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Abstract—To provide data and code confidentiality and reduce
the risk of information leak from memory or memory bus,
computing systems are enhanced with encryption and decryption
engine. Despite massive efforts in designing hardware enhance-
ments for data and code protection, existing solutions incur
significant performance overhead as the encryption/decryption
is on the critical path. In this paper, we present Sealer, a
high-performance and low-overhead in-SRAM memory encryp-
tion engine by exploiting the massive parallelism and bitline
computational capability of SRAM subarrays. Sealer encrypts
data before sending it off-chip and decrypts it upon receiving
the memory blocks, thus, providing data confidentiality. Our
proposed solution requires only minimal modifications to the
existing SRAM peripheral circuitry. Sealer can achieve up to
two orders of magnitude throughput-per-area improvement while
consuming 3× less energy compared to prior solutions.

I. INTRODUCTION

Healthcare organizations, businesses, and governments rely
heavily on secure computer systems for their daily activities
and business conduct. To provide data confidentiality, a wide
range of computational devices, from high-end servers to low-
power IoT devices, implement data encryption standards. In
these devices, only the processor chip is considered secure
and trusted hardware in the system [1]. Anything outside the
processor chip boundary is typically assumed vulnerable and
untrusted. In such a threat model, any data sent off-chip (i.e.,
to the memory or on the cloud) is potentially at risk of being
manipulated, tampered with, or leaked [2]. Novel memory
technologies, such as Non-Volatile Memories (NVMs), can
retain data for a long time after power loss, thus, making
memory protection even more critical.

To protect against memory and bus attacks (e.g., bus snoop-
ing and cold boot attacks [2]), processor vendors are increas-
ingly adding support for protecting the integrity and confiden-
tiality of data through integrity verification and encryption on
the on-chip memory controller [3], [4]. Memory encryption
typically uses Advanced Encryption Standard (AES) block
cipher to encrypt plaintext going to or decrypt ciphertext
from the main memory, using a key re-generated on each
system reboot. However, real-time encryption or decryption
at every memory access in the critical path results in severe
performance overhead [5].

To address the performance issue, recent prior works have
proposed in-memory and near-memory encryption/decryption

solutions [6]–[9]. Xie et al. [6] propose AIM, an in-memory
AES engine that provides bulk encryption of data blocks in
NVM for mobile devices, and encryption is executed only
when the device is shut down or put into sleep/screen-lock
mode. Despite its computational efficiency, AIM does not
protect data confidentiality against bus and memory attacks.
Aga et al. [7] present InvisiMem, which uses the logic layer
in 3D stacked memory to implement cryptographic primitives.
However, the InvisiMem design expands the trusted computing
base (TCB) to the logic layer of the memory. To protect data
confidentiality against physical attacks on both memory and
bus, an efficient real-time encryption/decryption engine needs
to be implemented on the processor chip.

To provide a low-cost, and real-time on-chip encryption
engine, for the first time, this paper proposes to re-purpose 6T
SRAM subarrays into active large vector computational units
to perform encryption and decryption on-chip. Our solution,
Sealer, exploits intrinsic parallelism and bitline computational
capability of memory subarrays for fast and low-overhead AES
implementation, and incurs only a negligible area overhead
(less than 1.55%) compared to the traditional SRAM arrays.
Moreover, Sealer provides the same level of protection for
memory confidentiality as Intel Memory Encryption Engine
(MEE) [3] or AMD Secure Memory Encryption (SME) [4],
and unlike InvisiMem, does not extend the TCB.

In summary, the paper makes the following contributions:
• We present Sealer, a real-time in-SRAM AES engine to

provide data confidentiality by encrypting the plaintext
on the CPU chip. Our proposed architecture effectively
stores the required data for encryption into the same
subarray. This allows the peripherals and resources to be
shared among different computation and communication
units, thus, reducing performance and hardware overhead.

• We present an algorithm and architecture methodology
to efficiently map the AES algorithm to the Sealer
architecture. By fusing the SubBytes and ShiftRows stages
in AES, we can interleave the computation at a finer
granularity and maximally exploit on-the-fly computation
to significantly reduce data movement and write cycles.

• We compare Sealer with several on-chip and in-memory
AES encryption engines and show that our solution
has up to 323× performance improvement, up to 91×
throughput-per-area improvement, and 3× lower energy



consumption compared to prior solutions. To separate the
architectural and technology contribution of Sealer, we
evaluate an in-NVM AES engine on SRAM (AIM-SRAM)
and find that our solution achieves 6× higher performance
than AIM-SRAM due to architectural contribution and
18× better performance due to technology benefits.

II. BACKGROUND AND THREAT MODEL

A. Advanced Encryption Standard

The Advanced Encryption Standard (AES) in cryptography,
also known as Rijndael cryptography, is a block encryption
standard. The AES encryption process operates on a 4×4
matrix of bytes whose initial value is a plaintext block (the
element size in the matrix is one byte). Each AES encryption
round (except the last one) consists of four steps where the
output of each stage is used as an input of the next stage
and described as follows. (1) AddRoundKey: each byte in
the matrix is XORed with the round key. Each round key
is generated by the key generation scheme from a given
cipher key. (2) SubBytes: each byte is substituted with its
corresponding byte in the S-box block using a nonlinear sub-
stitution function commonly implemented with lookup tables
(LUTs). (3) ShiftRows: a round-robin shift is performed for
each row in the matrix. The first row is unchanged while each
element of the second row are shifted to the left by 1 byte.
Then for the third and fourth row, elements are shifted to
the left by 2 and 3 bytes, respectively (see matrix D1 to D2
transformation in Figure 1). (4) Mixcolumns: this step uses
a linear transformation to fully mix the four bytes of each
column. In AES, the MixColumns stage is omitted from the
last encryption loop and replaced with another AddRoundKey.

The overall process of AES for a 128-bit plaintext is shown
in Figure 1. First, the plaintext is XORed with the original
cipher key for initialization. Then after 9 main rounds, each
of which consists of AddRoundKey, SubBytes, ShiftRows, and
MixColumns, and the final round without MixColumns, the
128-bit ciphertext is generated.
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MixColumns
2 3 1 1

1 2 3 1

1 1 2 3
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Cipher Key
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Fig. 1: The steps of AES for a 128-bit plaintext.

B. Computing in SRAM

In-SRAM computing relies on the underlying bitline com-
putation by activating more than one row in the SRAM

subarray [10]. The bitwise AND and NOR operations in
SRAM are implemented directly by utilizing sense amplifiers
(SAs) with multiple wordlines activated, as shown in Figure
2(a). The SA on the bitline (BL) can sense a voltage higher
than Vref only if all the cells in the activated rows connected
to the corresponding BL contain ‘1’. This means the SA will
sense ‘1’, thus, achieving element-wise AND operation. The
SA on the bitline-bar (BL) will sense a voltage higher than
Vref only if all the cells in the activated rows connected to the
corresponding BL contain ‘1’, which, in turn, implies that all
the cells in the activated rows connected to the corresponding
BL contain ’0’. This means the SA will sense ‘1’, thus,
achieving element-wise NOR operation. Using the logical
bitwise AND and NOR operations, the XOR operation can
be performed, as shown in Figure 2(b).

Many studies based on computing in SRAM have been
proposed [11]–[14]. Cache Automaton uses a sense-amplifier
cycling technique to read out multiple bits in one time slot,
thus significantly reducing input symbol match time [14].
Based on the described NOR, AND, and XOR operations,
Compute Cache extends the logical operations by slightly
modifying the SA design in [11]. In this paper, we utilize
the XOR functionality presented in [11], and slightly modify
it (similar to [15]) to be able to perform the shift operation
(required for the proposed fused ShiftRows and MixColumns
stages) in place without the need to store the intermediate
result back into the subarray, thus, reducing processing cycles.
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Fig. 2: The XOR bitline operation using 6T SRAM cells.

C. Threat Model

Similar to the state-of-the-art secure memory architec-
tures [3], we assume the only trusted component is the
processor chip and we do not expand the TCB of the system.
Therefore, bus and memory are vulnerable and untrusted. We
assume the attacker has physical access to the system and can
snoop the bus, or scan the memory. This work proposes high-
performance encryption for protecting data confidentiality.
Addressing timing channels, replay attacks, and access pattern
leakage threat models are left for future work.

III. RELATED WORK

Hämäläinen et al. [16] (EE-1) and Mathew et al. [5] (EE-
2) propose on-die AES encryption engines. EE-2 computes
the entire AES round in composite-field arithmetic, resulting



in delay reduction in the critical S-box unit. They also use
folded datapath design to reduce the wiring complexity of
ShiftRows permutations. Wang et al. propose DW-AES [17]
by utilizing the domain wall nanowire to implement the AES
encryption algorithm in NVM. Though the throughput of DW-
AES is 3.6× higher than the CMOS ASIC proposed in [18],
the latency for one data block is still not low enough to
accommodate real-time encryption.

To improve the performance of memory encryption, recent
works propose in-memory encryption architectures. Xie et al.
[6] present AIM, an efficient in-NVM implementation of AES.
AIM provides bulk encryption/decryption for mobile devices
to protect memory content only when the device is shut down,
locked, or in sleep mode. Therefore, AIM does not provide
real-time memory encryption to protect against bus and mem-
ory attacks. Aga et al. propose InvisiMem [7], which expands
the trust base to the logic layer of 3D stacked memory to
implement encryption. InvisiMem guarantees confidentiality,
integrity, and protecting access patterns using a packetized
interface and authentication to establish a secure communi-
cation channel between processor and memory. Sealer does
not expand the TCB of the system and is the first work that
proposes in-SRAM encryption for data confidentiality.

Commercial examples of memory protection solutions are
Memory Encryption Engine (MEE) [3] in Intel SGX [1] and
AMD’s Secure Memory Engine (SME) [4]. The hardware
component of SGX (i.e., MEE) protects the confidentiality,
integrity, and freshness of processor-DRAM traffic for secure
enclaves. The confidentiality protection in MME and SME
are implemented by AES-128 encryption. Sealer provides the
MEE- and SME-equivalent guarantee for memory confiden-
tiality, but potentially with higher performance and lower
area overhead by exploiting intrinsic parallelism and bitline
computational capability of SRAM subarrays.

We compare the performance of Sealer with EE-1 [16],
EE-2 [5], DW-AES [17], and AIM [6] in Section VI. We
are not able to compare the performance of Sealer with
Intel’s MEE, AMD’s SME, and Invisimem mainly because
these designs provide other memory protections, such as data
integrity. Therefore, we are not able to isolate the encryption
performance from other components in their designs.

IV. IMPLEMENTATION

A. Data Organization

In this paper, an efficient implementation of the AES
algorithm is accomplished using bitline computing of SRAM
arrays, and can be realized by re-purposing a portion of the
L3 cache or by replacing the existing on-chip encryption
hardware. To efficiently utilize bitline computing, we organize
the S-box, plaintext, keys, and intermediate data required by
the AES algorithm in the same subarray, as shown in Figure
3(a). We assume 256×256 SRAM subarrays, following Intel’s
SandyBridge L3 cache structure [19]. As depicted in Figure
3, each subarray consists of 6 Tiles, where each Tile can store
51 data blocks (Row[0]−Row[203] - each data block requires
four rows), one set of round keys (Row[204]−Row[247]), and

intermediate data required for MixColumns stage (Row[248]−
Row[253]). The first 8 columns of the Tile are used to hold
the S-box. All the data blocks arranged in the same set of
rows can encrypt/decrypt data in parallel (i.e., 6 data blocks
per subarray). The data blocks in the same Tile share the same
bitlines, thus, cannot be computed in parallel.
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Fig. 3: (a) Data organization in one subarray. (b) The detailed
structure of the first S-box and data (Tile 0) with three inputs
of AES encryption algorithm: S-box (256-row, 8-bit), 128-bit
plaintext and 128-bit cipher key. (c) The structure of the sense
amplifier to support XOR and shift operations.

The S-box is originally a 16×16 matrix where each element
is an 8-bit data. To avoid adding the extra LUT logic in
the SRAM structure for S-box substitution in the SubBytes
stage, and also to eliminate the communication and wiring
overhead between the data block subarrays and the LUTs,
Sealer proposes to re-organize the S-box into a matrix of
256 rows where each row has an 8-bit element (as shown
in Figure 3(b) - the blue matrix) and utilize the same subarray
as the plaintext and round keys are located. The memory
decoder is used to decode the 8-bit input data to select the
corresponding element for the substitution. This brings two
advantages in Sealer compared to the prior work, AIM [6],



from the architectural aspect; (1) all the required data for
performing the encryption is within the same subarray, and this
brings the opportunity to fuse computation in different stages
while the data is read into SA, and also perform intermediate
data generation on-the-fly without the need to write them back
into the subarray, thus, reducing the total number of cycles,
and (2) unlike AIM that requires additional modules, such as
LUTs and multiplexers, we repurpose the existing resources
(i.e., memory array and peripherals) to perform the required
computation, and thus, avoiding extra hardware overhead.
Details are discussed in Sections IV-C and IV-D.

B. AddRoundKey

AddRoundKey receives two matrices, the data matrix (i.e.,
the plaintext) and the key matrix (i.e., the round key). Each
corresponding byte in the data matrix is bit-wise XORed
with each byte in the key matrix by activating two rows
using two decoders. We follow the bitline XOR functionality
implementation in [6], which costs 3 times longer than a single
subarray read/write access.

As depicted in Figure 3 (b), the data matrix (green area)
and the key matrices (orange area) rows are arranged in
consecutive rows (column-aligned) in the subarray, and the
elements within the same row in the matrix are located next to
each other horizontally in the subarray (i.e., each 128-bit data
matrix or 128-bit round key requires 4 consecutive rows and
32 consecutive columns). This means that Sealer can perform
the bitwise XOR in parallel on 192 bits (4 elements in one row
of a Tile, across 6 Tiles in a subarray) of plaintext within one
subarray in only 3 cycles (note that several subarrays can work
all in parallel without almost any performance overhead!).
The AddRoundKey output (i.e., the bitwise XOR) is sensed
in the SAs (Figure 3 (c)) by activating the equivalent rows
in the data matrix and key matrix. To maximally utilize the
data that is already in the sense amplifier (i.e., row buffer
hit) and eliminate unnecessary write cycles, we perform the
computation of the next stage (i.e., SubBytes) on the output of
the first row before writing it back to the subarray.

C. Fused SubBytes and ShiftRows

To efficiently implement the SubBytes and ShiftRows stages
and reduce the total number of processing cycles, we fuse the
ShiftRows and SubBytes stages. This is done by selecting the
right order of the elements from the output of AddRoundKey
and feeding the element as the input address of the decoder
to read the substitution value. The order is determined by the
number of shifts required in the ShiftRows stage.

AES defines a substitution box (S-box), which consists of a
16× 16 byte matrix and is used to substitute each byte of the
data block with the corresponding byte in the S-box matrix
by using the four MSB bits to select one of the 16 rows and
the four LSB bits to choose one of the 16 columns. Instead
of adding LUTs and incurring the extra hardware overhead,
Sealer re-purposes the existing resources in SRAM and store
the S-box in the same subarray as data block and keys are
stored. We accordingly reorganize the conventional 16 × 16

byte matrix to a matrix of 256× 1 where each row represents
one byte (Figure 3 - blue S-box matrix). We then use the
result of AddRoundKey stage, which is already stored in the
sense amplifiers, as the input of the decoder and read the
substitution bytes consecutively. The input of the decoder is
equipped with a two 8-bit entry FIFO buffer, to enable the
in-place substitution (SubBytes) and shifting (ShiftRows).

Figure 4 demonstrates how the proposed fused SubBytes
and ShiftRows stage works for the third row in the data bock
matrix using a step-by-step example. In the initial time step
(T0), the XOR results of the third row in the data matrix (a1,
46, f6, 2e) and the third row of the round key matrix (cd, 4b,
42, cf) are written into the SA buffers (6c, 0d, b4, e1). We
first explain the conventional computation used in prior work
(i.e., computing SubBytes and ShiftRows consecutively), and
then, we describe the proposed fused approach in Sealer.

Assume that the substitution bytes (i.e., the output of the
SubBytes stage) for (6C, 0d, b4, e1) are (50, d7, 8d, f8). The
output of the SubBytes will be the input of ShiftRows in the
next stage. Because the computation is performed on the third
row, the ShiftRows stage will shift the byte to the left two
times using cyclic shift, i.e., the output of the ShiftRows stage
will be (8d, f8, 50, d7).

In the proposed fused approach, we first select the element
that its corresponding substitution byte will be located on
the right-most side of the array after the ShiftRows stage is
completed, i.e., sel = 10(“0d”) will be read into the input
buffer. Then, we select the elements in the AddRoundKey
output one by one according to their corresponding locations
in the ShiftRows output from the right-most side element to
the left-most side element in the array, i.e., sel = 10(0d) →
11(6c) → 00(e1) → 01(b4).

For the correct functionality, the input buffer should have
two entries. In T1, 0d and 6c are read to the FIFO buffer.
Then, the decoder takes 0d as the input address and the
corresponding substitution byte is read into the row buffer (i.e.,
d7). In T2, first, e1 is selected (Sel = 00) and read into the
second entry of the input buffer. Then, the intermediate output
is shifted to the right by one byte, and finally, the decoder
takes 6c as the input and the corresponding substitution byte
is read into the row buffer (i.e., 50). In T3, first, b4 is selected
(Sel = 01) and read into the second entry of the input buffer.
Then, the intermediate output is shifted to the right by one
byte, and finally, the decoder takes e1 as the input and the
corresponding substitution byte is read into the row buffer (i.e.,
f8). In T4, first, the intermediate output is shifted to the right
by one byte, and then, the decoder takes b4 as the input and
the corresponding substitution byte is read into the row buffer
(i.e., 8d). Finally, in T5, the intermediate buffer is shifted to
the right by one byte and the final output of the ShiftRows is
generated and ready to be used by the MixColumns stage.

The shift operation is implemented by introducing a latch
and a multiplexer within the SA [15], as shown in Figure 3(c).
The proposed fusion approach greatly reduces write cycles,
thus reducing processing latency (evaluated in Section VI-B).
It is important to note that the fused SubBytes and ShiftRows
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Fig. 4: Fusion of the SubBytes and ShiftRows stages for the third row of the data matrix.

computation are done in parallel across all the Tiles (i.e., one
data block in each Tile as the data blocks within one Tile
cannot be processed in parallel) in and across subarrays.

D. MixColumns

In the MixColumns stage, each column of the input data
matrix (i.e., the output matrix of ShiftRows stage) is multiplied
with a two-dimensional constant array, called the fixed matrix,
to obtain the corresponding output column. All the addition
and multiplication are both defined over a finite field. To
achieve efficient computation in SRAM, and to reduce the
resource consumption and the number of SRAM accesses for
intermediate results, we decompose the matrix multiplication
of data columns and the fixed matrix into matrix elements,
an intermediate value Tc, and the product of matrix elements,
following [6]. The decomposition equation is as follows:

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2



B0,c

B1,c

B2,c

B3,c

 =


2B0,c + 3B1,c +B2,c +B3,c

B0,c + 2B1,c + 3B2,c +B3,c

B0,c +B1,c + 2B2,c + 3B3,c

3B0,c +B1,c +B2,c + 2B3,c

 =


Tc ⊕ 2B0,c ⊕ 2B1,c ⊕B0,c

Tc ⊕ 2B1,c ⊕ 2B2,c ⊕B1,c

Tc ⊕ 2B2,c ⊕ 2B3,c ⊕B2,c

Tc ⊕ 2B0,c ⊕ 2B3,c ⊕B3,c,

 (1)

where Br,c denotes the byte in row r and column c, and Tc

is the intermediate result for column c. Tc is calculated as:

Tc = B0,c ⊕B1,c ⊕B2,c ⊕B3,c. (2)

The computation of 2×Br,c elements in Equation 1 is done
in ShiftRows stage by shifting the output of ShiftRows stage to
the left by one bit and storing them back in the intermediate
region of the subarray. Figure 5(a) shows how Tc in each
column is calculated and stored in the subarray in 6 steps using
an example (note that the calculation of Tc is fully parallel
in each column). To calculate T0, in Step 1, the two (red)
worldlines are activated simultaneously to calculate the XOR
of B0,0 and B1,0, and store the result (I0) in the intermediate
region in Step 2. Next, the XOR of B2,0 and B3,0 is calculated
in Step 3 and written back to the array (I1) in Step 4. Finally,
T0 is calculated (Step 5) and written back (Step 6). Figure
5(b) shows how the final output is calculated for Tc⊕2B0,c⊕
2B1,c⊕B0,c by activating the corresponding rows, calculating
the XOR of the activated cells, and writing the intermediate
results back. After 6 steps, the output of the MixColumn (B

′

0,0)
overwrites the original data (B0,0).

V. KEY GENERATION AND STORAGE

Similar to state-of-the-art memory encryption engines [3],
we assume the encryption key is generated using a hardware
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Fig. 5: Example of MixColumns stage.

random number generator and implemented in the processor
chip. The key is inaccessible outside of the chip. The expan-
sion of the given cipher key can also be utilized to obtain
11 partial keys, which are used in the initial round, the 9
main rounds, and the final round. The expansion process can
be implemented in the subarray, including shift operations
between columns, the SubBytes stage, the XOR operations
between rows and a given reconstruction matrix. The generated
keys will be stored within the subarray as shown in Figure 3.

VI. EVALUATION

A. Evaluation Methodology

In this section, we evaluate the performance, throughput-
per-area and energy/power of Sealer and compare it to prior
in-memory encryption solutions [6], [17] and on-chip memory
encryption implementations [5], [16]. AIM architecture [6]
is implemented in-MRAM (AIM-NVM) and Sealer utilizes
SRAM-based subarrays. To decouple architectural contribution
from the technology contribution and have an apples-to-apples
comparison between AIM and Sealer, we model and evaluate
the architecture of AIM in SRAM (AIM-SRAM). The area
overhead evaluation presented in the AIM is based on relative
numbers. To directly compare the area overhead of AIM-NVM
and AIM-SRAM with Sealer, we use NVSim [20] to obtain
the absolute area parameters for the peripherals used in AIM-
NVM. The read/write access latency to a 256×256 6T SRAM



subarray is 163 ps, and an XOR operation in SRAM costs 489
ps, which are extracted from the SPICE simulations with 28nm
SOI CMOS process [11], [14]. To evaluate the energy and
power consumption of SRAM-based and NVM-based designs,
we use DESTINY simulator [21].

The baselines for comparison against Sealer are (1) EE-
1 [16], which introduces an AES encryption based on a
dedicated engine for low power consumption at 290 MHz, (2)
EE-2 [5], which presents a high-frequency integrated circuit
encryption engine at up to 2.13 GHz, (3) DW-AES [17], which
uses domain-wall nanowires to implement AES encryption in
NVM at 30MHz, (4) AIM-NVM, and (5) AIM-SRAM.

B. Latency Analysis

Figure 6 compares the data encryption latency of different
solutions normalized to the Sealer latency for 24 data blocks
(384 bytes) and for 192 data blocks (3072 bytes, which
is approximately the size of one cache slice in L3 [19]).
Sealer has 30× (243×), 1.22× (9.8×), and 1880× (15040×)
lower latency than EE-1, EE-2, and DW-AES, respectively,
for encrypting 24 data blocks (192 data blocks). For all these
solutions, Sealer’s performance improves significantly when
increasing the memory capacity because of the intrinsic bit-
level and subarray-level parallelism in memory. For example,
EE-2 can operate on only four blocks in parallel, while Sealer
can encrypt 192 data blocks simultaneously when utilizing
the 2MB SRAM. In general, in-memory solutions (Sealer,
AIM-NVM, and AIM-SRAM) provide significantly higher
parallelism than dedicated hardware engines (EE-1, and EE-2).
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Fig. 6: Latency comparison among different baselines normal-
ized to Sealer for encrypting 24 and 192 data blocks.

Sealer has almost 6.5× lower latency than AIM-SRAM
(architectural contribution of Sealer compared to AIM). This
is because the required number of cycles for encrypting six
data blocks in a subarray in AIM-SRAM is almost 6.5×
higher than Sealer, as shown in Figure 7. Figure 7 compares
the cycle breakdown for different stages in Sealer and AIM.
AddRoundKey stage has the same number of cycles in both
architectures. However, the fused SubBytes and ShiftRows
stage in Sealer requires 59.5% less cycle than the total cycles
for SubBytes and ShiftRows stages in AIM. This benefit is
enabled by storing all required data (i.e., data blocks, S-
box, round keys, and intermediate data) in the same sub-
array, which facilitates computation fusion among different
stages, thus, resulting in fewer write cycles. Moreover, in the
MixColumns stage, unlike AIM which uses additional LUTs,
Sealer utilizes the existing rows and peripherals in the under-
processed subarray to store intermediate results, thus, avoiding

the bandwidth bottleneck of moving data between subarrays
and limited LUTs. Increasing the number of LUTs can provide
more parallelism in AIM, however, it significantly increases
area overhead, thus, decreasing throughput-per-area.

Sealer has 107× and 323× lower latency than AIM-NVM
for encrypting 24 and 192 data blocks, respectively. The
latency reduction for encrypting 24 data blocks comes from
the architectural contribution (about 6× due to the data layout
and fusing computational stages) and technology contribution
(about 18× due to the choice of SRAM compared to NVM)
in Sealer. Overall, Sealer presents a low latency encryption
solution, which makes it suitable for real-time encryption.

Number of Clock Cycles

Sealer
AIM-SRAM

0 6000 12000

AddRoundKey SubBytes ShiftRows
Fused SubBytes and ShiftRows MixColumns

Fig. 7: Breakdown of processing cycles in AIM-SRAM and
Sealer for encrypting 6 data blocks.

C. Throughput Normalized to Area

Figure 8 compares the throughput-per-area for Sealer, AIM-
NVM, and AIM-SRAM. Sealer has 7.2× higher throughput
per unit area than AIM-SRAM. These benefits come from the
fact that (1) Sealer only incurs negligible extra overhead to the
SRAM arrays by sharing the memory resources and peripheral
among different stages of computation and communication,
while AIM-SRAM requires additional hardware components,
such as LUTs and bundles of MUX/DEMUXes, and (2) Sealer
utilizes an efficient algorithm/architecture methodology to fuse
different computational stages, which maximizes on-the-fly
computation and minimizes data movement. Sealer can also
achieve more than 91× throughput per unit area compared to
the AIM-NVM. Although the area consumption of AIM-NVM
is lower than Sealer, the frequency of Sealer is 133× higher
than AIM-NVM; thus, results in higher throughput.
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Fig. 8: Throughput comparison among AIM-NVM, AIM-
SRAM, and Sealer for encrypting 192 data blocks.

D. Energy/Power Analysis

Figure 9 compares the energy and power of Sealer, AIM-
NVM, and AIM-SRAM when encrypting 24 and 192 data
blocks. To complete the encryption, Sealer consumes 3× less
energy compared to AIM-NVM and AIM-SRAM, thanks to
our fusion scheme and the reduction of LUT queries. The



energy consumption of AIM-SRAM is slightly lower than
AIM-NVM. This is because the MixColumns stage, which
has the highest number of operations during encryption in the
AIM architecture, contains a large number of write operations
(the write dynamic energy of AIM-NVM is higher than
the read dynamic energy). Sealer has 34× and 2× higher
power consumption compared to AIM-NVM and AIM-SRAM,
respectively. This is because Sealer has a higher operational
frequency and also maximizes computational parallelism so
that almost all units are activated and computing, which greatly
increases compute/memory unit utilization. However, the other
two designs have all other computing and memory units idle
when querying the lookup table.
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Fig. 9: Energy & power comparison among Sealer, AIM-
NVM, and AIM-SRAM for encrypting 24 and 192 data blocks.

VII. CONCLUSION

In this paper, we propose Sealer, a real-time low-overhead
in-SRAM AES engine to encrypt the plaintext on a CPU chip
with narrowed trusted computing base. By efficiently mapping
the algorithm to the Sealer architecture at a finer granularity,
data movement is significantly reduced. Our evaluation results
show significant performance (up to 323×) and throughput-
per-area (up to 91×) improvement over the state-of-the-art
in-memory and specialized encryption engines. Future work
will extend Sealer to provide data integrity and access pattern
protection in addition to data confidentiality.
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