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Abstract—Data movement comprises a significant portion of
energy consumption and execution time in modern applications.
Accelerator designers exploit quantization to reduce the bitwidth
of values and reduce the cost of data movement. However,
any value that does not fit in the reduced bitwidth results in
an overflow (we refer to these values as outliers). Therefore
accelerators use quantization for applications that are tolerant
to overflows. We observe that in most applications the rate of
outliers is low and values are often within a narrow range,
providing the opportunity to exploit quantization in general-
purpose processors. However, a software implementation of
quantization in general-purpose processors has three problems.
First, the programmer has to manually implement conversions
and the additional instructions that quantize and dequantize
values, imposing a programmer’s effort and performance over-
head. Second, to cover outliers, the bitwidth of the quantized
values often become greater than or equal to the original
values. Third, the programmer has to use standard bitwidth;
otherwise, extracting non-standard bitwidth (i.e., 1-7, 9-15, and
17-31) for representing narrow integers exacerbates the overhead
of software-based quantization. The key idea of this paper is
to propose a hardware support in the memory hierarchy of
general-purpose processors for quantization, which represents
values by few and flexible numbers of bits and stores outliers
in their original format in a separate space, preventing any
overflow. We minimize metadata and the overhead of locating
quantized values using a software-hardware interaction that
transfers quantization parameters and data layout to hardware.
As a result, our approach has three advantages over cache
compression techniques: (i) less metadata, (ii) higher compression
ratio for floating-point values and cache blocks with multiple data
types, and (iii) lower overhead for locating the compressed blocks.
It delivers on average 1.40/1.45/1.56× speedup and 24/26/30%
energy reduction compared to a baseline that uses full-length
variables in a 4/8/16-core system. Our approach also provides
1.23× speedup, in a 4-core system, compared to the state of
the art cache compression techniques and adds only 0.25% area
overhead to the baseline processor.

I. INTRODUCTION

Data transfer across the memory system and interconnect
constitute a significant fraction of the total energy and per-
formance in memory-intensive applications [1], [2], [3], [4],
[5], [6]. Prior works [7] show that the energy cost of fetching
a 32-bit word of data from off-chip DRAM is 6400× higher
than an ADD operation. This trend worsens as the processor
technology moves to smaller nodes.

Prefetching and forwarding techniques [8] can alleviate the
performance cost but they can not reduce the energy cost
of data movements. Therefore, several approaches proposed
to trade off the accuracy for the size of transferred data by
omitting (truncating) a certain number of least significant bits
(LSBs) in the mantissa of floating-point numbers [9], [10].
We refer to these methods as OLSB. Two factors limit the
benefit of such techniques: (i) the overhead of eight bits for
the exponent, and (ii) the high error that grows with the value
of the exponent. In other words, the larger the magnitude of
the value, the higher the absolute error (the magnitude of er-
ror). Despite the unfavorable effects, the floating-point format
and the exponent part are necessary for supporting a wide
range of values. In fact, the floating-point format is popular
among developers because it supports a wide range of values
and decreases the probability of overflow during arithmetic
operations. Due to this popularity, processor vendors added
floating-point ALUs as soon as there were enough transistors
available on the chip.
Our characterization demonstrates that, in real applications,
most of the data values lie within a limited range and only
a small fraction of data values are located at the tail of the
distribution where these values are relatively further from the
average. We define these values as outliers. Based on this
observation, we make a case for using a specific type of
quantization (biased fixed-point), as a mean to reduce the
bitwidth of the variables and reduce the cost of data movement.
This type of quantization maps a range of values to a set of
discrete indexes and therefore it requires few bits to represent
indexes [7], [11], [12], [13].

Fig. 1: Quantizing a range of values to 3-bit integers

Figure 1 shows that this type of quantization reduces the
number of bits required for representing values in the range of
1.25 to 2.75 by dividing the range into six steps (∆=0.25) and
mapping them into 3-bit integers (step-index). In this method,
outliers can significantly expand the range and consequently



increase the number of bits required to represent the quantized
values, even though they are accessed very infrequently. A
simple solution for handling outliers is to map values that
result in overflows to the maximum or minimum of the range.
The effect of such mapping depends on the application. For
example, in BlackSholes, mapping outliers to the maximum
or minimum of the range increases maximum absolute error
by 116%, 333% and 69355% for bitwidth of 4, 8, and
12, respectively (as bitwidth increases our method’s error
decreases and hence the ratio of the error caused by outliers
to our method's error increases).

A software implementation of quantization in general-
purpose processors imposes a significant conversion overhead
and programmer’s effort, is prone to overflow, and more
importantly, can not unlock maximum benefit for variables
that require less bitwidth than standard variables. It has to use
only 8-bit, 16-bit, or 32-bits variables and hence it imposes
significant (e.g., 100%, 77%, or 88% for 4-bit, 9-bit, or 17-bit
variables, respectively) cache space and memory bandwidth
overhead (more details in Section II).

Due to these constraints, quantization is popular in ac-
celerators, where the bitwidth can be customized [14], [15],
[16]. However, having one accelerator for each application,
especially in consumer devices, is impossible, due to space
constraints, scheduling overheads, communication overheads
and, interconnection limitations.

The goal of this work is to propose and evaluate an
overflow-free and transparent architectural support for quanti-
zation in memory hierarchy of general-purpose processors to
accelerate a large domain of memory-intensive applications,
where variables can be represented with minimum and flexible
number of bits. Our hardware modules act as accelerators for
conversions that transparently quantize and dequantize cache
blocks as they move between L1 and L2 (or alternatively
between L2 and L3). Accordingly, the data values are quan-
tized in the memory hierarchy in L2 and beyond and are de-
quantized when transferred to L1, saving the capacity of L2,
L3, and memory as well as bandwidth of L3 and memory. The
values are in their original format in L1 and hence quantization
causes no overflow during computation. To prevent overflow
while we quantize and transfer data to L2, we propose to store
and represent outliers in a separate space, assigned to outliers,
and propose a mechanism for retrieving these values.

Quantization could be considered as a specific type of com-
pression. However, cache compression techniques impose a
significant metadata overhead and need a complex mechanism
for locating the address of compressed values in compressed
caches (translating the address). Due to these overheads, most
of the cache compression techniques are only amenable for
L3 [17], [18] and not applicable for L2 (more details in Sec-
tion II). We observed that the inefficiencies stem from the fact
that compressor and decompressor have minimum information
about the program and obliviously search for value locality
within each cache block that they receive [17], [19]. We exploit
the predictability of the range of values and fixed bitwidth in
quantization and devised a software-hardware interaction to

address inefficiencies in cache compression techniques. The
interaction transfers specific characterization of applications
such as data layout, distribution of values, and tolerable error
(translated to mid, step-size, and bit-width) to hardware. Our
hardware modules use this information to track which pages
belong to which array of the application and hence store
metadata only once for all pages of an array, reducing the
metadata overhead. More importantly, our hardware modules
exploit the bitwdith information for a light-weight address
translation mechanism, implemented by arithmetic operations.
This simplified address translation mechanism enables us to
have a compressed L2 in addition to L3.

This paper makes the following contributions:

• We characterize 11 real data sets to show that real appli-
cations operate on data values within a particular narrow
range, with only few outliers out of the range, suggesting
that a significant portion of values can be represented by
few bits.

• We propose efficient techniques to provide support for
quantization in hardware. First, we propose a simple
software-hardware interface to specify quantized variables
and the necessary parameters. Second, we introduce ef-
ficient hardware modules that transparently quantize and
dequantize cache blocks between a upper-level cache and
a lower level cache. Third, we propose an efficient way of
supporting outliers.

• Our evaluation of approximate applications shows that
quantization provides on average 39-98% better accuracy
compared to the techniques that omit the LSBs. Quanti-
zation provides on average a speedup of 1.40/1.45/1.56×
and energy reduction of 24/26/30% compared to a baseline
that uses full-length variables in a 4/8/16-core system. We
have synthesized the RTL implementation of our hardware
modules [20] and the synthesize report shows that our
method adds only 0.25% area overhead to the baseline
processor.

II. MOTIVATION
In this section, we explain the benefit of hardware-based

quantization over three alternative approaches: (i) quantization
in software, (ii) OLSB, and (iii) cache compression.
A. Quantization in Hardware versus Software

A software-based implementation of the quantization
method suffers from four disadvantages. First, it imposes the
overhead of multiple instructions for each conversion. Figure
2 (a) demonstrates multiple examples of necessary conversion
points: (i) quantization before storing values in arrays ( 1 and
3 ), (ii) dequantization before functions that requires the real

values, such as sine and cosine ( 2 ), (iii) dequantization before
computation on non-quantized values ( 4 ), (iv) conversion to
avoid overflow ( 5 ), and (v) dequantization before storing the
final results in the output file ( 6 ). Second, it is error-prone as
programmers should manually detect the locations of neces-
sary conversions. Third, when the required bit-width is 1-7, 9-
15, 17-31, it uses 8-bit, 16-bit and 32-bit variables, respectively
(to avoid the overhead of addressing and extracting a few



bits in a sequence of bits), imposing up to 700%, 77% and
88% overhead of cache space and memory bandwidth. Fourth,
it cannot represent outlier values, which is quite common
in real data sets (explained in Section III). For example, in
Blackscholes, most price values can be represented by 6 bits
but the maximum price requires 18 bits. With no support for
outliers, software-based quantization has to use 32 bits for all
values. We can implement our proposed method for outliers
in software and store them in a separate array. However, in
this case, quantization ( 7 ) and dequantization ( 8 ) functions
becomes more complex as they have to check outliers and
read/write outliers from/in a separate space( Figure 2 (b)).

Fig. 2: Quantization in software

B. Quantization versus Omitting the LSBs.

This section discusses two major benefits of using quanti-
zation in approximate applications.
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Fig. 3: Final output error using quantization vs. OLSB

(a) Angles (b) Coordinates
Fig. 4: Relative error for (a) angles, and (b) coordinates

(i) Lower relative error/shorter bit-width. Figure 3 (a)
compares the error introduced by quantization to the error
introduced by OLSBs while varying the bit-width from 4 to
30 in eight popular approximate applications (details on the
methodology is available in Section VI-A). For OLSB, we

use one bit for the sign and the rest of the bits for mantissa
(unless the bitwidth is 4 bits, where we use one bit for the sign
and three bits for exponent and assume mantissa is one). The
accuracy metric here is the average relative error (average
of the percentage of error for all output variables), which
has been used in prior works on approximation [9], [27],
[28]. This figure clearly shows that, for any given bit-width,
quantization’s error is lower than OLSB’s error. It also shows
that, for the same level of error, quantization requires fewer
bits. Shorter bit-width stems from the fact that, unlike OLSB,
quantization does no need eight bits for the exponent part.
(ii) Lower absolute error/shorter bit-width. When the ac-
curacy metric is the relative error, the magnitude of the error
can grow with the magnitude of the original value. However,
many approximate applications expect that the magnitude of
error remains limited regardless of the original value. For
example, Inversek2j (an application from AxBench suit [27]),
is an application that calculates the rotation angle for a 2-
joint robotic arm. Assume that we define a relative error of
10% as the tolerable error. In this case, if the arm moves a
small angle to hold the object, such as 30°, it will be off by
only 3°, but for large angles, such as 120°, the error becomes
12°, which is quite high and can potentially make the arm
miss the target object (Figure 4(a)). In reality, the acceptable
error depends on the diameter of the target object, which is
a fixed value and does not depend on the original value of
the rotation. Another example is the inputs of Jmeint (from
AxBench suit [27]) that analyzes the overlap of a pair of
triangles in the 3-D space. In the real world, the acceptable
error for the coordinates of the point A should not depend on
the location of the center of the cartesian system (Figure 4(b)).
For these applications, the absolute difference between the
original value and the approximate value defines the proper
accuracy metric. Unfortunately, when we omit the LSBs from
the mantissa, the absolute error depends on the value of the
exponent (Error = (−1)S×

(∑23
i=23−(l+1)M23−i2

−i
)
×2E)

which can lead to a high absolute error if the exponent value
is large whereas quantization limits the maximum possible
absolute error to the step-size. Figure 3 (b) demonstrates that,
compared to OLSB, quantization lowers maximum absolute
error in the output of our evaluated approximate applications
when the bit-width is varied from 4 to 30.

C. Quantization versus Cache Compression.

Cache compression techniques have three problems. First,
they require metadata per cache block. For example, Base-
delta [19] shrinks the size of each cache block by subtracting
the values within the block from a base value. It requires 1-4
bytes for the base value per block. For a compression ratio as
high as four, the four bytes, per compressed block, imposes
25% overhead. Second, they can not achieve a reasonable
compression rate for two types of arrays: (i) arrays containing
single-precision floating point values, where variation in the
least significant bits is high and (ii) arrays of structure or
any other composite data type with consecutive variables that
are inherently different. Third, cache compression techniques,
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Fig. 5: Variables in real datasets exhibiting a limited range (details in Table I)
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Fig. 6: Histograms of data values in various applications

compress each block of the cache into different size which
requires a complex mechanism for locating the cache
blocks. As a result, they employ one of the three following
techniques: (i) padding that pads compressed block so that
the size of each compressed block becomes an integer and
power of two fraction of the size of the original cache block
(e.g. LCP [29]) (i) dividing the original cache block into
integer number of segments and assigning one tag per each
segment (e.g. HyComp [17]), (ii) employing a completely
decoupled tag array and data array, where the tag array points
to the start of the compressed block in the data array (e.g.
Decoupled compressed cache [18]). The first and second
approach constraint compression ratio and the third approach
requires modification in the cache and a defragmentation
mechanism for the data array. More importantly, tag and
data can not be accessed in parallel and will be accessed
sequentially, doubling the latency of caches (which is already
around 36 cycles for modern large last level caches). Since
the complex decoupling mechanism cannot be employed for
L2 caches, most cache compression techniques only compress
the last level cache. In quantization, the compressed bitwdith
is fixed and the page offset of each compressed variable
can be determined by arithmetic operations. Section IV-D
explains that we exploit the fixed bitwidth to locate our
compressed values using simple arithmetic operations and
keep the original structure of the cache, eliminating the
decoupling mechanism. This enables us to quantize values
in L2 in addition to L3. More importantly, by transferring
information about data layout to hardware, we track which
pages belong to which array of the application and hence
store metadata only once for all pages of an array.

III. KEY OBSERVATIONS AND KEY IDEAS

This section explains three key observations that form three
key ideas of this paper.
Observation 1: Data Values in a narrow Range. We
characterize 11 real data sets [21], [23], [24], [26], [30],
[31], [32], [33], [34], [35] used in different domains, such

as machine learning, weather forecast, financial analysis, sig-
nal processing, image recognition, etc. (details in Table I).
Figure 5 illustrates the box plot for several variables in these
datasets, where the box shows the range of values in the first to
third quartile, the bars show the lower and upper limit within
1.5× of the first and third quartile, and the values outside
that range are shown as dots. This figure clearly demonstrates
that data sets for many approximate applications exhibit values
within a narrow range. The first key idea is that, given the
narrow range of values, quantization can be applicable to a
wide range of applications and efficiently reduce the cost of
data movement.

TABLE I: Description of real data sets
Variable name Data set description

V1, V2, Amnt Credit card fraud detection data set [30]
CO, T, RH, AH Sensor data for air quality [31]
Temp, Wind, ISI Weather index for forest fire [32]
Loc, Abs, Rap, Ddp Speech data from parkinson patients [33]
X1, X2, Y2 Intrusion detection data set [34]
Sam, Dif Building shapes for energy efficiency [35]
W1, Nm1 Purchase in sale transactions [36]
Price, Net Stock exchanges [21]
SndA Sound amplitudes [23]
EEGA EEG amplitudes [24]
Actv (VGG) Images for deep learning [26]

Observation 2: Outliers. Figure 5 also demonstrates that
some values will be outside the limited range (outliers) and
Figure 6 shows that data values in most real applications
exhibit a normal/folded normal distribution. According to the
normal distribution definition, 99.99% of the data values are
within 8 standard deviation and only 0.0001 (0.01%) of the
values fall outside this range. There are two common ap-
proaches to deal with outliers in data analysis techniques [37]:
(i) mapping outliers to a minimum or maximum value, or
(ii) processing the outliers with their original values if the
outliers provide meaningful insight to the analysis [37], [38],
[39], [40]. Our proposed method provides support for both
approaches. The second key idea is to use the lowest possible
number of bits for the most common values and store and rep-



resent outliers separately, for applications that require support
for the second approach.

Fig. 7: (a) Original and (b) quantized array of structure

Observation 3: Common data layout in memory intensive
applications. Pointers impose a significant overhead [41],
[42], [43]. Consequently, memory intensive applications, with
high spatial locality, layout data in two different ways: (i)
array of structures (AoS), or (ii) structure of arrays (SoA).
For example, in graph processing applications (which intu-
itively should use a linked list), we prefer arrays of edges
and vertices or sparse matrices [44], partly, because pointer
chasing, dynamic memory allocation (for each element of
the data structures such as linked list) and additional random
memory access of linked lists imposes a significant overhead.
Supporting quantized SoA is straightforward as consecutive
elements have same quantization parameters. However, pro-
viding support for AoS requires a complex metadata handling
and address translation mechanism (Figure 7 shows how
AoS should be quantized). Accordingly, the third key idea
is communicating data layout to hardware and track which
pages belong to which arrays to keep metadata once per
whole array and use the layout information for simplifying
address translation. Communicating the layout, also enables
eliminating the unused bits before byte variables (used for
alignment of composite data types, as shown in Figure 7),
compressing boolean values (which only need one bit), and
compressing integers within narrow range (assuming the step-
size is equal to one).

IV. MECHANISM

We quantize and dequantize value in the memory hierarchy
and keep the ISA, pipeline, load-store module, controller, and
data-path intact for three reasons. First, providing support for
quantization in the processing unit calls for invasive modifica-
tions in cores. Second, previous studies show that employing
short variables in the computation part of the systems, such
as ALU, can significantly increase the error (due to arithmetic
overflow and inaccurate intermediate values) [9], [45]. Third,
the cost of moving data is 6400 times higher than ALU
operations in modern processors [7]. Therefore, we focused on
reducing the cost of data movement. The location of conver-
sion can be decided based on different tradeoffs (performance
vs. power). Hereafter, we assume that the conversion occurs
between L1 and L2 caches, as it provides higher speedup by
increasing the effective size of L2. However, we also evaluate
the performance improvement when the conversion point is
between L2 and L3 cache such that values are stored in the
full-length format in both L2 and L1 caches (Section VI-F). In
this section we answer seven questions: (i) how to determine
the quantization parameters?, (ii) how to transfer metadata

to Hardware?, (iii) how to retrieve metadata?, (iv) how to
locate quantized values?, (v) how to quantize and de-quantized
values?, (vi) how to handle corner cases?, and (vii) how to
avoid overflows?.

A. How to Determine the Quantization Parameters (Meta-
data)?

We observe that quantization parameters only depend on the
nature of data and do not change significantly with different
data sets. For example, many speech recognition applications
process the amplitude of people’s voice [22], [23], which does
not drastically change across different datasets. In the modern
development process, applications (such as machine learning
applications) are trained and tested using some data set before
the deployment. During the execution (inference) phase, the
application process data with the same nature. Therefore,
the quantization parameters can be derived using an offline
profiler during the training and testing phase. To determine the
effectiveness of the offline profiling, we divide our dataset into
training and testing sets. Similar to machine learning training
and testing, we kept at least 10% of the data for testing. For
datasets such as NYSE [21], we tracked the stock prices for 20
days to have more than 80000 observations for training and
ten days for testing. Some datasets such as CIFAR-10 [26]
already have separated testing and training sets (There are
50000 training images and 10000 test images). We used their
partitioning for testing and training. We profile applications
using the training set to find the parameters for some specific
average relative error (e.g., less than 10%/5%/1%) and find that
the parameters provide similar accuracy even with the testing
sets (the average relative error is 7%/2.2%/ 0.64%). Note
that the quantization parameters can be selected conservatively
with a small overhead. For example, a conservative selection
of 0.5×step-size (the smaller the step-size, the lower the
error) increases the bit-width only by one bit. Additionally,
the offline profiling does not need to be 100% accurate as our
mechanism is capable of handling a small fraction of outliers
(explained in section IV-G).

Profiling can be a automated process. A parser detects
arrays and the structure of arrays, then passes this information
to the profiler. The profiler detects whether the arrays are
large enough and extracts the quantization parameters for
the specified tolerable error. A similar automated approach
is being used for accelerator designs [10], [16].

//@quant<bit­width, step­size, mid> 
struct element{ 

    @quant <3, 0.25, 1> float price

    @quant <1, , > bool type

    @quant <5, 0.5, 0> float yield };

@quant element array1; 

array1(element*)malloc(n*sizeof(element));

(a) (b)

field
annotationarray

annotation
annotation 
 form

at 

mallocQuantize(n*sizeof(element), Metadata);

Page Table &
M

etaD
ata-Table 

TLB
 &

 
 M

ataD
ata-B

uffer 

 
M

alloc(M
etadata) 
 

4

M
etadata 

System
 C

all

M
M

U

C
om

piler

O
S

321

Fig. 8: Software-hardware interaction



B. How to Transfer Metadata to Hardware?

After profiling, we need to communicate the quantization
parameters obtained by profiler to software and then from
software to hardware. We have two options for transferring
quantization parameters to software: (i) automatic and static
annotation of arrays with quantization parameters as shown in
Figure 8 (a), and (ii) putting the parameters in input arguments,
so that it can be read at run-time, dynamically (useful for API
and library developers).
There are three essential steps involved in the communication
of quantization parameters to hardware. First, the compiler
extracts the metadata from the annotated code. It extracts Bit-
width, Step-size, and Mid values of each filed of the structure
(or address of the variables, in which these values are stored),
as shown in Figure 8 (a) and Figure 8 (b), step 1 . (For
this step, we are mimicking the compiler support and do not
change the compiler itself). Then, the compiler passes this
data to OS, using a specialized malloc function (system call
in step 2 ). Second, the malloc function assigns a page aligned
space to the array and calculates other required metadata
(explained in Section IV-C). At this point, OS stores a few
fields of metadata required in the critical path in the page table
(we extended page table entries to store these fields), and the
rest of metadata, in our proposed table, MetaData-Table
(step 3 ). Third, once a page is requested, memory manage-
ment unit (MMU), as a part of its normal process, transfers
page table entries to TLB, meaning that metadata stored in
the page table are transferred to TLB automatically. Our
customized MMU also transfers the corresponding metadata,
stored in MetaData-Table, to our hardware module, called
MetaData-Buffer (step 4 ).

C. How to Retrieve Metadata?

Our proposed method requires two types of metadata. The
first type of metadata, such as DeQWordCount, is required
for address translation between L1 and L2. DeQWordCount
determines how many words (of L1 values) can fit in a
quantized L2 block. DeQWordCount is an integer number
(in Section IV-F we explain why it should be an integer
number). Access to DeQWordCount is in the critical path
as it is required for sending a miss request to lower level
cache (L2). Hence, DeQWordCount is stored in the TLB
so that it can be accessed when the processor accesses the
TLB for the traditional virtual to physical address translation.
Existing systems, such as Intel x86-64 systems [46] have
up to 15 unused bits in their TLB entries. Our proposed
method requires 18 bits [47]. Accordingly, we only add three
bits to the original TLB entry and the total overhead per
core is 216 bytes (in a system with 64-entry first level
TLB and 512-entry second level TLB). The second type of
metadata, including Step-size, Bit-width, and Mid, is required
for data conversion, We introduce a new hardware module,
the MetaData-Buffer, to store the metadata required for
data conversion. Thanks to our MetaData-Buffer, our
method can mix compressible and non-compressible data. In
our MetaData-Buffer (a full description of each field and

its purpose is available at our online documentation [47]), for
each variable of the structure, we have a one-bit field, called
“Conv?” that determines whether that field needs conversion
or not.

D. How to Locate Quantized Values?
When compression/decompression happens between two

level of caches, page number and page offset of the values
in the decompressed cache are different from those of com-
pressed cache. Unlike most cache compression techniques,
we do not need decoupling the tag array and the data array
for address translation. In fact, our fixed bitwidth enables
address translation using arithmetic operations, which is per-
formed by two modules: (i) BitLocationFinder, and
(ii) Offset-Divider.

We built upon prior works [29], [48] that allocate smaller
page within a 4KB page and add few bits in the page table
entries that point to the start of the smaller page within 4KB
pages. Therefore we only need to translate page offset. We
explain this process using two examples.
Example 1, an array of float numbers (float Arr[1000]:
In this example, each element can be quantized with 5 bits,
and each cache line of the system has 64 bytes (512 bits).
As a result, each L2 block accommodates 102 quantized
words(DeQWordCount=512/5=102 (the division is imple-
mented by multiplication by reciprocal and takes 2.5 cycles)).
Step 1 , an L1 eviction happens. Step 2 : Offset-Divider
simply divides the word number of the virtual offset(Vofset)
by DeQWordCount, to determine the index of the L2 block that
contains the missed L1 block(index = (V ofset >> 2)/102).
Since the index is ready, L1 can send the write-back request
to L2. Step 3 : while L2 is finding the L2 block containing the
evicted block, the BitLocationFinder finds the exact
location of the evicted L1 block within the L2 block. To this
end, the BitLocationFinder multiplies the quantized
bitwidth by the remainder of the last division ((V ofsett >>
2%102) ∗ 5).
Example 2, an AoS: In this case, BitLocationFinder
needs two metadata: (i) AccLen and (ii) StartWord. AccLen
is a field of our MetaData-Buffer. Per each variable of
the structure, AccLen stores the accumulated quantized length
of preceding variables in the structure. This field optimizes
BitLocationFinder to lower the complexity of address
location calculation. StartWord is a field in the TLB extension
that indicates with which word of the structure the page starts.
BitLocationFinder first finds how many complete struc-
tures exist before the start of the L1 block and then multiply
this number by the quantized size of the structure.
lengthOfCompleteStructures=(((Vofsett>>2)%

DeQWordCount)/NumWordInStructure)*
QntStructBits.

Then it uses AccLen and StartWord to calculate how many
bits are required for any partial structure before the start of
the L1 block. The remainder of the last division determines
how many words exist in the partial structure.
remainder=(((Vofsett>>2)%DeQWordCount)%

NumWordInStructure)



BitLocationFinder determines with which word of the
structure, the partial structure ends
end=((Vofsett>>2)+StartWord)%

NumWordInStructure

Then it calculates the number of bits in the partial structure
and adds this to the lengthOfCompleteStructures.
if(end> remainder) {

start=end-remainder
BitLocationStart= AccLen[end]-AccLen[start

]+lengthOfCompleteStructures;
}else{
start=NumWordInStructure+end-remainder
BitLocationStart= AccLen[NumWordInStructure

+1]-AccLen[start]+AccLen[end]+
lengthOfCompleteStructures;

}

This operation, on cache misses, overlaps with reading the
block from L2 and, on writebacks, lies out of the critical path
and does not hurt performance (The above pseudo code is
developed to simplify the explanation and differs from our
optimized Verilog implementation).

E. How to Quantize and De-quantized Values?

The de-quantization process is on the critical path of a L1
miss whereas quantization only happens during the writebacks.
Therefore, we design a parallel de-quantizer for efficient
and fast conversion that performs the computation shown in
Equation 1. Since the Step-size is a power of two number,
the multiplication in Equation 1 can be implemented as a
summation of the exponent of Step-size and exponent of
Index + QuantizedMid (In fact, we store the exponent
of Step-size in the MetaData-Table) and a leading one
detector module (LOD) can calculate the exponent of Index+
QuantizedMid. We propose a 16-way parallel module where
each of the ways takes a 32-bit word (extracted through a
crossbar) from the cache block as its input and converts them
in parallel (Figure 9). We synthesize the modules using an
industry-standard 1xFinFET, and the latency of the whole
process is 1.6 ns (4.8 cycles in 3GHz frequency).

X̃ = (Index+QuantizedMid)× step− size (1)
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Fig. 9: The De-quantizer module

F. How to Handle Corner Cases?

As an extra optimization, we relax the constraint of fitting
only integer number of L1 blocks in L2 blocks to avoid

the overhead of padding. As a result, naively unpacking a
L2 block generates one or two partial L1 blocks on de-
quantization, wasting cache space and requiring some extra
metadata per cache block to track the valid words of the block.
Alternatively, we place the partial blocks in the prefetch buffer
until the rest of the block arrives to avoid extra metadata
and wasted space in L1. We evaluate a 4-entry prefetch
buffer (similar to the original prefetch-buffer paper [49]).
As our method is word-aligned, we only add one valid bit
per word to the prefetch buffer (total overhead of 64 bits).
On a L1 miss, our Offset-Divider generates a miss
for the L2 cache block that contains the missed address.
Subsequent requests to the valid part of the partial block are
serviced from the prefetch buffer and cause no miss. Once
an address from the rest of the partial block is requested, the
Offset-Divider module will generate a miss request for
the subsequent L2 block. Note that we always store an integer
number of quantized words in an L2 block (determined by
DeQWordCount). Therefore, No L1 word spans two L2 blocks,
ensuring that Offset-Divider never generates two L2
miss for one word, avoiding complexity in miss status history
register (MSHR).

G. How to Avoid Overflows?

We provide two options for dealing with the outliers that
does not fit in short bitwidth and may cause overflows: (i)
mapping the outliers to the maximum or minimum of the range
that can be represented using the same bit-width used in the
quantization process, and (ii) storing the outliers in the original
floating point format in a separate space. We explain how we
support the second option using a walk-through example that
shows a scenario with an outlier in a block.
Step 1 : L1 evicts a cache block. Step 2 : the converter tries
to quantize the evicted block and send it to the L2 but it
detects an oulier in the evicted block. Step 3 : the converter
fills the location of the value in the L2 block with an outlier
indicator (we assign both all-one or positive-all-one values as
outlier indicators. For example, for a quantized value with bit-
width of four, outliers will be stored as ”1111”). Therefore,
the layout of data in L2 does not change. Step 4 : to preserve
the real value of the outlier, the converter also sends a message
to memory, containing the real value of the outlier along with
Voffset of the value to be stored in the reserved space, extra
b blocks at the end of each page, after the quantized values
(In case the reserved block space cannot accommodate a new
outlier, the memory controller informs the OS to convert the
quantized page to a normal page). Step 5 : when this block is
requested again (on a L1 miss), the converter sees the indicator
and detects that the related value is stored as an outlier. Thus,
the converter sends a memory request to get the real value of
the outlier from the reserved space. To this end, the memory
controller reads the reserved blocks for outliers and scans these
blocks until it finds the Voffset of the requested variable. The
real value of the outlier is stored next to the Voffset. Therefore,
while L2 stores the outlier indicator, with the same bitwidth of
quantized values, L1 always stores the real value of the outlier



Fig. 10: Overall architecture of hardware quantization

and we never give up the wide range that floating point format
can support.
In our evaluation with real data sets, we notice that the
fraction of outliers is significantly low (less than 0.005%)
and the overhead of retrieving the outliers does not hurt the
performance (evaluated in Section VI-F).

V. MORE WALK-THROUGH EXAMPLES

In this section, we explain the necessary steps during
loading a new page, a L1 miss, and a L1 eviction. The steps
are marked in Figure 10.
Steps during loading a new page: There are three steps
involved in this process: (i) once processor loads a new page,
our proposed boolean filed, IsQuant in the TLB entry indicates
whether the page is quantized or not, (ii) if the page is
quantized, our proposed MetaDataID field of the TLB entry
specifies the Id of the corresponding MetaData-Set in
MetaData-Table of the corresponding virtual space, (iii)
when a TLB entry is loaded, the Address Space ID (ASID)
+ MetaDataID of the TLB entry is compared against the
ASID+ MetaDataID of all the sets. In case of a miss, MMU
assigns one of the free sets in the MetaData-Buffer to the
MetaDataID and loads the corresponding MetaData-Set of
the MetaData-Table in the MetaData-Buffer (Figure
10 13 ). Note that each TLB entry traditionally has the ASID.
Accordingly, we store ASID+ MetaDataID in each set of the
MetaData-Buffer.
Steps during a L1 cache miss: There are three steps.
1. finding the address of the L2 block that contains the quan-
tized values: Traditionally, for each load or store instruction,
processor uses virtual offset (Voffset) to access L1 and virtual
page number (VPN) to read the corresponding TLB entry and
extract the the physical page number (PPN). In our method,
on a L1 miss, if the IsQuant of the TLB entry indicates that
the missed address belongs to a quantized page, L1 sends the
Voffset to the Offset-Divider (Figure 10 1 ) and send
PPN to L2 ( 2 ). The translator divides the Voffset by the
DeQWordCount value to generate the page offset (Poffset) of
the L2 block and sends this offset to the L2 cache ( 3 ).
2. Getting quantization parameters: While, waiting for
the L2 block to be received, the TLB sends the Meta-
DataID to the Converter ( 4 ). The Converter uses the
MetaDataID to read the quantization parameters from the
MetaData-Buffer ( 5 and 6 ).
3. Conversion: When L2 sends the quantized block to the
Converter ( 7 ), the Converter uses the quantization
parameter to de-quantize the block and sends back multiple
de-quantized blocks to L1 ( 8 ).

Steps during a L1 write-back: There is no TLB access during
the write-back. Accordingly, we store the MetaDataID, in the
L1 cache tag. Quantization in write-back has two steps.
1. Getting quantization parameters: When L1 evicts a dirty
block from a quantized page ( 9 ), the MetaDataID is
read from its tag and the Converter uses this Meta-
DataID value to read the quantization parameters from the
MetaData-Buffer (10 and 11 ).
2. Conversion: The Converter quantizes the block and
calculates the location of the block in the quantized L2 block
(using the BitLocationFinder module), and sends the
quantized block to L2 (12 ). Upon receiving the block, L2
updates data at the correct location within the quantized block.

TABLE II: The configuration of simulated systems
Component Parameters

Processor 4/8/16 cores, 3 GHz, 8-wide issue

L1 64B cache-line, 2-way associative,
32KB, private, 4 cycles

L2 8-way associative, 256KB, private, 12 cycles

L3 16-way associative, 8/16/32 MB, shared,
36/43/58 cycles

Prefetch buffer 4-entry
Memory system DDR3 1600 x64, 2 channels
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Fig. 11: Effect of bitwidth on speedup for microkernels.

VI. EVALUATION

A. Methodology

To evaluate the performance and energy consumption of our
proposed method, we augmented Gem5 [50] and McPAT [51]
with timing and energy model of our proposed components.
For simulation configuration, we use the specification of Intel
Core-i7 Haswell processor (listed in Table II) and add a
penalty of five cycles (explained in Section IV-E) to model
the conversion latency of a parallel converter module. We
evaluated four microkernels: (i) Hist (calculates the histogram
of a vector of values), (ii) Mean (calculates the mean of a
vector), (iii) Axpy (Y = α × X + Y ), and (iv) VecAdd
(Z = X+Y ). We also evaluated eight applications from differ-
ent domains: four applications from AxBench [27] (Blksh, Sbl,
Inv2j, and FFT), three convolution with configuration of three
different layers of the deep learning application with high,
moderate, and low locality (FstAlx, Conv, and LstVg), and a
Dot product kernel (Dot). For the eight applications, we used
standard data sets for each application [21], [22], [23], [24],
[25], [26], [52]. Our evaluated workloads represent modern
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(b) Blksh
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(c) Conv
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(e) FFT
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Fig. 12: Effect of bitwidth on speedup and maximum absolute error
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Fig. 15: Comparison against ACME [9]

applications, which are highly memory-intensive and exhibits
a large memory footprint. Prior works have shown that these
applications are bottlenecked by the cost of data movement [3],
[7], [53]. However, in order to be comprehensive, we also
evaluated two computation-intensive applications (FstAlx and
Inv2j), which inherently do not benefit from reducing the cost
of data movement.

B. Performance Improvement and Error Analysis

Figure 11 illustrates the effect of bitwidth on speedup
for four microkernels. Mean has one memory access per
compouation, Hist has two memory accesses but one of them is
often cached, Axpy has two memory accesses per computation
and VecAdd has three memory accesses per computation. This
figure shows that the narrower the bitwidth, the higher the
speedup. It also shows that for VecAdd with three memory
access per computation, a small reduction in bitwidth (e.g.
bitwidth of 24) can not compensate the conversion penalty.

However, for smaller bitwidth, such as four, the reduced
memory bandwidth provide a significant speedup. Figure 12
shows the speedup (on the left axis) and maximum absolute
error (on the right axis) per bitwidth for eight applications
using real data sets. Our proposed mechanism achieves on
average 1.6× (up to 2.7×) speedup over the baseline system.

There are four observations that we draw from Figure
12. First, the shorter the bit-width, the higher the speedup,
demonstrating that reduction in data movement directly im-
pacts the overall performance. In rare cases, such as Sobel,
access pattern with the 8-bit variables causes more conflict
misses than 12-bit variable, causing unexpected slowdown in
a 4-core system. Second, a system with a higher number of
cores gains higher speedup from reduction in data movement,
due to the higher contention in caches and memory. Third,
applications with a low temporal locality, such as LstVg, gains
the most benefit from our proposed method. On the contrary,
applications that have a high temporal locality gain the least
speedup (e.g., FstAlx [54] achieves less than 1.04× speedup).
Fourth, the shorter the bit-width, the higher the maximum
absolute error, except for applications such as Sbl, where
the values (pixel values) inherently can be represented by 8
quantized bits, without significant accuracy loss.

C. Energy Consumption

We model the energy consumption of all memory ele-
ments (such as MetaData-Table, etc.) and all arithmetic
operations using McPAT [51]. Figure 13 demonstrates the
average energy reduction of the evaluated benchmarks over
the baseline when we vary bit-width and number of cores. It
shows that the energy cost of data movement decreases when
the applications use shorter bit-width.
D. Source of Improvement

The performance and energy benefits of quantization stem
from two sources: (i) reducing the number of cache misses
(due to an increase in the effective size of L2 and L3 and
also due to loading one quantized block instead of multiple
full-length blocks), and (ii) decreasing the memory bandwidth
consumption. Figure 14 demonstrates that reducing the vari-
able length from 32 bits to 6 bits reduces L2 misses/L3
misses/BW consumption on average by 77%/82%/74% in a
16-core system. None of the evaluated application fit in L1
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Fig. 16: Sensitivity analysis

and L2. Since the L3 is shared among cores, LstVg does
not fit even in its share of L3 (before quantization). Some
applications such as Blksh, fit in L3, but they do not show
locality with long reuse distance, so they experience a high
L3 miss rate. As an example, for Blksh, the L1 miss rate is
0.006052, the L2 miss rate is 0.877949, and the L3 miss rate
is 0.999938. For FFT, L1 miss rate is 0.039064, L2 miss rate
is 0.966428, and L3 miss rate is 0.34570956478. for LstVg,
the L1 miss rate is 0.006861, the L2 miss rate is 0.917308
and 0.9999.

E. Comparison with Prior Works

Figure 15 compares the performance of our proposed
method against ACME [9] that omits the LSBs to shorten
the variable lengths. We evaluate both of the mechanisms
with the specific bit-width that achieves the same level of
average relative error (ARE) and maximum absolute error
(MAE). Figure 15 (a) and 15 (b) show that our proposed
method can achieve up to 31%/26% performance improvement
with ARE/MAE fixed to 5%. We provide the same accuracy
with shorter variables and therefore, achieve higher speedup.
Figure 15 (c) and 15 (d) show the reduction in the number
of bits compared to ACME when we vary the accuracy. On
average, the bit width reduction in the quantized variables are
5.62/5.25/5.1/6.2 bits (ARE) and 6.62/6.62/6.5/5.7 bits (MAE)
when the error rate is 10%/5%/1%/0.1%.

F. Sensitivity Analysis

In this section, we analyze the effect of four parameters:
(i) de-quantization latency, (ii) quantization latency, (iii) the
fraction of the outliers, and (iv) the location of the conversion
in the memory hierarchy, in a system with 4 cores.
(i) De-quantization and (ii) Quantization latency. The con-
version latency depends on many design parameters (e.g. tech-
nology size, parallel vs serial Converter, etc.). Figure 16(a)
shows that for a de-quantization latency as large as 20 cycles,
our proposed method achieves 1.38× speedup on average. The
low sensitivity to the quantization latency stems from the fact
that a quantized L2 block fills multiple de-quantized L1 blocks
and consequently subsequent L1 hits amortize the additional
conversion penalty on a L1 miss. The speedup is insensitive
to the quantization latency (Figure 16(b)) because quantization
occurs on writeback requests which are out of critical path.
(iii) The fraction of the outliers. We find that the fraction
of the outliers is very low (the highest rate belongs to
Blackscholes and FFT where the fraction is 0.00001, 0.00002,
respectively) that they impose a negligible overhead. In order

to analyze the overhead of the outliers, we synthetically varied
the fraction of outliers from 0.00001 to 0.1. Figure 16(c) shows
that the fraction of outliers does not affect the performance
except for a high fraction such as 0.1. The insensitivity to
the fraction of outliers stems from the fact that the access to
outliers is not on the critical path unless the outlier is in the
missed L1 block ( and not in the rest of unpacked blocks).
Figure 16(d) shows that for some applications such as FFT
(with relatively high L2 miss rate), the accesses to outliers
may occur on the critical path and in that case, even a lower
fraction such as 0.01 can significantly impact the performance.
(iv) Location of the conversion. So far, we evaluated the
performance of our proposed method when data conversion
occurs between L1 and L2. Figure 16(e) evaluates the alter-
native design, where conversion happens between L2 and L3.
As a result, the conversion happens less frequently, decreasing
the energy consumption. This figure shows that placing the
conversion point between L2 and L3 provides on average,
1.22× and up to 1.4× speedup.

G. Quantization vs. Compression

The most related cache compression technique that takes
into account the effect of data type and the effect of floating
point is Hycomp [17].

Figure 17(a) illustrates that Hycomp yields only a com-
pression ratio of 1.85 on average whereas our method itself
yields the ratio of 4.78. Although, quantization on top of
compression achieves a higher compression rate (7.83), a
variable cache block size of compresssion will again require a
complex mechanism for finding the location of cache blocks.
We evaluated the effect of decoupling the tag array and data
array in the last level cache. Figure17 (b) shows that the
latency of access to the decoupled tag and data array nullifies
the higher compression rate that can be achieved by employing
compression on top of quantization. Figure 18 demonstrates
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Fig. 17: Quantization vs. compression

that address translation by BitLocationFinder and cor-
ner case handling (Section IV-F) outperforms padding (which
is proposed by LCP [29] to avoid the cost of decoupling tag



array and data array), on average by 20% and up to 45%, in
a 4-core system, where average bit-width is 18.
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Fig. 18: Padding (LCP) vs. BitLocationFinder

H. Software-based Quantization vs Hardware-based Quanti-
zation

Figure 19 demonstrates that our hardware-based design
delivers 1.54× speedup compared to software-based approach,
in a 4-core system. The speedup stems from less data move-
ment and lower conversion overhead. We tried our best to
manually optimize the code and perform conversion only when
it is required. One of the benefits of our method is that the
programmer does not need to think about optimizations, over-
flows, and outliers for every line of arithmetic computations
in the code. In software, for applications such as Blackscholes
we had to use standard 32-bit variables to cover the outliers
that require 18 bits. With quantization in hardware we can
employ 6-bit variables for Blacksholes and store outliers in
their original format in a separate space.
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Fig. 20:
Quantization vs. prefetching

I. Quantization vs. Prefetching

Unlike our method, prefetching can not alleviate the energy
cost of data movement and do not increase the effective size of
caches or decrease the memory bandwidth consumption. How-
ever, we can employ quantization in tandem with a prefetcher
to hide the conversion latency. Prefetcher tracks physical
addresses and does not need address translation. Therefore,
we modified the prefetcher to record the MetaDataID for the
previous misses and use it for de-quantizing the prefetched
blocks. Figure 20 shows that our method achieves on average
1.6× speedup over prefetcher. Figure 20 also demonstrates
that our method along with prefetchers can achieve on average
1.46× speedup over the baseline system.

J. Hardware Overhead

We design and synthesize the modules using an industry-
standard 1xFinFET technology with foundry models.The total
area of our modules, per core, is 0.012455 mm2. Accordingly,
16 modules in a 16-core processor impose 0.2% area overhead

(we scaled the area of the processor in 22 nm technology,
obtained from McPAT [51], to derive the area of the processor
in 1xFinFET technology). The total overhead is 0.25% of the
original processor.

VII. RELATED WORK

Bit-width Reduction Techniques. Several studies employed
the OLSB method for ASIC and FPGA designs to customize
the bit-width [10], [14]. Prior works also show the energy
reduction of quantization with arbitrary bit-width in accel-
eretor design and provide a framework for deciding the bit-
width [15], [16]. However, these solutions cannot be adopted
in the general-purpose processors. The only general-purpose
solution, ACME [9] employs the OLSB method which has
lower accuracy and lower performance than quantization.
Software-based Quantization for Specific Applications.
Due to high overhead, software-based quantization is not
a popular technique unless in three following cases: (i) to
compress data before storing in storage [55], (ii) to compress
data before offloading data to accelerators [7], [56], and (ii)
in some cheap embedded processors [57], [58] that cannot
accommodate floating point ALU, where the cost of conver-
sions is less than the emulation of floating point operations
on integer ALU and programmer’s effort for manipulating
integers pays off.
Approximate cache techniques. Cache approximation tech-
niques [59], [60] also reduce the cost of movement and
storage of data. We do not compare against any other ap-
proximate cache techniques, as ACME [9] (to which we have
compared our method in Section VI-E) shows performance
improvement over the prior approximate cache techniques,
Doppelganger [59].

VIII. CONCLUSION

This is the first work to argue that quantization can be
adopted as a technique to accelerate memory-intensive appli-
cations in general-purpose processors. We evaluate 11 real
data sets and demonstrate that many applications operate
on a limited range of values, making quantization widely
applicable and effective in shortening the bit-width. To this
end, we proposes a software-hardware interface, whereby we
transfer information of our high-level abstraction to hard-
ware modules and transparently convert the short variables
to the original format before being used in computation. Our
evaluation demonstrates that quantization provides significant
performance and energy improvement over the state-of-the-art
bit-reduction techniques. We believe that our architectural sup-
port, popularize quantization as a low-overhead, high-accuracy
approximation technique in general-purpose processors.
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