary neural network computations using 8T SRAM cells
and its alternatives [3, 29].

In summary, this paper makes the following contributions:
• We propose a compact and low-overhead interconnect

architecture that efficiently implements the state transi-
tion stage in automata processing.



eAP: A Scalable and Efficient in-Memory Accelerator for Automata Processing MICRO-52, October 12–16, 2019, Columbus, OH, USA

• We present eAP (embedded Automata Processor), a
high-throughput and scalable in-memory automata pro-
cessing accelerator. Performance benefits of eAP are
achieved by (1) exploiting subarray-level parallelism
in memory, (2) designing an optimal pipeline for state
matching and state transition, (3) our compact intercon-
nect architecture, and (4) choice of memory technology.

• We evaluate eAP on both 8T and 2T1D memory arrays.
Overall, eAP_2T1D achieves 1.7×, 5.1×, and 210×
better throughput per unit area over eAP_8T, CA, and
the AP, respectively, all in 28nm technology.

• We present a new place-and-route algorithm that is 1-2
orders of magnitude faster than the AP compiler, and
provide an open-source cycle-accurate automata simu-
lator to perform software optimization on the automata
and map them to the proposed architecture.

2 BACKGROUND AND RELATED WORK
The storage cost of NFAs is O(n) (n is the number of nodes in
the NFA), while DFAs (deterministic finite automata) some-
times suffer exponential blowup in state count (O(2n)) com-
pared to equivalent NFAs. This is a side effect of the rule that
a DFA can only have one active-state at a time, while an NFA
can have many concurrently active-states. Hardware accel-
erators for automata processing are based on NFAs, both to
exploit parallel state-matching and transitions, and the benefit
of the NFA’s more compact representation.

2.1 Non-Deterministic Finite Automata
An NFA is represented by a 5-tuple, (Q,Σ,∆,q0,F), where
Q is a finite set of states, Σ is a finite set of symbols, ∆ is a
transition function, q0 are initial states, and F is a set of final
states. The transition function determines the next states using
the currently active states and the input symbol just read. If
an input symbol causes the automata to enter into an accept
state, the current position of the input is reported.

We use the homogeneous automaton representation in our
model (same as ANML in [14]). In a homogeneous automa-
ton, all transitions entering a state must happen on the same
input symbol [17]. This provides a nice property that aligns
well with a hardware implementation that finds matching
states in one clock cycle and allows a label-independent in-
terconnect. Following [14], we call this element that both
represents a state and performs input-symbol matching in
homogeneous automata a State Transition Element (STE).

Figure 1 (a) shows an example on classic NFA and its
equivalent homogeneous representation. Both automata in this
example accept the language (A∣C)∗(C∣T )(G)+. The alphabets
are {A,T,C,G}. In the classic representation, the start state
is q0 and accepting state is q3. In the homogeneous one, we
label each STE from ST E0 to ST E3, so starting states are

ST E0, ST E1, and ST E2, and the accepting state is ST E3. In
all the architectures analyzed in this paper, any states can be
starting states without incurring any extra overhead.

Figure 1: (a) Different NFA representation, (b) A simpli-
fied in-memory automata processing model.

2.2 In-memory Automata Processing
The Automata Processor (AP) and Cache Automaton (CA)
are two reconfigurable in-memory solutions, both directly im-
plementing NFAs in memory. The following example shows
a simplified two-level pipeline of automata processing used
in memory-centric models such as the AP and CA.

Working example: In Figure 1 (b), memory columns are
configured based on the homogeneous example in Figure 1 (a)
for ST E0-ST E3. Generally, automata processing involves two
steps for each input symbol, state match and state transition.
In the state match phase, the input symbol is decoded and the
set of states whose rule or label matches that input symbol
are detected through reading a row of memory (match vector).
Then, the set of potentially matching states is combined with
the active state vector, which indicates the set of states that are
currently active and allowed to initiate state transitions; i.e.,
these two vectors are ANDed. In the state-transition phase,
the potential next-cycle active states are determined for the
currently active states (active state vector) by propagating
signals through the interconnect to update the active state
vector for the next input symbol operation.

In the example, there are four memory rows, and each is
mapped to one label (i.e., A, T, C, and G). Each state in the
NFA example is mapped to one memory column, with ’1’
in the rows matching the label(s) assigned to those STEs.
ST E0 matching symbols are A and C (Figure 1 (a)), and the
corresponding positions have ’1’, i.e., in the first and third
rows (Figure 1 (b)). Assume ST E0 is a current active state.
The potential next cycle active states (or enable signals) are
the states connected to ST E0, which are ST E0, ST E1, and



MICRO-52, October 12–16, 2019, Columbus, OH, USA Sadredini, et al.

ST E2 (the enable signals for ST E0, ST E1, and ST E2 are ’1’).
Specifically, if the input symbol is ’C,’ then Row2 is read
into the match vector. Bitwise AND on the match vector and
potential next states (enable signal) determines ST E0 and
ST E1 as the current active states.

Automata Processor: The AP can process each input sym-
bol in 7.5ns, which is roughly equal to one DRAM row-
cycle time. However, conventional DRAM row-cycle latency
(TRAS+TRP) in this generation is 50ns. This observation shows
that the majority of the AP chip area is spent on the routing
matrix and on hiding DRAM latency, which we surmise is
done by duplicating resources in the critical path.

Cache Automaton: This automata-processing architecture
re-purposes a portion of last-level cache (LLC) and proposes
an in-cache automata processing accelerator targeting NFAs.
The state-matching phase is based on the AP model. The
crossbar interconnect uses 8T SRAM memory arrays, and a
2-level hierarchical switch topology with local switches is
proposed to provide intra-partition connectivity and global
switches providing sparse inter-partition connectivity. CA
uses a full-crossbar topology for the interconnect to support
full connectivity in an automaton, and as we mentioned earlier,
this is excessive for real applications need.

FPGA: REAPR [47] is an FPGA-based implementation of
an automata processing engine, and takes advantage of the
one-to-one mapping between the spatial distribution of au-
tomata states and hardware resources such as LUTs and block
RAM. REAPR can achieve 2× to 4× higher clock speeds
(250-500 MHz) than the AP, but lower than the estimated
clock speed for CA and eAP. Large FPGA chips have approx-
imately 2× more STE capacity than a single AP chip, but
3-6× less capacity than CA when utilizing 10-20MB of LLC
and 10-20× less capacity than eAP when utilizing 128MB of
2T1D embedded RAM. Moreover, the power consumption
of FPGA-based engines is higher compared to the AP, CA,
and eAP. The recent FPGA-based automata processing solu-
tions fail to map complex-to-route automata to the routing
resources due to their logical interconnect complexity [24].

2.3 ASIC Implementations
Several ASIC implementations have been proposed [16, 18,
30, 38] to accelerate pattern matching and automata pro-
cessing. The Unified Automata Processor (UAP) [16] and
HARE[18] have demonstrated line-rate automata processing
and regular matching expression on network intrusion detec-
tion and log processing benchmarks. HARE uses an array
of parallel RISC processors to emulate the AHO-Corasick
DFA representation of regular expression rule-sets. UAP can
support many automata models using state transition packing
and multi-stream processing at low area and power costs.

In general, while ASICs provide high line-rates, they are
limited by the number of parallel matches, state transitions,
and automata shape. HARE implements DFA and has limita-
tions on the regex shape, and also incurs high area and power
costs when processing more than 16 patterns. UAP’s line-rate
drops for large NFAs with many parallel active states.

2.4 The Importance of Capacity
In CA, the authors use the ANMLZoo benchmarks to calcu-
late cache utilization and report 1.2MB of cache usage on av-
erage. The automata provided in ANMLZoo benchmark suite
[42] represent just a small portion of the actual application
(normalized to fill one AP chip). However, real applications
are much larger, with many independent automata comprising
the various patterns that make up the full application, which
requires orders of magnitude more states than reported in
Table 1 in [42].

We illustrate this issue using sequential pattern mining
(SPM) [45] benchmark, used in ANMLZoo. SPM is an iter-
ative algorithm where in each iteration of the algorithm, a
set of sequence candidates (automata) are checked against
the input stream. A relatively small but realistic dataset in
SPM requires about 300× more state capacity compared to
SPM benchmark in ANMLZoo in order to run the whole ap-
plication. This means that in order to execute one iteration
of the algorithm on a parallel automata accelerator such as
one AP chip (48K state capacity), we need to reconfigure the
hardware 300 times, each with a subset of the overall problem,
and each time stream the whole input string. This incurs a
large overhead from repeatedly re-streaming the input, as well
as reconfiguration time.

To reduce the specialized hardware resources per NFA and
increase the total capacity, Liu et al. [28] demonstrated that
not all the states in an NFA are enabled during execution
(cold states), and thus, do not need to be configured on the
AP. Our proposed technique, both the compact interconnect
architecture and utilizing 2T1D cells, are complementary
to their technique and improves the efficiency of whatever
hardware resources are allocated for automata processing.

3 INTERCONNECT ARCHITECTURE
In this section, we first describe a simple implementation of
interconnect using memory subarrays (FCB) and then, we
present an efficiently compact and reconfigurable interconnect
design (RCB) and its feasibility in hardware. Then, we discuss
the potential memory switch cells that can be used.

3.1 Reduced Crossbar Interconnect
The interconnect should provide functionality for every STE
to wake up all their successors in one step. This process
should be done in one cycle since the triggered successors
are needed to process the next symbol in the next cycle. This



eAP: A Scalable and Efficient in-Memory Accelerator for Automata Processing MICRO-52, October 12–16, 2019, Columbus, OH, USA

implies an interconnect that is statically programmed and
can ensure that all required paths are routable, non-blocking,
and contention-free. More conventional interconnects require
many steps to process all the activations for each symbol. For
example, buses can carry many bits simultaneously but cannot
support a large number of clients. Ring, mesh, and hypercube
are multihop, and contention is a problem.

Full Crossbar Interconnect (FCB) is a straightforward in-
terconnect topology for connecting STEs in an automaton,
where every state is connected to every other state (including
itself) at the cost of O(N2) (N is the number of states). To
model transitions from multiple STEs to one STE, the out-
put should be connected to multiple inputs. This is equal to
logical OR of active inputs (e.g., in Figure 1 (a), ST E3 will
be a potential next state if either of ST E1, ST E2, or ST E3 are
active). Therefore, there is no need for dynamic arbitration.
Cache Automaton (CA) uses the FCB interconnect topology
for both local and global switches.

NFAs for real-world applications are typically composed
of many independent patterns, which manifest as separate
connected components (CCs) with no transitions between
them. Each CC usually has a few hundred states. All the CCs
can thus be executed in parallel, independently of each other.
Thus, a crossbar switch can be utilized by packing CCs as
densely as possible using a greedy approach [37].

Figure 2: Full-crossbar utiliza-
tion

However, our study
confirms that using a
FCB is very inefficient
in routing resources
[35]. Assume the FCB
switch block’s size is
256×256. In a greedy
approach, CCs are first
sorted based on the
number of states and
then, are assigned to the interconnect resources. Assume there
are three CCs of size 100, 100, and 140. Figure 2 shows map-
ping of CCs to the FCB switch blocks. Switches in gray areas
are configured for the corresponding CC. White areas (70% of
total area), are unused switches. Within each CC, transitions
are sparse, meaning very few switches in the gray areas are
used.

We observed that in our 19 real-world and synthetic bench-
marks, on average, fewer than 0.48% (maximum 1.1% in
Levenshtein) of switch cells (2562 cells) are utilized in the
FCB interconnect solution. This shows that FCB model is ex-
tremely inefficient for automata processing applications and
forces larger area overhead, power consumption, and delay in
the state-transitions phase.

To motivate our efficient and compact interconnect, we
visualize the connectivity matrix for the automaton in each

benchmark with an image. We first label each node in an
automaton with a unique index using breadth-first search
(BFS) numeric labeling since BFS assigns adjacent indices to
the connected nodes. To draw the image, we model an edge
(transition) between two nodes (with indices i and j) in an
automaton with a black pixel at coordinate (i,j).

Brill Levenshtein Snort Entity Resolution

Figure 3: Union heatmap of switches with BFS labeling

In Figure 3, each graph shows the union overall connec-
tivity images for CCs in one benchmark. We chose union to
make sure that we have considered every possible transition,
even for rare connection patterns. Except Snort and Entity
Resolution, the rest of the benchmarks represent a nice diago-
nal connectivity property. The union and average images for
the rest of benchmarks are here1.

This diagonal connectivity pattern motivates a more com-
pact interconnect, and comes from two properties: first, the
power of numeric BFS labeling, which tries to label a child
node closely to its parent(s); second, CCs are mostly tree-
shape graphs with short cycles and the nodes have a small
out-degree. Motivated by these observations, we propose a
reduced crossbar interconnect (RCB), which has switch pat-
terns similar to what we observed in the union images. RCB
have a smaller area overhead, lower power consumption, and
smaller delay compared to FCB. Moreover, it can be applied
to CA or AP without reducing their computation power.

Feasibility support for RCB Design: To save area via an
RCB design, we compact the memory array, preserving input
and output signals similar to an FCB, but with fewer switches.
This might complicate the layout process because wiring con-
gestion may happen while compacting the array. Automated
layout generation tools sometimes are not clever enough to
provide the best compacting scheme even for regular patterns
like RCB. Therefore, we propose a simple scheme to compact
a FCB array to a smaller RCB array.

Simply flipping the diagonal-shape interconnect to a hor-
izontal or vertical side forces the wire congestion in one
dimension and it does not utilize the other available dimen-
sion to contribute in signal routing. However, squeezing the
diagonal-shape to a square shape would significantly compact
the subarray and at the same time, spread the burden of signal
routing in both dimensions.

1github.com/elaheh-sadredini/MICRO52/tree/master/Heatmap



MICRO-52, October 12–16, 2019, Columbus, OH, USA Sadredini, et al.

Figure 4 shows a toy example for an FCB subarray of size
(9,9) with diagonal width of 3. In each square, the first index
shows the row-index and the second one shows the column
index. For example, a switch in the location (4,3) shows that
the input signal comes from an STE labeled 4 (in BFS), and
it is connected to an STE labeled 3. The left block shows the
initial naive mapping of diagonal memory cells, while all the
white regions are the wasted areas (or switches). The right
block shows how moving nearby memory cells close to the
lower left side can reduce 9×9 array to 7×6.

Our calculation shows that an FCB of size 256×256 and
diagonal width 21 can be reduced to a RCB of size 96×
96, which results in approximately 7× switch saving. RCB
supports 256 inputs and outputs. Our placement guarantees
that each row and column has a maximum of 3 inputs and
outputs. For example, in row 4 of RCB, there are two input
signals (word-line signal), 2 and 9, and in column-3, there are
two output signals (bitline signal), 3 and 6.

Figure 4: FCB to RCB com-
pression

From our experi-
ments, we found that
the diagonal width of
21 is a safe margin to
accommodate all the
transitions (except in
Entity Resolution and
Snort). It should be
noted that in the rout-
ing subarrays, there is
no need for decoding
the input because the "active state vectors" (or an array of
registers) are directly connected to the wordlines. Therefore,
RCB does not incur any extra area overhead for extra decoders.
Moreover, RCB has smaller bit-lines due to area compression,
which potentially leads to a shorter memory access cycle.

3.2 Mapping to Memory Technologies
As discussed earlier, to implement the proposed intercon-
nect in memory, the underlying memory technology should
be able to support logical-OR functionality among memory
rows in a subarray. This requires memory cells (1) to pro-
vide non-destructive read (it means data is maintained after
read operations and write-back is not necessary), and (2) to
drive output to a "stable" state (logical OR in this case) when
multiple bitcells drive a common bitline.

Clearly, conventional DRAM and Reduced-latency DRAM
(RLDRAM) [32] cannot be adopted, because they have de-
structive reads and wired-OR destroys the value stored in
every node participating in the OR operation. Furthermore,
6T SRAM is not also able to perform wired-OR, because
if two cells with different values drive the same bitline, the
resulting value would be unstable or undefined. On the other
hand, 8T SRAM cells [9] and gain-cell embedded DRAM

(GC-eDRAM) [10, 11] appear to be the most suitable memory
technologies to implement eAP.

Gain Cell embedded DRAMs (GC-eDRAMs) are com-
prised of 2-3 logic transistors and optionally an additional
MOSCAP or diode [39]. Recent adoption of GC-eDRAMs as
on-die caches [10, 11, 31] provides realization for in-eDRAM
acceleration of applications. Three-transistor (3T) [11] and
two-transistor (2T) [12, 48] GC-eDRAMs are particularly
beneficial for providing (1) a fast read-cycle time, and (2)
non-destructive read, by splitting read and write paths to the
cell. The latter property is especially useful for the intercon-
nect design, where wired-OR functionality is needed.

In this paper, we adopt two memory cell technologies as
the reconfigurable switches to evaluate our architecture: (1)
8T SRAM cells, as used in CA [37], and (2) the 2T1D (2
transistors 1 diode) GC-eDRAM cell [48]. Compared to 8T
SRAM, 2T1D cell uses substantially fewer transistors and has
lower leakage current [10, 12, 23]. Both cell types provide the
wired-OR functionality. The scalability of gain-cells has been
extensively studied in FinFET technology [4, 6, 22], suggest-
ing that gain cells are promising to scale to smaller technology
nodes in FinFETs, and to maintain an area advantage over 8T.

2T1D Switch Cell: The 2T1D DRAM cell holds the con-
nectivity value in the switch, which is ’1’ if the switch is
connected and ’0’ if it is disconnected. A connected switch
implements an existing transition between two STEs in a state
machine. Figure 5 shows the details of the 2T1D cell. The cell
itself consists of a PMOS transistor for the write operation, an
NMOS for the read operation, and an N-Type Gated-Diode
for reducing coupling effect.

Figure 5: 2T1D switch cell

The cell has two
modes: write mode
and route mode. As
shown in Figure 5, dur-
ing the write mode,
Write-Worldline is ’1’
and the value on the
Write-Bitline is stored
in the node “X“. The
Write-Bitline value con-
trols a switch between STEs to be connected or disconnected.
Write-Bitline is V DD for the connected switch and GND oth-
erwise. During the route mode, the values that are stored
determine whether there is a connection between a source
STE (active state) and destination STEs (potential next states).

In the state transition part of Figure 1, vertical wires are
Read-Wordlines and horizontal wires are Read-Bitlines. There
is one switch in each cross point and the ones with the black
dots show that the switch is connected. If the switch is con-
nected and the source STE is in an active state, then corre-
sponding Read-Bitlines activate the potential next states. In
more detail, the Read-Bitlines are discharged. Therefore, the



eAP: A Scalable and Efficient in-Memory Accelerator for Automata Processing MICRO-52, October 12–16, 2019, Columbus, OH, USA

sense amplifier connected to the Read-Bitline will sense ’0’
and then is converted to ’1’ after a NOT gate.

8T Switch Cell: We adopt the switch cell design from CA
[37]. The cell consists of a 6T SRAM cell and two additional
transistors, which connect the cell to a bitline. This allows a
6T cell to drive the bitlines only when the cell holds ’1’ and
the input signal is ’1’. This implies that 8T cells can support
OR functionality.

4 EMBEDDED AUTOMATA PROCESSOR
In this section, we explain the design of eAP for one bank.
The bank design of eAP_2T1D and eAP_8T is very similar.
The banks are replicated to in order to accommodate a large
number of automata. The overall capacity of eAP_2T1D and
eAP_8T is different and is discussed in Section 7.6.

4.1 eAP Bank Design
Figure 6 shows the general overview of a bank in eAP. Each
bank consists of multiple subarrays (Figure 6 (a,b)), which
share a global decoder, global sense amplifiers, and a set of
global bitlines. Each subarray has its own local sense ampli-
fiers and local decoder. Based on subarray-level parallelism
(SALP) idea [25], with small changes in the global decoder,
we can access to more than one row by reducing the shared
resources and enable activation to different subarrays to be
done in parallel. Therefore, activation and precharging can be
done locally within each subarray. In this paper, we utilize
SALP for the state-matching phase in order to match an input
symbol with multiple automata in parallel.

In our design, a memory bank supports two modes; normal
mode (NM), ie. for data storage as last-level cache, and au-
tomata mode (AM) (Figure 6 (b)). During the NM, the global
decoder only selects one of the connected subarrays based
on the input address, and then selects one row within the
subarray. During the AM, all the local decoders get the same
address (input symbol) from the global decoder and activate
the same row in each subarray, in parallel, based on the in-
put symbol. The entire row corresponding to that symbol is
read to the sense amplifiers, yielding a vector of all the states
accepting the input symbol, i.e. the Match Vector in Figure
1 (b). This arrangement is shown in Figure 6 (c) maps to the
blue square-blocks. There is no need for column addressing
because all the local sense amplifiers (match vectors) should
be read and propagated to the state transition stage. AM only
requires read operations. The configuration of STEs (memory
columns) is done at the context-switch time in normal mode
using write operations.

In Figure 6 (c), each bank has eight columns of automata
processing arrays (APA) with a maximum capacity of 4096
STEs each. Each APA consists of eight tiles and each tile
contains two automata processing units (APUs). Each APU
hosts a memory subarray of 256× 256 for state-matching

(blue squares) and a RCB subarray (smaller gray square) with
an aggregate size of 256 nodes as local interconnect. Inside
each APA, tiles are connected to work collaboratively through
a global switch to process larger connected components that
do not fit in a single APU. These choice of parameters are
based on some prior organizations [14, 37].

The global FCB switch allows 16 states in each APU, called
port nodes (PNs), to communicate with all PNs of different
APUs in the same APA. The global FCB is positioned in the
middle of the APA to minimize the longest required wire
to/from bottommost and topmost APUs.

For uncommon cases in which a CC does not fit into an
RCB interconnect (such as EntityResoloution, see Fig. 3),
eAP repurposes state-matching subarrays as FCB intercon-
nects. Specifically, it combines the state-matching subarray
of one of the APUs in the tile (as a full crossbar interconnect)
and the state-matching of the other APU in the same tile.
When a subarray needs to be configured as a FCB instead of
regular state-match operation, the FCB/SM signal (Fig. 6.d
right blue square) of that tile is set to one. This signal selects
the wordlines of the target subarray to be driven by the match
vector register bits instead of the decoder output (See Fig.
6.d). This mode halves state capacity of the contributed tile
but provides the ability to accept CCs without any limitation
on interconnect shape.

To support this functionality, an array of 2:1 multiplexer
needs to be added for one of the subarrays in each tile (FCB/SM
multiplexers in the right blue square of Fig. 6.d). This has
less than 2.5% area overhead based on industry 28 nm 2:1
mux area numbers2. This reconfiguration promotes a tile to
embed any connected component (with size less than 256)
plus having 16 PNs to communicate with other APUs in the
same APA to provide more flexible interconnect topology in
a column.

4.2 Pipeline Design
To process a single input symbol, two memory accesses are re-
quired; one for finding the match vector in the state-matching
phase, and one for finding the potential next state vector in
the state-transition phase (see Figure 1 (b)). The result of
state-matching of the current symbol is stored in the Match
Vector registers, which acts as pipeline registers, and can be
overlapped with the state transition routing from the previous
input symbol matches.

Cache Automaton [37] proposes a three-stage pipeline for
automata processing, shown in Figure 7 (a) (SM: State-Match,
GS: Global-Switch, LS: Local-Switch). However, we have
found that this pipeline has a data-hazard issue. To process
input symbol i+1, the result of state-match of the current

2This is obtained using a standard cell library provided under NDA, so while
we can describe the result, we cannot identify the vendor.



MICRO-52, October 12–16, 2019, Columbus, OH, USA Sadredini, et al.

Figure 6: (a) Bank abstraction. (b) Physical implementation of a bank. (c) The general overview of eAP architecture in
one bank. (d) Inside one tile with datapath and communication to local (RCB) and global switches (FCB)

cycle (i+1) and state-transition (including LS and GS) of
the previous cycle (i) should be ready at the end of stage-2.
However, the LS output is only ready at the end of the third
stage. To solve this, one pipeline stall is necessary for each
input to resolve the hazard, which decreases the throughput
by a factor of 2. Another solution (to avoid data hazard) is
merging GS and LS in one stage, but they need to operate
sequentially (see Figure 1(d) in [37]). This means that stage 1
has one memory access whereas stage 2 has two consecutive
memory accesses. Figure 7 (b) shows our refined version of
CA pipeline design. This has been verified with the authors.

Unlike CA, our proposed pipeline tries to balance the
amount of work between the two stages of the pipeline, since
the final frequency is determined based on the slowest stage.
Figure 6 (d) represents the interconnect organization. Both
global and local switches can operate in parallel in one stage
and the result from the global switch is ORed with the corre-
sponding wires from the local switch (Figure 7 (c)). Perform-
ing an additional 16-bit OR operation costs much less than
one memory access. Similar pipeline optimization (parallel
GS and LS) can be applied to CA. Performance results for
both designs are shown in Section 7.3.

4.3 Input and Output
eAP has two asynchronous FIFOs to hold the input sym-
bols in the input buffer (IB) and reports in the output buffer
(OB). The host CPU communicates with the IB and OB us-
ing interrupt triggered memory-mapped IO or DMA while
the interrupt service routine (ISR) is responsible to fill in

Figure 7: CA (a) vs eAP (b) pipeline

the IB and evict the OB. Assuming 1.5 GHz and 2.5 GHz
working frequency for eAP_2T1D and eAP_8T, respectively
and 1 MHz frequency for interrupt, an IB of size 2.5KB can
store enough data to feed the eAP until the next IB interrupt.
Recently, Wadden et al. [41] have characterized the reporting
statistics of ANMLZoo’s benchmark. The results show that
10 out of 12 benchmarks produce less than 0.5 reports per
cycle (on average). This investigation motivates us to use 512
entries for the OB (4 bytes each for report meta-data) to keep
a similar interrupt rate as the IB.

After writing the automata configuration bits in the normal
operation mode (NM), eAP switches to automata mode (AM)
and starts consuming inputs from the IB. Buffers have two
output signals (E and F) to show if they are full or empty. E-
signal of the IB and F-signals can raise the interrupt signal of
the CPU to service the device as needed. In Automata mode,
in each cycle, the symbol at the front of the IB is popped



eAP: A Scalable and Efficient in-Memory Accelerator for Automata Processing MICRO-52, October 12–16, 2019, Columbus, OH, USA

and drives the shared address bus of all banks contributing to
eAP symbol matching. Each APU is equipped with a report
vector mask to identify report states in each cycle by simply
performing a bitwise AND operation with the active vector.
We use the Report Aggregator Division (RAD) mechanism
proposed in [41] (which is an improvement over Micron’s
AP reporting procedure) to fill up the OB with report state
IDs and cycle information. RAD adaptively shrinks the report
message based on the current number of active states to use
the OB space efficiently. When the OB is filled up, an interrupt
signal is raised to ask for service from the host CPU and free
space for future report events.

4.4 System Integration
This section discuss the possible integrations for eAP with
2T1D GC-eDRAM cells (eAP_2T1D) and 8T SRAM cells
(eAP_8T). High-bandwidth On-Package Memory (OPM) in-
troduces a new on-package memory layer between off-chip
DRAM and on-chip cache in the conventional memory hier-
archy. Intel has included eDRAM as an OPM in its Haswell,
Broadwell, and Skylake architectures to fill the gap between
on-chip and off-chip memory bandwidth. For Haswell and
Broadwell processors, eDRAM with 1T1C cells was used
as L4 cache [2, 20]. For eAP_2T1D, we replace the 1T1C
eDRAM cells with 2T1D and then, repurpose a portion of
banks in L4 cache for automata processing.

For eAP_8T, we assume the same integration as Cache Au-
tomaton [37]. Cache Automaton repurposes last-level cache
(L3) slices for automata processing and access the cache ways
by leveraging Cache Allocation Technology (CAT) [1]. For
both eAP designs, in automata mode, the compiler generates
a configuration array (the state-match and interconnect config-
uration bits) and writes it in the eAP memory address space
to start offloading the input task.

5 COMPILER
Our compiler has two main tasks. First, it should check if a
connected component can fit into a RCB switch template or
needs to be mapped to an FCB. Second, it should provide a
mapping from each state of the automaton to its hardware
representation (STE). To accomplish the decision problem
(RCB or FCB), a fixed matrix representation of the RCB
interconnects is initially generated (See Figure 4), called a
diagonal matrix (DM). We assign a ‘1‘ in row i and column
j, if there is a switch at location i and j in RCB interconnect.
For any given automaton, we first number nodes using BFS
traversal, starting from a fake root connected to all nodes
that are start-nodes in the automata. Then, we calculate the
connectivity matrix of a given automaton using BFS assigned
numbers. If the calculated matrix is a subset of the DM, then
it can be fit into a diagonal switch box (RCB). Otherwise, the
given automaton should fit into a FCB.

For diagonal automata, we search through all the previously-
assigned RCB interconnect blocks and try to find the one with
the least free capacity that can still fit the current automaton
being placed. We keep the same BFS order of labels to as-
sign inputs of the assigned interconnect block, but with an
offset equal to the last-used input of that interconnect block,
instead of 1 for the first automaton (connected component)
that was assigned to this interconnect block. If there is no
such partially used interconnect with enough spare capacity,
we initialize a new RCB interconnect block from the pool of
available interconnect blocks.

6 EVALUATION METHODOLOGY
Applications: We evaluate the eAP architecture using AN-
MLZoo [42] and Regex [5] benchmark suites. ANMLZoo
represents a set of applications including machine learning,
data mining, and security. We use the standard 10MB inputs
stream included in ANMLZoo.

Experimental Setup: We evaluate eAP on memory arrays
with 2T1D cells (we call it eAP_2T1D) and 8T cells (we call
it eAP_8T). In eAP_8T, both state-matching and interconnect
memory arrays are based on 8T cells. This is because we
sometimes repurpose state-matching arrays for interconnect,
and they should be able to provide the required logical OR
functionality (6T SRAM cells are unable to provide OR func-
tionality because multiple cells cannot drive one bitline). We
compare eAP_2T1D and eAP_8T with CA, and the AP, all
using (or scaled to) 28nm technology. In CA, state-matching
is based on 6T and interconnect is based on 8T SRAM arrays.
To calculate area, power, and row-cycle time of memory ar-
rays, we use a standard memory compiler. For 2T1D analysis,
we rely on the results from the fabricated chip in [48].

We develop an in-house cycle-accurate automata simula-
tor3 to perform software optimization on the automata, map
them to eAP architecture, and extract per-cycle statistics for
the energy estimation.

7 RESULTS
This section first presents the architectural contributions of
our interconnect compared to FCB. Then, area, performance,
and power evaluations are presented.

7.1 Interconnect Efficiency
In this section, we first compare the overall architectural bene-
fits of our proposed interconnect design, RCB, over the CA in-
terconnect architecture, FCB. As we presented earlier in Sec-
tion 3, in CA, the FCB is a memory block of 256×256, while
RCB interconnect is a memory block of 96×96, meaning that
the RCB design consumes 7.1× fewer switches (or memory

3Contact the authors for the source code.



MICRO-52, October 12–16, 2019, Columbus, OH, USA Sadredini, et al.

Table 1: Comparison of our interconnect approach (hybrid RCB and FCB) with CA interconnect (FCB only) with both
256×256 and 128×128 subarrays. Our idea requires up to 7.1X fewer switches (memory cells) than CA in 256×256 design
and up to 5.6X fewer switches than CA in 128×128 design.

Benchmark #States #Transitions
#Connected Largest Baseline Our Idea Switch Baseline Our Idea Switch
Components Connect #FCB #FCB #RCB Reduction #FCB #FCB #RCB Reduction

Component Size (256×256) (256×256) (96×96) (128×128) (128×128) (54×54)
Brill 42658 62054 1962 67 168 0 168 7.1X 336 0 336 5.6X

Dotstar 96438 94254 2837 95 378 0 378 7.1X 768 0 768 5.6X
EntityResolution* 95136 219264 1000 96 500 500 0 None 1000 1000 0 None

Fermi 40783 57576 2399 17 160 0 160 7.1X 320 0 320 5.6X
Hamming 11346 19251 93 122 47 0 47 7.1X 96 0 96 5.6X

Levenshtein 2784 9096 24 116 12 0 12 7.1X 24 0 24 5.6X
PowerEN 40513 40271 2857 52 160 0 160 7.1X 320 0 320 5.6X
Protomata 42009 41635 2340 123 165 0 165 7.1X 336 0 336 5.6X

RandomForest 33220 33220 1661 20 139 0 139 7.1X 264 0 264 5.6X
Snort* 100500 81380 5025 222 270 19 252 4.9X 546 21 525 4.7X
SPM 69029 211050 2687 20 419 0 419 7.1X 792 0 792 5.6X

BlockRings** 44352 44352 192 231 192 0 192 7.1X 432 48 384 3.7X
Dotstar03 12144 12264 299 92 49 0 49 7.1X 104 0 104 5.6X
Dotstar06 12640 12939 298 104 50 0 50 7.1X 104 0 104 5.6X
Dotstar09 12431 12907 297 104 50 0 50 7.1X 104 0 104 5.6X
Ranges05 12621 12472 299 94 50 0 50 7.1X 104 0 104 5.6X
Ranges1 12464 12406 297 96 50 0 50 7.1X 104 0 104 5.6X

ExactMath 12439 12144 297 87 50 0 50 7.1X 104 0 104 5.6X
Bro217 2312 2130 187 84 10 0 10 7.1X 24 0 24 5.6X
TCP** 19704 21164 738 391 81 3 80 5.6X 161 15 148 2.8X

ClamAV** 49538 49736 515 542 210 2 208 6.7X 413 13 400 4.9X

* Not all the connected components in EntityResolution and Snort fit in RCB blocks, because their connectivity pattern have long-distance
loops. They need to re-purpose state-matching as FCB.
** In TCP, ClamAV, and BlockRing (for 128×128 design), Some connected components are large and do not fit in one state-matching
subarray. Therefore, global switches (FCBs) are required to connect transitions between two (or more) local switches.

cells) than FCB. To evaluate whether an FCB of 256×256 is
larger than necessary, we also apply our interconnect reduc-
tion technique to FCB subarrays of size 128×128, and con-
clude that the RCB subarray can be reduced to 54×54. This
means that when the FCB baseline subarrays are 128×128,
RCB requires 5.6× fewer switches than FCB. Compared to
the baseline FCB design, RCB has a faster row cycle time
because of shorter wires and consumes less power.

To study the applicability of RCB design in real-world
and synthetic automata applications, we calculate the number
of required RCB and FCB blocks for each application. The
compiler iterates over the connected components (CCs) and
checks if they can fit in a RCB switch block. If not, a FCB
switch is needed to accommodate connectivity. In Table 1,
we compare the number of required routing blocks of our
ultimate interconnect approach, which is a hybrid of RCB
and FCB, versus the baseline FCB that is proposed in CA and
assumes full connectivity for all the connected components
(but we evaluate FCBs of both 256×256 and 128×128).

As shown in Table 1, most of the connected components of
the applications can entirely map to RCB blocks and no FCB
block is needed. This means that when using RCB blocks,
the total number of switches (memory cells) required for
these applications is 7.1× and 5.6× less than when using FCB
blocks in 256×256 and 128×128 design, respectively. This
again confirms that the FCB is over-provisioned for automata
applications, even at 128×128. The largest CC size in most of

the applications is less than 128 states and thus, they fit in the
128×128 design. However, all CCs in BlockRings have 231
states, and requires global switches (which are also FCBs) for
connecting local switches to provide larger connectivity.

In EntityResolution, there are many long-distance loops,
and none of the CCs can fit in the RCB switch block (Figure
3). In Snort, our interconnect accommodates most of the
CCs in RCB blocks (only 19 FCB and 252 RCB in 256×256
design), whereas the baseline uses 270 FCBs. Levenshtein
is a difficult-to-route automaton. The AP compiler can fit
this benchmark in an AP chip with 48K states. However, the
total number of states in Levenshtein is 2784. This implies
that many of the STEs and interconnect resources of an AP
chip are wasted in order to deal with the routing congestion.
However, in our interconnect model, we just need 12 RCB
switches in 256×256 design (9% routing resources of an eAP
bank and 0.07% of routing resources on eAP 128 banks) to
accommodate all the automata in Levenshtein.

Our compiler provides optimizations such as forcing con-
straints on the number of fan-in and fan-out of each node.
Based on our sensitivity analysis, forcing each automaton to
have maximum fan-in and fan-out of 5 results in the minimum
number of switches. Our interconnect optimization is general
and can be applied to any memory-based interconnect, such
as variations of gain-cells or non-volatile memory, where
memory cells can implement OR-functionality for routing.



eAP: A Scalable and Efficient in-Memory Accelerator for Automata Processing MICRO-52, October 12–16, 2019, Columbus, OH, USA

7.2 Overall Area Overhead
In this section, we discuss the area overhead of state-matching
arrays, interconnect arrays, and total overhead for support-
ing state capacity equivalent to 32K STEs (one eAP bank).
Furthermore, we separate architectural contributions from
technology contributions in our analysis.

A subarray size of 512 by 128 with 2T1D cell is fabricated
in 65nm with area 0.085mm2 [48]. From the die image, we
estimate the area for a block of 256 by 256 to be 0.084mm2

(60% of which is spent for memory cells and 40% is spent
for decoder and sense amplifiers), which is 11mm2 to support
32K states. The projected area to support 32K states in 28nm
is 2mm2. Thus, the area of a 2T1D cell in 28nm is estimated
0.143µm2 and calculated as:

0.6×2×106

32×1024×256 = 0.143µm2 (1)
Bhoj et al. [6] presented two architectures for 2T1D cells

in 30nm FinFET technology. According to their work, the
area of a 2T1D memory cell is between 0.137− 0.163µm2,
which is consistent with our scaling assumptions.

Figure 8: Comparing area overhead of eAP, CA, and AP,
normalized for 32K states, all in 28nm. CA interconnect
is ~4× larger than eAP_8T (architectural contribution)
and ~8× higher than eAP_2T1D.

Figure 8 shows the area overhead for state-matching, in-
terconnect, and total overhead of different architectures, as-
suming supporting 32K states. Compared to CA, eAP_8T
reduces area overhead of interconnect ~4× (resulting from
architectural contribution, i.e., RCB design) and eAP_2T1D
reduces area overhead of interconnect ~8× (~4× resulting
from architectural contribution, i.e., RCB design and ~2×
resulting from technology choice).

Overall area overhead (both state-match and routing) of
eAP_2T1D is 2.2×, 2.3×, 22× less compared to eAP_8T, CA,
and the AP, respectively, all in 28nm technology.

7.3 Overall Performance
Zhang et al. [48] report that the read-cycle frequency of 6T
SRAM array is twice that of a 2T1D gain-cell array in 65nm
technology. We assume a similar ratio in order to estimate
the read-access frequency of a 2T1D array of size 256×256
(for FCB) in 28nm, using the read-access frequency of 6T
SRAM array of size 256×256 in 28nm (which is 229 ps and
calculated using standard SRAM compiler in nominal voltage

0.8V). In other work on 2T1D, Bhoj et al. [6] presented two
architectures for 2T1D cells in 30nm FinFET technology.
According to their work, a 2T1D memory array can operate at
2GHz, which is consistent with our assumption. Despite the
area reduction in RCB (96×96), we still assume the worst-
case delay for RCB to be the same as FCB.

CA proposes a sense-amplifier cycling technique and as-
sumes 4× reduction in the read-access delay. However, sens-
ing is just 25% of the total row-access delay. We re-calculated
the delay in local and global switches in CA with best-case
assumptions using an SRAM memory compiler. Fixing (1)
switch delay calculation and (2) pipeline data-hazard problem
in CA reduces the frequency from 2.2GHz to 1.43GHz. This
has been verified with the authors.

Based on the SPICE simulation in CA, the wire delay is cal-
culated as 66ps/mm. Considering a cache slice of 3.19mm×
3mm, the switch delay is estimated as 99ps, assuming 1.5mm
wire length. We assume the same wire delay for FCB and
RCB in eAP. This is the worst-case assumption for RCB as it
requires shorter wires.

Table 2 shows the delay for pipeline stages in CA and
eAP in 28nm. As discussed in Section 4.2, in the CA-refined
pipeline, L-Switch and G-Switch should be done sequen-
tially in one stage, which means the pipeline delay is 698ps
(349ps+349ps). In eAP optimized pipeline, L-switch (RCB)
and G-switch (FCB) can be done in parallel. Therefore, pipeline
delays for eAP_2T1D and eAP_8T are 599ps and 349ps, re-
spectively. Similar optimization proposed for eAP can be
applied to CA (we call it CA_opt) which improves CA fre-
quency from 1.43GHz to 2.2GHz. Therefore, the architectural
contribution of our optimized pipeline improves the clock
frequency of eAP (both 2T1D and 8T) ~2× and CA ~1.5×.

Table 2: Pipeline stages delay. All designs are in 28nm.
Design State-Match L-Switch G-Switch Freq. Max Freq. Operated

eAP_2T1D 500 ps 599 ps 599 ps 1.66 GHz 1.5 GHz
eAP_8T 349 ps 349 ps 349 ps 2.8 GHz 2.5 GHz

CA 438 ps 349 ps 349 ps 1.43 GHz 1.3 GHz
CA_opt 438 ps 349 ps 349 ps 2.2 GHz 2 GHz

Like commodity DRAM, 2T1D cells also require periodic
refreshes to retain stored bit values. The refresh operation is
a sequence of dummy reads and write-backs to the memory
rows. eAP_2T1D refresh time is 0.01%, which is calculated
by dividing the time required for refreshing 256 rows (mean-
ing 256 reads and 256 writes) by the retention time. Refresh
is performed among all the subarrays in parallel and blocks
the normal read/write operations.

7.4 Throughput per Unit Area
In the AP, CA, and eAP, each input symbol can be processed
in one cycle. Therefore, they have a deterministic through-
put of one input symbol per cycle, which is independent of



MICRO-52, October 12–16, 2019, Columbus, OH, USA Sadredini, et al.

Figure 9: (left) Overall energy consumption of eAP_2T1D compared to eAP_8T, CA_opt, and ideal AP. (right) Overall
power consumption of eAP_2T1D compared to eAP_8T, CA_opt, and the AP (reported by Micron).

input benchmarks. Another important metric in addition to
frequency is state-matching capacity; if the capacity is not
enough to accommodate all the automata in one iteration,
several passes of the input stream, each with some reconfigu-
ration overhead, are needed.

Table 3 represents the throughput of different architecture
normalized to the area. The throughput here is defined as
the number of states that can run in parallel multiplied by
clock frequency (Tera-states per second). The AP is based on
45nm and operates at 133 MHz frequency, while CA and eAP
are based on 28nm. To compare the different architectures in
the same semiconductor technology node, we also show the
technology projection of the AP in 28nm.

Table 3: Throughput normalized per area. eAP_2T1D
performs best due to its interconnect/technology benefits.

eAP_2T1D eAP_8T CA CA_opt AP 45nm AP 28nm
27.1 15.13 5.25 8.07 0.03 0.13

Overall, eAP_2T1D achieves 1.7×, 5.1×, 3.3×, and 210×
better throughput-per-unit-area over eAP_8T, CA, CA_opt,
and the AP, respectively, all in 28nm technology. As expected,
eAP_8T has 1.8× better throughput-per-area over CA_opt.
CA design uses 6T arrays of size 256×256 for state-matching
and 8T arrays of 280×256 for interconnect, and thus, the in-
terconnect overhead is more than 50%. eAP_8T adopts 8T
arrays for both state-matching (of size 256×256) and inter-
connect of size (96×96), and thus, the interconnect overhead
is ~4× less than state-matching resources.

7.5 Energy/Power Consumption
This section discusses the energy and power consumption of
eAP_2T1D and eAP_8T, and compares them to prior works.
To calculate energy consumption, we need to know the num-
ber of active partitions for state-matching and switch blocks,
and the number of transitions between local switches to con-
sider for the energy consumed driving wires.

Note that it is not possible to power-gate state-matching
memory arrays on a cycle-by-cycle basis. In order to power-
gate these subarrays, it is necessary to know the potential
next states beforehand. However, in the pipeline, the state-
matching results and the next potential state are calculated
simultaneously, which prevents the power-gating (one can
still power-gate an array that is unoccupied). This observation
is not considered in CA. We update the energy/power results
in CA paper [37] based on this observation. For the AP, we
adopt the ideal AP model presented in CA. All the statistics
per cycle are extracted from our compiler.

Static power consumption of eAP_2T1D system consists
of two main components: (1) the leakage current of the cell
itself and (2) the refresh power to keep the data alive. The
refresh power of 2T1D-based gain-cells is the dominant por-
tion of static power [48]. Moreover, the static power of 2T1D
memory array is 20% of static power in 6T SRAM array. We
use the same ratio to calculate static power for eAP_2T1D.
We estimate the dynamic energy consumption for RCB and
FCB 8T blocks using a standard memory compiler.

Figure 9 (left) shows the energy per input-symbol for
eAP_2T1D, eAP_8T, and CA_opt on 28nm, and ideal AP
model. We can observe that benchmarks with a larger num-
ber of states, such as EntityResolution, Dotstar, Snort, and
SPM consume higher energy. This is because these bench-
marks have utilized more state-matching and switch arrays to
accommodate a larger number of states. Furthermore, Enti-
tyResolution cannot utilize lower-energy RCB resources for
the local interconnect (as shown is Table 1) and needs to use
FCB, which results in higher energy consumption. Overall,
the energy consumption of eAP_2T1D is about 3× less than
eAP_8T and CA_opt. Energy efficiency of eAP_2T1D comes
from its density and a compact RCB design, which results in
consuming lower dynamic energy due to shorter wires and a
smaller number of switches.

Figure 9 (right) shows the average power consumption
across benchmarks. The power consumption of eAP_2T1D



eAP: A Scalable and Efficient in-Memory Accelerator for Automata Processing MICRO-52, October 12–16, 2019, Columbus, OH, USA

is 5.4× and 4.1× less compared to eAP_8T and CA_opt,
respectively. As expected, the power of the eAP_2T1D is the
highest, because it has the fastest clock speed.

7.6 Performance Scaling
In this section, we study the scalability of different designs.
In order to show the effect of larger benchmarks on the perfor-
mance, we increase the number of automata in the ANMLZoo
up to 1024× and study two power-constrained and non-power-
constrained scenarios. We assume CA, CA_opt, and eAP_8T
can utilize the 40MB L3 cache [37], which is equal to ac-
commodating 1280K STEs. The Intel 4th-generation Core
processor (Haswell and Broadwell) has a 0.5Gb/1Gb embed-
ded memory die connected to CPU as L4 cache [20, 21].
For eAP_2T1D, we assume 1Gb of eDRAM with 128 banks.
Therefore, eAP_2T1D can support up to 4096K STEs.

Table 4 summarizes the key properties of eAP_2T1D rela-
tive to eAP_8T, CA, CA_opt, and AP. In short, eAP_2T1D
has a density advantage compared to other designs. When
the area allocation for automata processing is small enough
that the total power is not a limiting factor, the density ad-
vantage will apply. At some point, enough area is allocated
that power becomes a limiting factor. Then eAP only has a
capacity advantage.

Table 4: Summary of different memory-based automata
architectures (for 32K states, including interconnect)

eAP_2T1D eAP_8T CA CA_opt AP
Freq. (GHz) 1.5 2.5 1.3 2 0.133
Power (W) 4.15 29.69 22.57 14.69 2.6
Area (mm2) 2.47 5.41 8.12 8.12 140

However, some benchmarks in ANMLZoo represent just
a portion of actual applications (normalized to fill one AP
chip). While one bank is enough for regex-based applications
such as Snort, Brill, and Dotstar, which will not require much
power, the density advantage will pertain; but other applica-
tions require orders of magnitude more states. This will then
require multiple passes over the input, with each pass imple-
menting a portion of the overall automata set. In such cases,
reconfiguration overheads will apply, and as mentioned, this
is more costly for CA.

Figure 10 shows the performance of CA, CA_opt, eAP_2T1D,
and eAP_8T averaged on ANMLZoo, normalized to the AP
performance, with and without power constraints.

In the non-power-constrained scenario, we assume CA,
CA_opt, and eAP can utilize their maximum capacity. In this
scenario, the relationship among the designs follows Table 4,
except for the additional factor of reconfiguration overhead,
so the speedup of eAP_8T is 5×, 3.6×, and 1.4× over CA,
CA_opt, eAP_2T1D, respectively. This is because eAP_8T
has the highest clock speed.

In the power-constrained scenario, we assume the maxi-
mum power of 75W for all the designs. This, in turn, reduces
the allowable number of active processing blocks. eAP_8T
has 1.6×, 1.1×, and 1.4× better performance over CA, CA_opt,
eAP_2T1D on the original-size benchmarks (1X), because
eAP_8T has a higher frequency than others. However, when
increasing the benchmark size, reconfiguration and multi-
processing of the input become a limiting factor for CA
and CA_opt (due to less capacity and lower frequency) and
eAP_8T (due to high power consumption).

eAP_2T1D shows up to 2×, 2.1×, and 4.9× better per-
formance over CA, CA_opt, eAP_8T when increasing the
benchmark-size up to 1024×. This is because eAP_2T1D has
higher density and lower power consumption. The perfor-
mance benefits of eAP increase with larger automata. Further-
more, the advantages of eAP_2T1D over CA, CA_opt, and
eAP_8T increase when increasing the input size.

Figure 10: Performance scaling with benchmark size

8 CONCLUSIONS
In this paper, we propose eAP, a high-speed, dense, and low-
power reconfigurable architecture for automata processing.
We exploit inherent bit-level parallelism in memory to support
multiple concurrent transitions in NFA and utilize subarray-
level parallelism in memory to process thousands of automata
in parallel. Motivated by connectivity patterns in the real-
world automata benchmarks, we propose a reduced crossbar
interconnect for state transitions, which compacts the switch
patterns in a full-crossbar interconnect and provides a 7× re-
duction in the number of switches. This in turn reduces power
consumption and delay due to shorter wires. Overall, eAP
presents 5.1× and 207× better throughput normalized to area
compared to the previously designed in-memory automata
accelerators, Cache Automaton (CA) and the Automata Pro-
cessor, respectively. Benefits of eAP are even higher for ap-
plications that require multiple passes.

9 ACKNOWLEDGMENTS
We thank the anonymous reviewers whose comments helped
improve and clarify this manuscript. This work is funded,
in part, by the NSF (CCF-1629450) and CRISP, one of six
centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by MARCO and DARPA.



MICRO-52, October 12–16, 2019, Columbus, OH, USA Sadredini, et al.

REFERENCES
[1] Intel. 2017. [n. d.]. Cache Allocation Technology. https://software.intel.

com/en-us/articles/introduction-to-cache-allocation-technology.
[2] Aditya Agrawal. 2014. REFRESH REDUCTION IN DYNAMIC MEMO-

RIES. Ph.D. Dissertation. University of Illinois at Urbana-Champaign.
[3] Amogh Agrawal, Akhilesh Jaiswal, Bing Han, Gopalakrishnan Srini-

vasan, and Kaushik Roy. 2018. Xcel-RAM: Accelerating Binary Neural
Networks in High-Throughput SRAM Compute Arrays. arXiv preprint
arXiv:1807.00343 (2018).

[4] E Amat, A Calomarde, F Moll, R Canal, and A Rubio. 2016. Feasibil-
ity of Embedded DRAM Cells on FinFET Technology. IEEE Trans.
Comput. 65, 4 (2016), 1068–1074.

[5] Michela Becchi, Mark Franklin, and Patrick Crowley. 2008. A work-
load for evaluating deep packet inspection architectures. In Workload
Characterization, 2008. IISWC 2008. IEEE International Symposium
on. IEEE, 79–89.

[6] Ajay N Bhoj and Niraj K Jha. 2009. Pragmatic design of gated-diode
FinFET DRAMs. In Computer Design, 2009. ICCD 2009. IEEE Inter-
national Conference on. IEEE, 390–397.

[7] Chunkun Bo, Vinh Dang, Elaheh Sadredini, and Kevin Skadron. 2018.
Searching for Potential gRNA Off-Target Sites for CRISPR/Cas9 us-
ing Automata Processing across Different Platforms. In 24th IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE.

[8] Chunkun Bo, Ke Wang, Jeffrey J Fox, and Kevin Skadron. 2016. Entity
resolution acceleration using the automata processor. In Big Data (Big
Data), 2016 IEEE International Conference on. IEEE, 311–318.

[9] Leland Chang, David M Fried, Jack Hergenrother, Jeffrey W Sleight,
Robert H Dennard, Robert K Montoye, Lidija Sekaric, Sharee J McNab,
Anna W Topol, Charlotte D Adams, et al. 2005. Stable SRAM cell
design for the 32 nm node and beyond. In VLSI Technology, 2005.
Digest of Technical Papers. 2005 Symposium on. IEEE, 128–129.

[10] Ki Chul Chun, Pulkit Jain, Tae-Ho Kim, and Chris H Kim. 2012. A
667 MHz logic-compatible embedded DRAM featuring an asymmetric
2T gain cell for high speed on-die caches. IEEE Journal of Solid-State
Circuits 47, 2 (2012), 547–559.

[11] Ki Chul Chun, Pulkit Jain, Jung Hwa Lee, and Chris H Kim. 2011. A
3T gain cell embedded DRAM utilizing preferential boosting for high
density and low power on-die caches. IEEE Journal of Solid-State
Circuits 46, 6 (2011), 1495–1505.

[12] Ki Chul Chun, Wei Zhang, Pulkit Jain, and Chris H Kim. 2011. A
700MHz 2T1C embedded DRAM macro in a generic logic process
with no boosted supplies. In Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2011 IEEE International. IEEE, 506–507.

[13] Computer Sciences Corporation. 2012. Big Data Universe Begin-
ning to Explode. http://www.csc.com/insights/flxwd/78931-big_data_
universe_beginning_to_explode.

[14] Paul Dlugosch, Dean Brown, Paul Glendenning, Michael Leventhal,
and Harold Noyes. 2014. An efficient and scalable semiconductor
architecture for parallel automata processing. Parallel and Distributed
Systems, IEEE Transactions on 25, 12 (2014).

[15] DNV GL. 2016. Are you able to leverage big data to boost your
productivity and value creation? https://www.dnvgl.com/assurance/
viewpoint/viewpoint-surveys/big-data.html.

[16] Yuanwei Fang, Tung T Hoang, Michela Becchi, and Andrew A Chien.
2015. Fast support for unstructured data processing: the unified au-
tomata processor. In Microarchitecture (MICRO), 2015 48th Annual
IEEE/ACM International Symposium on. IEEE, 533–545.

[17] Victor Mikhaylovich Glushkov. 1961. The abstract theory of automata.
Russian Mathematical Surveys (1961).

[18] Vaibhav Gogte, Aasheesh Kolli, Michael J Cafarella, Loris D’Antoni,
and Thomas F Wenisch. 2016. HARE: Hardware accelerator for reg-
ular expressions. In Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on. IEEE, 1–12.

[19] Linley Gwennap. 2014. New Chip Speeds NFA Processing Using
DRAM Architectures. In In Microprocessor Report.

[20] Per Hammarlund, Alberto J Martinez, Atiq A Bajwa, David L Hill, Erik
Hallnor, Hong Jiang, Martin Dixon, Michael Derr, Mikal Hunsaker,
Rajesh Kumar, et al. 2014. Haswell: The fourth-generation intel core
processor. IEEE Micro 34, 2 (2014), 6–20.

[21] Fatih Hamzaoglu, Umut Arslan, Nabhendra Bisnik, Swaroop Ghosh,
Manoj B Lal, Nick Lindert, Mesut Meterelliyoz, Randy B Osborne,
Joodong Park, Shigeki Tomishima, et al. 2014. A 1Gb 2GHz embedded
DRAM in 22nm tri-gate CMOS technology. In Solid-State Circuits Con-
ference Digest of Technical Papers (ISSCC), 2014 IEEE International.
IEEE, 230–231.

[22] Zoran Jaksic. 2015. Cache memory design in the FinFET era. Ph.D.
Dissertation. Universitat Politècnica de Catalunya.

[23] Zoran Jaksic and Ramon Canal. 2012. Enhancing 3T DRAMs for
SRAM replacement under 10nm tri-gate SOI FinFETs. In Computer
Design (ICCD), 2012 IEEE 30th International Conference on. IEEE,
309–314.

[24] Rasha Karakchi, Lothrop O Richards, and Jason D Bakos. 2017. A
Dynamically Reconfigurable Automata Processor Overlay. In ReCon-
Figurable Computing and FPGAs (ReConFig), 2017 International Con-
ference on. IEEE, 1–8.

[25] Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur
Mutlu. 2012. A case for exploiting subarray-level parallelism (SALP)
in DRAM. ACM SIGARCH Computer Architecture News 40, 3 (2012),
368–379.

[26] Marzieh Lenjani and Mahmoud Reza Hashemi. 2014. Tree-based
scheme for reducing shared cache miss rate leveraging regional, statis-
tical and temporal similarities. IET Computers & Digital Techniques 8,
1 (2014), 30–48.

[27] Cong Liu and Jie Wu. 2013. Fast deep packet inspection with a dual
finite automata. IEEE Trans. Comput. 62, 2 (2013), 310–321.

[28] Hongyuan Liu, Mohamed Ibrahim, Onur Kayiran, Sreepathi Pai, and
Adwait Jog. 2018. Architectural Support for Efficient Large-Scale
Automata Processing. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE.

[29] Rui Liu, Xiaochen Peng, Xiaoyu Sun, Win-San Khwa, Xin Si, Jia-Jing
Chen, Jia-Fang Li, Meng-Fan Chang, and Shimeng Yu. 2018. Paralleliz-
ing SRAM arrays with customized bit-cell for binary neural networks.
In Proceedings of the 55th Annual Design Automation Conference.
ACM, 21.

[30] Jan Van Lunteren, Christoph Hagleitner, Timothy Heil, Giora Biran,
Uzi Shvadron, and Kubilay Atasu. 2012. Designing a programmable
wire-speed regular-expression matching accelerator. In Proceedings of
the 2012 45th Annual IEEE/ACM International Symposium on Microar-
chitecture. IEEE Computer Society, 461–472.

[31] Pascal Meinerzhagen, Adam Teman, Robert Giterman, Andreas Burg,
and Alexander Fish. 2013. Exploration of sub-VT and near-VT 2T
gain-cell memories for ultra-low power applications under technology
scaling. Journal of Low Power Electronics and Applications 3, 2 (2013),
54–72.

[32] Micron. [n. d.]. RLDRAM Memory. https://www.micron.com/products/
dram/rldram-memory.

[33] Indranil Roy and Srinivas Aluru. 2014. Finding motifs in biological
sequences using the micron automata processor. In Parallel and Dis-
tributed Processing Symposium, 2014 IEEE 28th International. IEEE,
415–424.

https://software.intel.com/ en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/ en-us/articles/introduction-to-cache-allocation-technology
http://www.csc.com/insights/flxwd/78931-big_data_universe_beginning_to_explode
http://www.csc.com/insights/flxwd/78931-big_data_universe_beginning_to_explode
https://www.dnvgl.com/assurance/viewpoint/viewpoint-surveys/big-data.html
https://www.dnvgl.com/assurance/viewpoint/viewpoint-surveys/big-data.html
https://www.micron.com/products/dram/rldram-memory
https://www.micron.com/products/dram/rldram-memory


eAP: A Scalable and Efficient in-Memory Accelerator for Automata Processing MICRO-52, October 12–16, 2019, Columbus, OH, USA

[34] Elaheh Sadredini, Deyuan Guo, Chunkun Bo, Reza Rahimi, Kevin
Skadron, and Hongning Wang. 2018. A scalable solution for rule-based
part-of-speech tagging on novel hardware accelerators. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM, 665–674.

[35] Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea Stan, and
Kevin Skadron. 2019. Scalable and Efficient in-Memory Interconnect
Architecture for Automata Processing. IEEE Computer Architecture
Letters (2019).

[36] Elaheh Sadredini, Reza Rahimi, Ke Wang, and Kevin Skadron. 2017.
Frequent subtree mining on the automata processor: challenges and
opportunities. In International Conference on Supercomputing (ICS).
ACM.

[37] Arun Subramaniyan, Jingcheng Wang, Ezhil R. M. Balasubramanian,
David Blaauw, Dennis Sylvester, and Reetuparna Das. 2017. Cache
Automaton. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-50).

[38] Prateek Tandon, Faissal M Sleiman, Michael J Cafarella, and Thomas F
Wenisch. 2016. Hawk: Hardware support for unstructured log pro-
cessing. In Data Engineering (ICDE), 2016 IEEE 32nd International
Conference on. IEEE, 469–480.

[39] Adam Teman, Pascal Meinerzhagen, Andreas Burg, and Alexander Fish.
2012. Review and classification of gain cell eDRAM implementations.
In Electrical & Electronics Engineers in Israel (IEEEI), 2012 IEEE
27th Convention of. IEEE, 1–5.

[40] Tommy Tracy, Yao Fu, Indranil Roy, Eric Jonas, and Paul Glenden-
ning. 2016. Towards machine learning on the Automata Processor. In
International Conference on High Performance Computing. Springer,
200–218.

[41] Jack Wadden, Kevin Angstadt, and Kevin Skadron. 2018. Characteriz-
ing and Mitigating Output Reporting Bottlenecks in Spatial Automata
Processing Architectures. In High Performance Computer Architecture
(HPCA), 2018 IEEE International Symposium on. IEEE, 749–761.

[42] Jack Wadden, Vinh Dang, Nathan Brunelle, Tommy Tracy II, Deyuan
Guo, Elaheh Sadredini, Ke Wang, Chunkun Bo, Gabriel Robins, Mircea
Stan, et al. 2016. ANMLZoo: a benchmark suite for exploring bottle-
necks in automata processing engines and architectures. In Workload
Characterization (IISWC), 2016 IEEE International Symposium on.
IEEE, 1–12.

[43] Ke Wang, Kevin Angstadt, Chunkun Bo, Nathan Brunelle, Elaheh
Sadredini, Tommy Tracy, Jack Wadden, Mircea Stan, and Kevin
Skadron. 2016. An overview of micron’s automata processor. In Hard-
ware/Software Codesign and System Synthesis (CODES+ ISSS), 2016
International Conference on. IEEE, 1–3.

[44] Ke Wang, Elaheh Sadredini, and Kevin Skadron. [n. d.]. Hierarchical
Pattern Mining with the Micron Automata Processor. International
Journal of Parallel Programming (IJPP).

[45] Ke Wang, Elaheh Sadredini, and Kevin Skadron. 2016. Sequential Pat-
tern Mining with the Micron Automata Processor. In ACM International
Conference on Computing Frontiers.

[46] Michael HLS Wang, Gustavo Cancelo, Christopher Green, Deyuan Guo,
Ke Wang, and Ted Zmuda. 2016. Using the automata processor for fast
pattern recognition in high energy physics experimentsĂŤ A proof of
concept. Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment
832 (2016), 219–230.

[47] Ted Xie, Vinh Dang, Jack Wadden, Kevin Skadron, and Mircea Stan.
2017. REAPR: Reconfigurable engine for automata processing. In Field
Programmable Logic and Applications (FPL), 2017 27th International
Conference on. IEEE, 1–8.

[48] Wei Zhang, Ki Chul Chun, and Chris H Kim. 2013. A write-back-free
2T1D embedded DRAM with local voltage sensing and a dual-row-
access low power mode. IEEE Transactions on Circuits and Systems I:
Regular Papers 60, 8 (2013), 2030–2038.

[49] Keira Zhou, Jeffrey J Fox, Ke Wang, Donald E Brown, and Kevin
Skadron. 2015. Brill tagging on the micron automata processor. In
Semantic Computing (ICSC), 2015 IEEE International Conference on.
IEEE, 236–239.


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Non-Deterministic Finite Automata
	2.2 In-memory Automata Processing
	2.3 ASIC Implementations
	2.4 The Importance of Capacity

	3 Interconnect Architecture
	3.1 Reduced Crossbar Interconnect
	3.2 Mapping to Memory Technologies

	4 Embedded Automata Processor
	4.1 eAP Bank Design
	4.2 Pipeline Design
	4.3 Input and Output
	4.4 System Integration

	5 Compiler
	6 Evaluation Methodology
	7 Results
	7.1 Interconnect Efficiency
	7.2 Overall Area Overhead
	7.3 Overall Performance
	7.4 Throughput per Unit Area
	7.5 Energy/Power Consumption
	7.6 Performance Scaling

	8 Conclusions
	9 Acknowledgments
	References

