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ABSTRACT
Frequency counting of complex pa�erns such as subtrees is more
challenging than for simple itemsets and sequences, as the number
of possible candidate pa�erns in a tree is much higher than one-
dimensional data structures, with dramatically higher processing
times. In this paper, we propose a new and scalable solution for
frequent subtree mining (FTM) on the Automata Processor (AP),
a new and highly parallel accelerator architecture. We present
a multi-stage pruning framework on the AP, called AP-FTM, to
reduce the search space of FTM candidates. �is achieves up to 353⇥
speedup at the cost of a small reduction in accuracy, on four real-
world and synthetic datasets, when compared with Pa�ernMatcher,
a practical and exact CPU solution. To provide a fully accurate
and still scalable solution, we propose a hybrid method to combine
AP-FTM with a CPU exact-matching approach, and achieve up to
262⇥ speedup over Pa�ernMatcher on a challenging database. We
also develop a GPU algorithm for FTM, but show that the AP also
outperforms this. �e results on a synthetic database show the AP
advantage grows further with larger datasets.

CCS CONCEPTS
•Information systems →Frequent subtrees; •Computer sys-
tems organization→Multiple instruction, single data; •Hardware
→Emerging architectures;
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1 INTRODUCTION
Frequent subtree mining refers to �nding all the pa�erns in a given
forest (database of trees) whose support is more than a given thresh-
old value, called the minimum support. A subtree pa�ern is called
frequent if the number of trees in the dataset that have at least
one subtree isomorphic to the given pa�ern is more than the min-
imum support. Frequent subtrees have proven to be extremely
important and informative in many real world applications such
as XML data, parse-trees in natural language processing, bioinfor-
matics, and patient treatment awareness. For instance, in natural
language processing (NLP), frequent subtrees mined from the parse
tree databases can be used to increase the accuracy of NLP tasks,
such as sentiment analysis and question classi�cation problems
[1]. However, �nding all frequent subtrees becomes infeasible for a
large and dense tree database, due to the combinatorial explosion
of the subtree candidates.
�e main challenges in FTM are e�ciently traversing the search

space and performing subtree isomorphism. A number of research
studies have a�empted to improve the performance of the task by
proposing di�erent data structures and counting strategies. �ese
are either based on breadth-�rst search (BFS) or depth-�rst search
(DFS). BFS is a level-wise iterative search method and usually uses
a horizontal tree representation. BFS su�ers from a long processing
time because it requires passing through the entire dataset in each
iteration. However, DFS usually projects the database into a vertical
tree representation for fast support counting, but encounters mem-
ory capacity challenges and costly I/O processing because the set
of candidates and their embedding list tend to over�ow memory.
Researchers are increasingly exploiting accelerators as perfor-

mance growth in conventional processors is slowing down. �e
Micron Automata Processor (AP) is a non-von Neumann, native-
hardware implementation of non-deterministic �nite automata
(NFA).�e high bit-level parallelism of the memory-based architec-
ture makes it capable of performing high-speed search and analysis
on complex data structures. Recent studies on frequent itemset
mining [12], sequential pa�ern mining [14], disjunctive rule min-
ing [13], random forests [9], and entity resolution [2] have proved
that the AP is a promising target accelerator in data-mining, ma-
chine learning, and data-matching applications, and these studies
have achieved orders of magnitude speed-up over conventional
processors. However, the main di�culty in exploiting the AP for
FTM is that the AP was intended to support regular languages,
whereas tree structures will typically need to be represented by
a context-free grammar. By relaxing some of the tree structure
constraints, the AP can be e�ectively utilized to prune the search
space of FTM.
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In this paper, we �rst study di�culties of directly implement-
ing the FTM problem on the AP platform. �en, we propose a
multi-stage pruning framework to greatly reduce the search space
of embedded FTM on the AP. �is provides a scalable solution
in terms of both memory and execution time on large databases
and lower support thresholds. Frequent subtree candidates can
be the potential features in classi�cation tasks, and the surviving
candidates with lower frequency are especially bene�cial to boost
classi�cation accuracy of rare classes, because these frequent sub-
tree pa�erns can represent unique and discriminative features of
classes with fewer members. In order to maintain both ancestor-
descendant relationship and sibling properties on the tree structure,
and at the same time provide a feasible computation to exploit the
AP, four complementary string representations of the tree structure
and their mapping to the automaton representation are proposed.
Pruning kernels presented in this work result in a set of poten-
tially frequent candidates (close to the �nal set of frequent pa�erns)
which may contain a small number of false positives (however,
recall is 100%). For the applications that demand an exact solution,
we adapt TreeMinerD [16], a quick DFS approach that detects the
distinct occurrences of a pa�ern, to prune the AP results and pro-
vide an exact solution. Finally, we develop a BFS-based solution for
embedded FTM on GPU in order to compare the AP solution with
an additional accelerator architecture. Overall, this paper makes
following principle contributions:

• We propose AP-FTM, a multi-stage pruning framework on
a heterogeneous architecture, to reduce the search space of
FTM for embedded subtrees. �is eliminates a large portion
of infrequent candidates in a short amount of time at the
expense of a small number of false positives, providing
a scalable solution for large databases and lower support
thresholds.

• We propose APHybrid-FTM, which combines AP-FTM
with TreeMinerD in order to provide an exact and e�cient
hybrid solution for embedded FTM.�e general strategy
of combining an inaccurate and fast AP-based solution
with an e�cient and accurate CPU-based approach can be
applied to other complex pa�ern mining tasks.

• We develop a BFS-based algorithm for embedded FTM
on GPUs platform and study the performance of a SIMT
platform for the FTM problem.

2 FREQUENT SUBTREE MINING
2.1 Problem Statement
Tree Mining Problem: We de�ne D to be a dataset of trees and
a transitive subtree relation S � T for some of the trees (T ) in
D. De�ne t1, t2, ..., tn to be the nodes in T and s1, s2, ..., sm be the
nodes in S . �en, S is a subtree of T if there are matching labels of
the nodes ti1 , ti2 , ..., tim such that (1) label(sk ) = label(tik ) for all
k = 1, 2, ...,m; and (2) for every branch (sj , sk ) in S , ti j should be
an ancestor of tik in T . �e la�er condition preserves the structure
of S in T . �is de�nition of subtree refers to an embedded subtree.
By restricting the ancestor-descendant relationship to parent-child
relationships in T for the second condition, a new kind of subtree,
called induced subtree, can be de�ned. Fig. 1 shows an example on
di�erent types of subtrees on T0. �ere are several other subtree
types such as maximal subtree, closed subtree, and partial subtree,
which put restrictions on the induced and embedded subtrees and
are not considered in this work.

Figure 1: An example of subtrees (I = Induced, E = Embedded,
O = Ordered, U = Unordered)

�e relative minimum support number (Rminsup), de�ned as the
ratio of minimum support number to the total number of transac-
tions (input trees), is used in this paper. We de�ne the size of a
tree as the number of nodes in it. Moreover, we represent a candi-
date of size k with k-candidate and a frequent candidate of size k
with k-frequent-candidate throughout the paper. Many applications
are only interested in counting the number of database trees that
contain at least one match of a subtree, which is called counting
distinct occurrences. On the other hand, weighted counting refers
to enumeration of all possible occurrences over all possible trees in
the database. In this work, we focus on mining distinct occurrences
of embedded subtrees from rooted, ordered, and labeled trees as
those types of datasets dominate in data mining applications [16].
Embedded subtree mining has a larger search space and higher min-
ing complexity than induced subtrees [3] [16], and CPU solutions
have di�culties dealing with them. �e proposed pruning method
is not limited to binary trees and can be adopted by unordered
embedded and ordered/unordered induced subtree mining with
minimal changes.

2.2 Candidate Generation
Our candidate-generation step is based on an equivalence-class,
right-most extension approach adopted from [15]. In this approach,
the (k+1)-candidates are generated from the known k-frequent-
candidates within an equivalence-class (having the same string
pre�x). Two frequent pa�erns can be merged based on the position
of the last extended node. In this approach, all the candidates are
generated once (avoiding redundancy) and all are the valid candi-
dates. We do not describe the candidate-generation in detail, as
the main focus of the paper is accelerating the candidate enumera-
tion step, which is the bo�leneck of the algorithm. Details of the
candidate-generation and proof of correctness can be found in [15].

3 RELATEDWORK
A considerable amount of research has been devoted to frequent
subtree mining, due to its signi�cance in di�erent domains such
as bioinformatics, web mining, and natural language processing.
Frequent subtree mining techniques can be classi�ed based on
the subtree and the ordering types to induced ordered, induced un-
ordered, embedded ordered, and embedded unordered subtrees. �e
way the candidate pa�erns are generated, the data structure repre-
sentation in the memory, and the candidate subtree enumeration
approach can signi�cantly a�ect the e�ciency of the algorithm.
Several algorithms have been proposed to mine labeled, embed-

ded, and ordered subtrees. TreeMiner [15] is the �rst algorithm
for mining embedded ordered subtrees, suggested by Zaki, which
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is based on DFS search, and it introduces the concept of vertical
tree representation, a space-e�cient string encoding of the tree.
New candidates are generated by adding one node to the right-most
path of the tree (right-most extension approach). TreeMiner uses
an extension and join approach for the candidate-generation and
enumeration and stores the matches in a vertical representation,
which can be very large and consume a lot of memory, especially
when the number of overlapping matches is high. �e same author
proposes TreeMinerD [16], an algorithm which enumerates only
distinct occurrences of a pa�ern, and can be bene�cial for some
applications. However, when the average number of embeddings
of a subtree in a tree is low, TreeMiner and TreeMinerD have al-
most the same performance. XSpanner [11] is another solution
for mining embedded, ordered subtrees and adopts the FP-Growth
concept and its enumeration model generates valid candidates, and
counts the distinct trees. An expensive pseudo-projection phase
results in poor cache performance in XSpanner. �e idea of pseudo-
projection techniques is that, instead of physically constructing a
copy of the subtree, they reuse the trees in the original tree data-
base. MB3-Miner [6], yet another solution, applies a Tree Guided
Model to e�ciently generate the candidates. However, Tatikonda in
[7] shows that the MB3-Miner solution su�ers from high memory
usage.
�e TRIPS and TIDES [8] solutions are proposed to mine embed-

ded and induced subtrees that can be ordered or unordered. �ey
are based on sequential encoding strategies that provide fast gen-
eration of a complete and non-redundant set of candidate subtree
pa�erns. �ey use an embedded list for the candidate-generation
and a hash table for the support counting step. Even though their
approaches are cache-conscious due to the simple array-based data
structure, they still su�er from high memory consumption with
larger datasets and with smaller support thresholds. �e same au-
thors proposed an architecture-aware FTM algorithm [7] targeting
multi-core systems. Several optimizations are adopted to decrease
memory access latency and bandwidth pressure, and a parallel
pa�ern-growth approach in the context of the TRIPS [8] algorithm
on multicore systems is proposed. �ey show a nice scale-up with
the number of cores, however, their solution crashes far sooner
than a single-core implementation. �is work is the only parallel
solution for FTM, to the best of our knowledge.
PATTERN-MATCHER [15] instead employs a breadth-�rst iter-

ative search to �nd frequent subtrees. It employs an equivalence-
class notion for candidate-generation and counting, and a pre�x-
tree data structure for indexing the candidates. It prunes the can-
didates of size (k + 1) using the frequent candidates of size k . We
consider this algorithm as a baseline to compare with TreeMiner.
Furthermore, a level-wise push-down automata-based approach for
the candidate enumeration step of FSM is proposed in [5]. A de-
terministic �nite automata is generated for each candidate and the
experiments are run on a Pentium 4 CPU. However, the authors do
not compare the performance of their method with the FP-growth
algorithms, which are known to be faster than the level-wise solu-
tions.
Chopper [11] proposes a two-stage solution to �nd frequent sub-

trees. In the �rst stage, the database is converted to a preorder tra-
versal label sequence representation and then, frequent sequences
are found using sequential pa�ern mining, which acts as the prun-
ing stage. �en, frequent subtrees are found by removing the false
positives. XSpanner outperforms Chopper [11] and Tree Miner
[15] outperforms Xspanner, so we do not consider them in the

performance comparison. Furthermore, there is no parallel imple-
mentation of frequent subtree mining problem on GPU or FPGA
architectures.

4 AUTOMATA PROCESSOR
Micron’s Automata Processor (AP) [4] is an in-memory, non-von
Neumann processor architecture that computes non-deterministic
�nite state automata (NFAs) natively in hardware. �e AP allows
a programmer to create NFAs and also provides a stream of input
symbols to be computed on the NFAs in parallel. �is is a funda-
mental departure from the sequential instruction/data addressing of
von Neumann architectures. A benchmark repository for automata-
based applications is presented in [10].
Speci�cally, the AP is a recon�gurable fabric of State Transition

Elements (STEs), counters, and boolean gates. Each STE is capa-
ble of matching a set of any 8-bit symbols and activating a set of
following STEs on a match. Counter and boolean elements are
designed to extend computational capability beyond NFAs. �e
counter element counts the occurrence of a pa�ern described by the
NFA connected to it and activates other elements or reports when a
given threshold is reached. �e counters in particular are useful in
frequent itemset mining (FIM) [12] and sequential pa�ern mining
(SPM) [14], for counting occurrences against the support threshold.
�e matching and counting stage of FIM and SPM map to the AP
architecture naturally. We transform the matching and counting
stage of FTM to several simpler kernels equivalent to the FIM and
SPM methods in order to prune the huge search space of the FTM
problem and provide a scalable solution for large databases.
Micron’s current-generation AP-D480 boards use AP chips built

on 50nm DRAM technology, running at an input symbol (8-bit) rate
of 133 MHz. A D480 chip has 192 blocks. Each block has 256 STEs,
4 counters and 12 Boolean elements [4]. We assume an AP board
with 32 AP chips, so that all AP chips process input data stream
in parallel. Each AP D480 chip is projected to have a worst case
power consumption of 4W [4].

4.1 Input and Output
�e AP takes input streams of 8-bit symbols. �e double-bu�er
strategy for both input and output of the AP chip enables an implicit
data transfer/processing overlap. Any type of element on the AP
chip can be con�gured as a reporting element (i.e., accepting state);
one reporting element generates a one-bit signal when the element
matches the input symbol. If any reporting element reports on a
particular cycle, the chip will generate an output vector for all the
reporting elements If too many output vectors are generated, the
output bu�er can �ll up and stall the chip. �us, minimizing output
vectors, and hence the frequency at which reporting events can
happen, is an important consideration for performance optimiza-
tion. To address this, we will use the structures that wait until a
special end-of-input symbol is seen to generate all of its reports in
the same clock cycle.

4.2 Programming and Con�guration
Automata Network Markup Language (ANML), an XML-like lan-
guage for describing automata networks, is the most basic way to
program AP chip. ANML describes the properties of each element
and how they connect to each other. �e Micron’s AP SDK also pro-
vides C, Java and Python interfaces to describe automata networks,
create input streams, parse output and manage computational tasks
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on the AP board. A “macro” is a container of automata for encap-
sulating a given functionality, similar to a function or subroutine
in common programming languages. Macros can be templatized
(with the structure �xed but the matching rules for STEs and the
counter thresholds to be �lled in later).
Placing automata onto the AP fabric involves three stages: place-

ment and routing compilation (PRC), routing con�guration and
STE symbol-set con�guration. In the PRC stage, the AP compiler
deduces the best element layout and generates a binary of the au-
tomata network. Depending on the complexity and the scale of
the automata design, PRC takes several seconds to tens minutes.
Macros or templates can be precompiled and composed later. �is
shortens PRC time because only a small macro needs to be pro-
cessed for PRC, and then the board can be tiled with as many of
these macros as �t.
Routing con�guration/recon�guration programs the connections,

and needs about 5 ms for a whole AP board. �e symbol set con-
�guration/recon�guration writes the matching rules and initial
active states for the STEs and takes 45 ms for a whole board. A pre-
compiled automata only needs the last two steps. If only STE states
change, only the last step is required. �is feature of fast partial
recon�guration plays a key role in a successful AP implementation
of FTM: the fast symbol replacement helps to deal with the case
that the total set of candidate pa�erns exceeds the board capacity;
the quick routing recon�guration enables a fast switch from k to
k + 1.

5 FTM ON THE AP: CHALLENGES
Subtree inclusion checking cannot be accomplished using deter-
ministic �nite state machines. �e tree structure is more complex
than a sequence and cannot be described with regular languages
[5]. It implies that instead of a �nite state machine, a pushdown au-
tomaton (PDA) is needed in order to count the length of a possible
branch when searching for a subtree in the input tree. A PDA is a
�nite automaton with access to a potentially unlimited amount of
stack, which is more capable than �nite state machines.
We concluded that the AP is an excellent accelerator to prune the

search space of the candidates in FTM, when relaxing some of the
tree constraints in order to make the simpler representations of a
tree. In the following section, we propose a set of pruning kernels
implemented on the AP to shrink the subtree candidate-set size,
which provides a scalable solution to the larger databases and lower
support thresholds.

6 FTM ON THE AP: OPPORTUNITIES
In this section, we propose four kernels, (1) subset pruning, (2)
intersection pruning, (3) downward pruning, and (4) connectivity
pruning. �e �rst two kernels are independent from the input
transaction, while the last two create a new presentation of the
trees in the database and use them as the input stream to match
against the candidates. �e proposed kernels are complementary
to each other to avoid overlapping pruning and applied to the
candidates in sequence to accommodate more candidates in the
early stage.

6.1 Preliminaries
Frequent Itemset Mining (FIM): We de�ne I = i1, i2, ..., im as
a set of interesting items. Let T = t1, t2, ..., tn be a database of

transactions, each transaction tj is a subset of I . De�ne xi =
{is1, is2, ..., isl } be a set of items in I , called an itemset. �e itemset
with k items is called k-itemset. A transaction tp is said to cover the
itemset xq i� xq ✓ tp . �e support of xq , Sup(xq ), is the number
of transactions that cover it. An itemset is frequent i� its support
is greater than a given threshold value called minimum support,
minsup. �e goal of FIM is to �nd all itemsets with support greater
thanminsup. Wang et al. [12] proposed a novel automaton template
(this is valuable because routing recon�guration is slower than sym-
bol replacement) for matching and counting stage of FIM on the
AP that can handle variable-size itemsets (ME-NFA-VSI) and avoid
routing recon�guration. �e whole design makes full usage of the
massive parallelism of the AP. By using this template structure, one
AP board can match and count 18,432 itemsets in parallel with sizes
from 2 to 40 for 8-bit encoding and 2 to 24 for 16-bit encoding (for
symbol alphabets > 256). Note that the processing rate is 133 MB/s
regardless of encoding.
Sequential Pattern Mining (SPM): We de�ne I = i1, i2, ..., im

as a set of items, where ik is usually represented by an integer, call
item ID. Let s =< t1t2...tn > denotes a sequential pa�ern, where
tk is a transaction and also can be called as an itemset. We de�ne
an element of a sequence by tj = {x1,x2, ...,xm } where xk 2 I .
We assume that the order within a transaction (itemset) does not
ma�er, so the items within one transaction can be lexicographically
ordered in preprocessing stage. A sequence with a sizek is called ak-
sequence. Sequence s1 =< t1t2...tm > called to be a subsequence of
s2 =< r1r2...r j >, if there are integers 1 � k1 � k2 � .. � km�1 �
km � j such that t1 ✓ rk 1, t2 ✓ rk 2, ..., tm ✓ rkm . Such a sequence
sj is called a sequential pa�ern. A sequence is known as frequent i�
its support is greater than a given threshold value called minimum
support, minsup. �e goal of SPM is to �nd out all the sequential
pa�erns with support greater than minsup. In [14] Wang et al.
derive a compact automaton design for matching and counting of
SPM on the AP. A key insight that enables the use of automata for
SPM is that hierarchical pa�erns of sequences can be �a�ened into
strings by using delimiters and place-holders. Again, a template
is proposed to accommodate variable-structured sequences. �is
allows a single, compact template to match any candidate sequence
of a given length, so this template can be replicated to make full use
of the capacity and massive parallelism of the AP. One AP board
can match and count 6,144 sequence pa�erns in parallel with sizes
from 2 to 20 for 8-bit and 16-bit encoding.

6.2 Pruning Kernels
We propose four pruning kernels in this section. Each kernel maps
to FIM or SPM de�nition, and we use the automata structures
proposed for FIM [12] and SPM [14] problems, from our previous
works, to implement the kernels on the AP and calculate the AP
board utilization.

6.2.1 Subset Pruning. According to the downward-closure prin-
ciple, all sub-pa�erns of a frequent pa�ern must themselves be
frequent. �is means that, when generating a (k+1)-candidate, all
of its k-candidates should be frequent as well. BFS-based FTM ap-
proaches can greatly bene�t from this property in order to reduce
the search space, whereas DFS implementations do not have all
the k-frequent-candidates when looking at a (k+1)-candidate. �e
subset pruning kernel checks the downward closure property for
all the candidates of size three and more. �is property can be
directly mapped to FIM, where each generated (k+1)-candidate rep-
resents a candidate itemset and the items in the itemset are the set
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Figure 2: An example of subset pruning

of k-candidates. In Fig. 2, C5i (a 5-candidate) is generated from F4i ,
which is a 4-frequent-candidate, by extending the edge AE. In sub-
set pruning, we should check C4j ,C4k , and C4l , the other subsets
of C5i , to verify they are frequent as well. �e itemset candidate
corresponding to C5i is C5i = {C4j ,C4k ,C4l } and the input dataset
has only one transaction, which consists of all the frequent can-
didates of size 4, e.g., {F40, F41, ..., F4m }, where m is the number
of 4-frequent-candidates. �erefore, the set of all C5 creates the
candidate itemsets for FIM. A subtree candidate will survive at this
stage if it occurs in the input transaction (Rminsup is 100% here).
�e CPU implementation adds each individual frequent subtree

into a hash table. �us, each subtree check takes O(1) time, and
since there can be k subtrees of length k-1 and n candidates, it takes
O(nk) time to perform the pruning check for the pa�erns in each
iteration. In the AP implementation, many candidate itemsets are
con�gured on the AP and checked against the input transaction in
parallel. �e time complexity of the AP solution is O(m), where m
is the number of frequent candidates of the previous level. Because
the support threshold here is 100%, we can remove the counter
element of the FIM AP design [12], which is the main constraint of
the AP board utilization. When the number of generated candidates
is relatively small, the CPU solution beats the AP, because of the AP
con�guration overhead. However, when the number of candidates
starts to grow, the AP implementation provides a faster solution.
�is kernel is very light-weight and does not require a pass of input
trees (the input for this kernel is the set of frequent-candidates of the
previous iteration), however, it prunes a large number of candidates
in the early stage.

6.2.2 Intersection Pruning. In order to pass this pruning stage,
(1) all the subsets of a (k+1)-candidate, which are the members of a
k-frequent-candidates, should happen in the same input tree, and (2)
the number of joint occurrences must be more than the minimum
support threshold. Let’s assume C5i from Fig. 2 has passed the sub-
set pruning stage and all its subset has been frequent. Also, assume
there is a database of four trees {T1,T2,T 3,T 4}, where F4i occurs in
{T1,T2,T4}, F4j occurs in {T1,T4}, F4k occurs in {T1,T2,T3}, and F4l
occurs in {T1,T4}. As we see, the set of {F4i , F4j , F4k , F4l } (which
are the subset of C5i ) jointly happens in only T1. As a result, if the
Rminsup is less than 25%, F5i will pass the second stage, otherwise,
it will be pruned.
Intersection pruning can directly map to FIM, where itemsets are

the set of (k+1)-candidates and items in the itemsets are the set
of k-frequent-candidates for each candidate. �e number of input
transactions is equal to the number of trees in the database and
the size of each transaction is the number of frequent candidates
contained in the transaction, which creates the AP input stream. If
all the frequent candidates �t into the AP boards, one pass of the
input stream checks the frequency of intersection pruning for all

the candidates at the same time; otherwise, the automaton macros
will be loaded with a new set of candidates, which requires another
pass of the input stream. �e CPU implementation uses a 1D array
for each frequent candidate to list the set of trees in which it occurs.
�e size of the array is equal to the number of trees in the database.

6.2.3 Downward Pruning. To further prune the search space,
the downward pruning kernel simpli�es tree representation to a
sequence of root-to-child paths in order to check the ancestor-
descendant relationships of a subtree in an input tree. Clearly, the
original tree cannot be constructed using these paths, but it has
some unique properties which help to identify a set of frequent
subtrees and reduces computational complexity.
Downward string representation (DSR): It starts from the root

of the tree and traverses all the paths from the root to the terminal
children. �e delimiter 0,0 separates di�erent paths and the delimiter
0#0 represents the end of the downward representation string of
an input tree. When mining ordered subtrees, it is important to
traverse from the le�-most path to the right-most path in order to
preserve the order. For example in Fig. 3, the vertical representation
of subtree ST2 is AC,AB#. When delimiter 0#0, encoded at the end
of subtree downward representation, matches to the input stream,
the associated counter counts up by one and then, matching for the
next tree starts from the root of the subtree.
Downward Pruning on the AP: For all the surviving (k+1)-

candidates from the previous stage, the DSR will be created. �ese
candidates can be interpreted as the candidate sequences in SPM,
where the nodes in a path represent an itemset and paths create
the itemsets. �e DSR for the input tree is considered as the input
stream for this kernel. We adopt the SPM-AP implementation in
[14] for this stage.
DSR creates a sequential pa�ern of the tree structure, which

preserves ancestor-descendant relationships and ignores the sibling
information. Fig. 3 shows the DSR of an input tree and three
example subtrees. According to the SPM de�nition, both DSR-ST1
and DSR-ST3 are the subsequences of DSR-T0, so they survive the
downward pruning and will be checked further at the next pruning
kernel. ST3 is not a true subtree of T0 and connectivity kernel, a
complementary pruning strategy, will prune it in the next stage.
DSR-ST2 is not a subsequence of DSR-T0 and ST2 can be safely
pruned from the set of candidate subtrees.
Downward pruning ensures that, for all the subtrees candidates

with degree no more than one (we call them line-shaped candi-
dates), the �nal decision regarding their frequency will be made
at this stage and no false positive candidate will survive from this
kernel. �is is particularly true because line-shaped candidates are
equivalent to an itemset in SPM, where no branching information
is required. �e quality of downward pruning directly depends on
the topology of the input trees. Deeper trees will bene�t more from
the downward pruning.

6.2.4 Connectivity Pruning. Connectivity pruning addresses sit-
uations when the downward string representation generates two
itemsets out of one node, which allows some false positives to sur-
vive downward pruning. Connectivity pruning �nds a mapping of
the subtree root-path to the input tree and then looks for the child
sequences of the last node in the root-path from le� to right in the
tree. �e root-path of a subtree is the path from the root to the �rst
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Figure 3: An example of downward pruning

Figure 4: An example of connectivity pruning

node with degree more than one. For example, the root-path of ST2
in Fig. 4 is AB.
Connectivity string representation (CSR): CSR of a subtree

consists of the root-path followed by the delimiter ’:’, and then, the
pre-order representation of the children from the le�-most path
to the right-most path separated by the delimiter ’,’. For example
in Fig. 4, the CSR of ST1 is A : BC,BD#, where the root-path is A
and the pre-order representations of its children are BC and BD,
which are separated by the ’,’. In order to detect the subtree in an
input tree, the CSR of the input tree should be extended by all the
paths from the root to all the node with degree more that two. Take
the input tree T0 as an instance, where �rst, A is considered as the
root-path and is followed by the le�-side children (BCD) and the
right-side child (E), and second, AB is considered as the root path
followed by the B’s children. Delimiter ’#’ separates root path sets
in the trees and subtree inclusion checking starts from the subtree
root a�er ’#’ appears in the input stream.
Connectivity Pruning on the AP:�is kernel can directly map

to the SPM, where the root path and children are the itemsets and
the nodes are the items. In SPM, the order between the itemsets mat-
ters while the order between the items does not ma�er. However,
having a pre-de�ned order of the items helps simplify the automata
structure [14]. In sequences generated by CSR, both items and item-
sets have a pre-de�ned ordering, which means that the CSR can be
easily map to the SPM automata structures. Connectivity pruning
does not cause any false negatives, because it just relaxes necessary
tree structure properties in order to check subtree inclusion.

6.3 Pruning Corollaries
3-candidates can only have two di�erent topologies; (1) a root and
two children connect to the root (triangle-shaped), and (2) a root
with one child and one grandchild (line-shaped). As discussed be-
fore, lined-shape pa�erns will be properly pruned in the downward

stage. Connectivity pruning also perfectly trims triangle-shape
ones. �is is because the root path has just one node, which is the
root itself and the le� and right child are the only node and do not
have hierarchical structure, and they only need to appear (in order)
in two di�erent branches of the equivalent tree node to the subtree
root. �ese make all the surviving 3-candidates in the �nal set to
be true 3-frequent-candidates. �is property is very useful because
more precise pruning in early iterations will greatly reduce the
chance of ge�ing false positives in the later stages.

6.4 Program Infrastructure
Fig. 5 shows the complete work�ow of the AP-accelerated FTM
proposed in this paper. �e input database is in horizontal, string-
encoded format (the horizontal format is the pre-order traversal of
trees, including backtracking information). �e following describes
the data pre-processing steps:
Computing 1-frequent-candidates (F1) and 2-frequent-candidates (F2):
To compute F1, for each item (node label) in the tree, its count in
a 1D array will be incremented, where the total time for each tree
with size n is O(n). Other database statistics, such as the maximum
number of labels and number of trees, is calculated as well. F2
counting is done using a 2D integer array of size F1 ⇥ F1 and the
total time is O(n2) per tree.
Recoding the input trees: Depending on the number of frequent
items, the item can be encoded by 8-bit or 16-bit symbols. Di�erent
encoding schemes lead to di�erent automaton designs and capacity
of pa�erns for each pruning stage.
Making input streams: We create downward and connectivity string
representation of the input trees according to the recoded items
and keep them in the memory. A�er pre-processing and generating
tree candidates, the corresponding AP input stream will be gener-
ated for each pruning stage. �en, the appropriate pre-compiled
template macro of automaton structure for FIM or SPM pa�ern is
selected according to k (size of itemset or sequence candidate) and
is con�gured on the AP board. �e candidates are generated on
the CPU and are �lled into the selected automaton template macro.
�e input data formulated in pre-processing is then streamed into
the AP board for counting. While there are k-candidates le� to be
processed on the AP, the AP computation (symbol replacement and
matching) and the AP input generation of the next-level pruning
kernel can be done in parallel. Fortunately, the latency of symbol
replacement could be signi�cantly reduced in future generations of
the AP (because symbol replacement is simply a series of DRAM
writes), which would improve the overall performance greatly. At
the end of connectivity pruning stage, either k has reached the
maximum size or k-frequent-candidates set is empty, we have the
approximate solution, which is a set of potentially frequent candi-
dates. Depending on the �nal application, the approximate results
can either be directly used with no further �nal pruning or can be
considered as the ground candidate set for an exact FTM solution.
We will later show how TreeMinerD [16] can be used to provide
an exact solution over the AP results.

7 FTM GPU IMPLEMENTATION
Despite the DFS strategies, where memory becomes a limiting
factor for performance and scalability, especially in large datasets
and lower support thresholds, BFS solutions do not require a large
memory footprint, as they do not project the dataset into memory.
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Figure 5: �e work�ow of the AP-accelerated FTM

However, they require a pass of the dataset in each iteration. �us,
to implement FTM on the GPU platform, we chose to adopt the
BFS-based candidate-generation and enumeration strategy because
(1) the solution will not be bound by the �nite GPU global memory,
and (2) it exposes many ready-to-process candidate subtrees in
order to fully utilize the GPU cores and ultimately, reduces the
overhead of database scanning.
FTM-GPU: A�er recoding labels, the whole dataset is transferred

to the GPU global memory. �en, the algorithm iterates over three
steps: (1) generating (k + 1)-subtree candidates from the frequent
k-subtrees on the CPU, (2) pruning the candidates using subset
pruning on the CPU, and (3) identifying the frequent (k + 1)-subtrees
on the GPU. For the GPU computation, we convert both input trees
and subtree candidates to one-dimensional arrays. In the CUDA
kernel function, each thread is responsible for matching one tree
in the input dataset to a candidate. We explore two memory region
targets for the subtree candidates. In the �rst approach, we transfer
all the candidates to constant memory (in iterations, if candidate
array is larger than constant memory size) and all the threads start
matching one candidate to their bound trees. Alternatively, we
transfer the candidates to global memory and at each iteration, take
just one to shared memory for matching. �e constant memory
implementation provides a faster solution when the trees in the
dataset are similar in terms of size and node labels, otherwise, the
shared memory approach shows a be�er result.
To improve the performance of FTM-GPU, we sort the trees in

the database according to the tree size. �is sorting tries to provide
each warp with a batch of trees of roughly the same size. �is
greatly helps reduce branch divergence and lessen synchronization
time. Once the matching and counting phase is done for all the
(k+1)-candidates, the results are transferred back to the CPU for the
next-level candidate-generation. FTM-GPU is capable of counting
both distinct occurrences of subtrees and weighted support. To the
best of our knowledge, this is the �rst implementation of frequent
subtree mining on the GPU platform.

8 EXPERIMENTAL RESULTS
�e number of pa�erns that can be placed into the board, and the
number of candidates that must be checked in each stage, assuming
a 32-chip Micron D480 AP board, determines how many passes
through the input are required for each pruning kernel, and the
input processing rate is �xed at 133 MB/s, which allows a simple
calculation to determine the total time on the AP (see hardware
parameters in [4]). All the automata designs are selected from the
16-bit encoding for simplicity, so there is no need for recon�gura-
tion when the number of labels is more than 256. In each step of
pruning, an appropriate FIM or SPM corresponding to the candidate
size will be selected and con�gured on the AP.

8.1 Comparison with Other Implementations
We compare the performance and accuracy of the proposed AP
multistage pruning for FTM (FTM-AP) versus (1) a BFS-based GPU
implementation of FTM (FTM-GPU), (2) a multi-core implemen-
tation using pthread (TRIPS-12C) [7], (3) a single-core DFS-based
implementation capable of weighted counting (TRIPS) [8], (4) a
single-core DFS-based implementation which counts distinct occur-
rences of a pa�ern (TreeMinerD) [16], and a single-core level-wise
BFS approach (Pa�ernMatcher) [15].
We consider Pa�ernMatcher in our comparison because it is the

only method that does not fail on challenging datasets in lower
support thresholds. Despite being very slow, it gives us a baseline
for calculating both performance and accuracy for the proposed AP
solution. Similarly to TreeMinerD, the FTM-AP solution is designed
to only enumerate distinct occurrences of a pa�ern, thus providing
a very fast solution in comparison with TreeMiner [16]. �erefore,
we do not compare FTM-AP with TreeMiner. Moreover, TRIPS
and TIDES [8] claim that they are orders of magnitude be�er than
TreeMiner. In the same paper, they show that XSpanner is worse
than TreeMiner, so we do not compare with XSpanner either.
FIM and SPM implementations on the AP are much faster than

their GPU solutions, especially for large datasets [12] [14]. In FTM-
AP, all the kernels are mapped to either FIM or SPM, and we can
conclude that FTM-AP will outperform the GPU implementation
of pruning kernels. Moreover, GPU implementations of subse-
quence inclusion checking in a sequence and subtree inclusion
checking in a tree have almost similar complexity and synchro-
nization overhead. �us, we predict that exact FTM solution on
the GPU (FTM-GPU) will outperform the GPU implementation of
pruning kernels (inexact-FTM-GPU), because inexact-FTM-GPU
requires at least twice as many subsequence inclusion checking
operation as FTM-GPU requires subtree inclusion checking.

8.2 Platform and Parameters
All of the above implementations are tested using the following
hardware:

• CPU: Intel CPU i7-5820K (6 cores, 3.30GHz), memory:
32GB, 2.133 GHz

• GPU: Nvidia Kepler K80C, 560 MHz clock, 4992 CUDA
cores, 24GB global memory

• AP: D480 board, 133 MHz, 32 AP chips (simulation)

Furthermore, we test CPU solutions in a large-memory machine
with 512GB of memory later in Section 8.7. For each benchmark,
we compare the performance of the above implementations over a
range of relative minimum support (Rminsup) values. To observe
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the behavior of di�erent implementations and �nish all our experi-
ments in a reasonable amount of time, we select Rminsup numbers
that produce computation times up to one day.

8.3 Datasets
We evaluate the proposed algorithm on four di�erent datasets, two
real-world (CSLOGS 1 and TREEBANK 2), and two synthetically
generated by the tree generation program provided by Zaki1 (T1M
and T2M). Table 1 shows the details of the datasets. CSLOGS con-
sists of user browsing subtrees of the CS department web site at the
Rensselaer Polytechnic Institute. TREEBANK is widely used in com-
putational linguistics and consists of XML documents. It provides
a syntactic structure of the English text and uses part-of-speech
tags to represent the hierarchical structure of the sentences. T1M
and T2M are generated based on a mother tree with the maximal
depth and fan-out of 10. �e total number of nodes in T1M and
T2M are 1,000,000 and 100,000, respectively. �e datasets are then
generated by creating subtrees of the mother tree. �e synthetic
tree generator provides a preorder-like representation, while TRIPS
and TRIPS-12C work with the Prüfer sequence and postorder tree
representation. �us, we convert the datasets to their compatible
input format o�ine and do not consider it in the time calculation.

8.4 AP-FTM Breakdown and Speedup Analysis
We choose TREEBANK dataset to study the pruning e�ciency of
each kernel and compare the performance of the CPU implemen-
tation and the AP-FTM for each of them. We also compare the
scalability and e�ciency of the kernel methods with the count-
ing stage of Pa�ernMatcher. TREEBANK is the most challenging
dataset, because it consists of very wide and large trees (the largest
tree has 684 nodes) and it has a large number of items and relatively
high standard deviation of tree size, which makes it di�cult for the
CPU solutions to process. Excluding Pa�ernMatcher, other solu-
tions either crash or quickly run out of memory when decreasing
the support threshold.
We have implemented all four pruning kernels on the CPU (in

C++) in order to isolate the performance di�erence of the AP vs.
CPU for the same work and highlight the AP architectural con-
tribution. Fig. 6 shows that subset, intersection, downward, and
connectivity kernels achieve up to 163⇥, 19⇥, 3144⇥, and 2635⇥
speedups over their counterpart CPU implementations, while they
prune at least 80%, 0.5%, 3.5%, and 4.8% of the total generated candi-
dates in TREEBANK, when ranging Rminsup from 0.9 to 0.3 (Fig. 7).
Due to the AP con�guration time overhead, subset pruning CPU is
faster than subset pruning AP at higher support thresholds. How-
ever, when Rminsup decreases and more candidates are generated,
searching the larger dictionary of a frequent subtree on the CPU
1h�p://www.cs.rpi.edu/˜zaki/so�ware/
2h�p://www.cs.washington.edu/research/xmldatasets/

Table 1: Datasets

Name #Trees Ave Node SD Node #Items Size(MB)
T1M 1,000,000 5.5 6.2 500 49.3
T2M 2,000,000 2.95 3.3 100 60.1
CSLOGS 59691 12.94 22.47 13361 6.3
TREEBANK 52581 68.03 32.46 1387266 27.3

Ave Node = Average number of nodes per tree
SD Node = Standard deviation of number of nodes per tree

#Items = Label set size
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Figure 6: Kernels’ execution time and speedup

takes longer, while the AP solution is almost constant. However,
the subset kernel has a very small e�ect in total execution time,
yet at the same time, it has a major contribution in pruning the
candidates. Although intersection pruning has the lowest pruning
contribution among others, it has the highest computation time
on the AP, because the necessary input stream for this kernel is
very large (due to the repetition of frequent candidates in di�erent
input trees). In total, the AP kernels show up to 215⇥ speedup
over the CPU pruning kernels, which implies the AP architectural
contribution (black bars in Fig. 6). �e subset kernel is more ef-
fective in lower Rminsup, where larger candidates are introduced
and survive. �is is because larger candidates have more frequent
subsets, which increases the probability of pruning false positives.
On the other hand, downward and connectivity kernels are more
e�cient on the smaller candidates because the e�ect of relaxing
tree constraints is less destructive on them. �is observation can
be clearly seen in Fig. 7, where by decreasing the Rminsup (which
means the population of the larger candidates relative to the smaller
ones grows), the contribution of subset pruning increases, whereas
the contribution of the other three kernels decreases.
We also compare the AP-FTM solution with Pa�ernMatcher in

order to show the trade-o� between accuracy and execution time,
and also study the algorithmic/heuristic contribution of our prun-
ing kernels (the ratio of red to black bars in Fig. 6). In total, at
least 86% of the generated candidates are pruned using the pruning
kernel within less than 105 seconds for the lowest support thresh-
old, where the Pa�ernMatcher takes more than 10 hours to �nd
the exact frequent candidates (about 353⇥ speedup considering
pre-processing time). Note that the pruning portions and timing
are calculated just for the candidates of size three and more, and we
do not consider the number of candidates for 1-frequent-candidates
and 2-frequent-candidates, as they will be easily detected either on
the AP or on the CPU. In order to further study the behavior of the
pruning kernels, we test the e�ects of taking the intersection kernel
out of the pruning framework, because as we have already ob-
served, it has the least pruning e�ciency and largest computational
time. �e results show that the AP achieves up to 1530⇥ and 2190⇥
speedup over the CPU-based pruning kernels and Pa�ernMatcher,
respectively. However, the AP worst case accuracy decreases from
86% to 83%. �erefore, having more sophisticated kernels can im-
prove the accuracy and depend on the target constraints, and the
user can make the trade-o� between kernel selection and desirable
speedup.
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Figure 7: Generated subtrees’ breakdown

8.5 AP-FTM vs. Other FTM Algorithms
Fig 8 - 11 represent performance comparison (le� vertical axis)
among single-core CPU implementations (TreeMinerD, Pa�ern-
Matcher, TRIPS), a multi-core (TRIPS-12C) approach, a GPU solu-
tion (FTM-GPU), and our proposed method (FTM-AP) for mining
distinct occurrences of embedded subtrees in four databases of or-
dered labeled trees. All methods are end-to-end solutions and apart
from FTM-AP, have an accuracy of 100% for the �nal frequent set.
�e right vertical axes in the graphs represent the percentage of
the false positives in the output of FTM-AP. �e main goal of these
graphs is to compare the trade-o� between the speed and accuracy
of the AP solution versus the existing FTM implementations.
Most existing state-of-the-art tools have di�culty with larger

inputs and smaller support thresholds and fail due to scalability
limits. Common limits include long execution time, insu�cient
system memory, limitations in internal data-structures, or crash-
ing/reporting an error due to their design not anticipating a large
input. TRIPS and TRIPS-12C either crash or get struck for un-
known reasons when decreasing the Rminsup. For example, in
TREEBANK, TRIPS-12C breaks atRminsup = 0.65 and TRIPS stucks
at Rminsup = 0.5. TRIPS-12C shows an unstable behavior in T1M
and T2M, and from our experience, changing the number of running
threads and turning hyper-threading o� do not make a di�erence.
TreeMinerD is the fastest accurate solution in real-world datasets
for smaller thresholds. In CSLOGS (Fig. 8), TreeMinerD is even
faster than the FTM-AP solution, however, it runs out of memory
when Rminsup<0.005 (we will discuss the memory usage of TreeM-
inerD in the next subsection). Pa�ernMatcher requires the least
amount of memory among other solutions, but its execution time
takes more than 10 hours at Rminsup<0.006 and Rminsup<0.35 in
CSLOGS and TREEBANK, respectively.
Database statistics such as average and standard deviation of the

number of nodes per tree, the number of items, and the number
of trees directly a�ect the performance of the FTM-GPU. In Fig.
8 and 9, FTM-GPU shows almost the worst performance results
among others. �is is because SD Node and #Items in TREEBANK
and CSLOGS are relatively high. Higher SD Node implies uneven
distribution of trees with di�erent sizes in the database, and causes
the synchronization time between the thread in a warp to increase.
Higher #Items increases the chance of thread divergence in a warp,
because the possibility of checking the subtree node against di�er-
ent labels in the input trees of the same warp increases. In CSLOGS
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Figure 8: Performance comparison on CSLOGS
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Figure 9: Performance comparison on TREEBANK

at Rminsup  0.008 and TREEBANK at Rminsup  0.45, the FTM-
GPU takes more than 10 hours to run. T1M and T2M in Fig. 10
and 11 show that FTM-GPU has much be�er relative performance
among accurate solutions as the SD Node and #Items are lower (Ta-
ble 1). Overall, the FTM-GPU results show that the GPU platform
does not provide a reliable and scalable solution for the FTM.
In Fig. 8, for Rminsup � 0.008, the execution time of TreeMinerD

and FTM-AP are almost the same, which is less than a second. In
the range of 0.008 < Rminsup  0.006, Pa�ernMatcher is the only
running accurate solution, which takes 31,456 sec when Rminsup =
0.006. Eventually, for Rminsup  0.006, FTM-AP continues to be
the only reliable running solution, and we are not able to calculate
the accuracy of the AP-FTM, as there is no exact solution running
in this range. �e maximum accuracy reduction for FTM-AP in
CSLOGS is 0.09%. For T1M and T2M, AP-FTM beats TRIPS, which
is the fastest solution, by factors of 22⇥ and 9.2⇥, while losing
at most 6.5% and 0.1% accuracy, respectively. Overall, FTM-AP,
with at most 7.5% false positives, beats Pa�ernMatcher, the feasible
and exact CPU solution, by a factor of 394⇥. �e low memory
requirement and huge speedup achieved by the AP-FTM makes it
a scalable and reliable solution with a �nal application tolerance
of a few percentage points for false positives. Another advantage
of the AP is that it gives consistently good performance, while
the performance of other techniques varies based on the database
characteristics.
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Figure 10: Performance comparison on T1M
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Figure 11: Performance comparison on T2M

8.6 Performance Scaling with Data Size and
Support�reshold

In this subsection, we study the scaling of performance as a func-
tion of input data sizes and minimum support threshold. In order to
generate synthetic datasets, we adopt the parameters used to gener-
ate T1M (Table 1) and increase the number of trees from 106 (49MB)
to 2 ⇥ 106 (99MB), 4 ⇥ 106 (196MB), 8 ⇥ 106 (386MB), and 16 ⇥ 106
(770MB), while preserving the other parameters. Fig. 12 represents
the performance of TreeMinerD, FTM-GPU, Pa�ernMatcher, TRIPS,
and FTM-AP for these �ve synthetically generated dataset using
two relative minimum supports. FTM-AP beats FTM-GPU by a
factor of 2.6⇥ at Rminsup = 0.04 and 3.9⇥ at Rminsup = 0.02, and
Pa�ernMatcher by a factor of 3.3⇥ at Rminsup = 0.04 and 45.1⇥
at Rminsup = 0.02, while losing at most 1% accuracy. TreeMinerD
and TRIPS do not provide a scalable solution, because they both run
out of memory when increasing the input size and when decreasing
the minimum support threshold. �e results show that the FTM-AP
always has the lowest execution time and its performance advan-
tage grows when Rminsup decreases and input size increases. We
are evaluating FTM performance for one node. Su�ciently large
CPU/GPU clusters can handle larger FTM problems and run them
faster than a single AP, but a cluster of APs would be even faster.

8.7 Exact Solution on the FTM-AP
�e output of the AP pruning kernels is a set of potentially fre-
quent candidates that preserve a subset of tree topological and label
a�ributes. Depending on the target application, one can directly
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Figure 12: Performance scaling with input data-size and
Rminsup

use the AP output as the set of frequent subtrees, especially in
classi�cation tasks, where the applications are able to recover from
the introduced false positives. Frequent subtrees are used in many
natural language processing (NLP) tasks, because tree structures
can capture and represent the complex relations and dependencies
of a natural language. Agarwal et al. in [1] demonstrated how com-
bining subtree features with sequential pa�erns and bag-of-words
can increase sentiment analysis accuracy. Since the AP results are
already examined for sequential properties in downward pruning,
and all the false positives in the �nal candidate set can be translated
as sequential pa�ern features (albeit with low support), it suggests
that the AP �nal results can be directly used for those tasks with-
out potentially a�ecting the �nal accuracy, while achieving a huge
speedup.
On the other hand, having an exact set of frequent subtrees is

a must for some applications. In order to prune the false posi-
tives from the AP output, we propose APHybrid-FTM, to com-
bine the AP with TreeMinerD, where the AP solution can help
to reduce the memory requirement and increase the speed of the
TreeMinerD approach while maintaining its 100% accuracy. As
mentioned before, TreeMinerD implements a DFS-based algorithm,
and a (k+1)-candidate is generated by combining two k-candidates
on the same equivalent-class, under some circumstances [16]. We
store the set of potential frequent subtrees in a dictionary (D) and
check whether the (k+1)-candidates, generated by the TreeMinerD
candidate-generation step, exist in D. If it is a hit, TreeMinerD
continues the matching and counting stage (as discussed in Section
6.3, the set of 3-candidates and line-shaped candidates are 100% ac-
curate and do not need to be checked for frequency), otherwise, the
candidate is infrequent, which avoids the unnecessary enumeration
step, and the algorithm continues to generate the next candidate.
�e AP-FTM framework greatly helps TreeMinerD to (1) reduce
its execution time, and (2) alleviate its memory footprint because
many infrequent candidates in TreeMinerD will be pruned early in
the candidate-generation step and their occurrences (embedding
information in the database) do not need to be stored in memory.
In order to analyze APHybrid-FTM performance and study the

e�ect of memory usage on the FTM scalability, we run TreeMinerD,
APHybrid-FTM, Pa�ernMatcher, and TRIPS on a node3 with 512GB
memory for TREEBANK. Fig. 13a represents the required maxi-
mum memory size and Fig. 13b shows the execution time of these
3Intel(R) Xeon(R) CPU E5-2670 (24 cores, 2.30GHz), memory: 512GB, 2.133 GHz
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Figure 13: Execution time vs memory usage on TREEBANK

methods on a log scale. �e speed and memory trade-o� among
TreeMinerD, Pa�ernMatcher, and TRIPS on the CPU can be easily
observed by looking at these two graphs, where TreeMinerD is the
fastest tool among these three and demands the largest memory
footprint, whereas Pa�ernMatcher, with the lowest performance,
requires the smallest memory capacity (less than 100MB). How-
ever, APHybrid-FTM is the best. It alleviates memory usage of
TreeMinerD up to 5.8⇥ and reduces its execution time up to 4.14 at
Rminsup = 0.3. For Rminsup  0.3, TreeMinerD runs out of mem-
ory, while APHybrid-FTM continues. Furthermore, APHybrid-FTM
performs 262⇥ be�er than Pa�ernMatcher at Rminsup = 0.25 (it
takes more than a day for Rminsup < 0.25) and 30⇥ be�er than
TRIPS at Rminsup = 0.45 (lowest working threshold for TRIPS).
In summary, APHybrid-FTM provides the fastest exact solution

(Fig. 13b), which in turn extends the scalability of TreeMinerD
and its advantages increase at lower support thresholds and larger
databases. Overall, the proposed pruning approach can be adopted
as a general strategy to accelerate complex and/ormemory-intensive
pa�ern-mining problems.

9 CONCLUSIONS AND FUTUREWORK
We develop FTM-AP, a multi-stage pruning strategy on the AP, to
reduce the candidate search space of the frequent subtree mining
problem in a very short amount of time, providing a fast and scal-
able solution at the cost of a small reduction in accuracy. FTM-AP
achieves up to 394⇥ speedup with at most 7.5% false positives over
Pa�ernMatcher, a feasible and exact CPU solution. For problems
requiring an exact solution, we use the output of FTM-AP as the

candidate screen for TreeMinerD, a DFS-based exact solution, in
order to remove the false-positive candidates, limit the memory
requirements, and achieve up to 262⇥ speedup. �e bene�ts the AP
provides for FTM increase with larger datasets and lower support
thresholds. �e pruning framework on the heterogeneous architec-
ture (CPU and the AP) can also potentially be adopted to extend the
scalability of the other subtree types and graph mining problems,
an interesting direction for future work.
Additional performance improvements could be achieved with

hardware support to minimize symbol replacement latency and
maximize capacity of resources on the AP, as well as be�er sup-
port for push-down automata capabilities. �e proposed pruning
kernels are capable of running in a pipeline system, assuming four
AP boards are available, and this also allows scaling of larger prob-
lems to cluster- or datacenter-scale resources, another interesting
direction for future work.
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