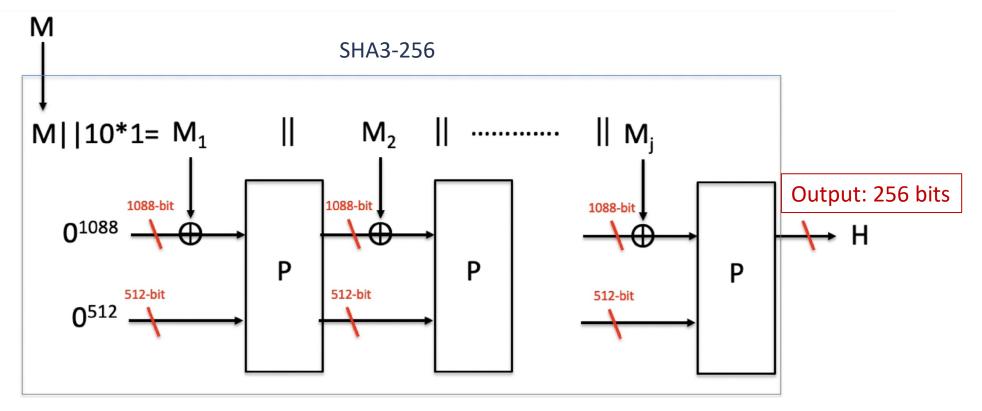
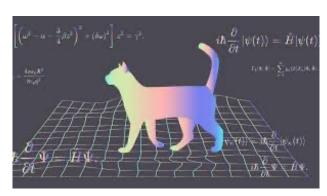
Inhale: Enabling High-Performance and Energy-Efficient In-SRAM Cryptographic Hash for IoT


Jingyao Zhang, Elaheh Sadredini

2022 IEEE/ACM International Conference on Computer-Aided Design

What is Cryptographic Hash


- Input M: a binary string of any bit-length
- Output H: a multi-bit string
- Practically infeasible to invert or reverse the computation

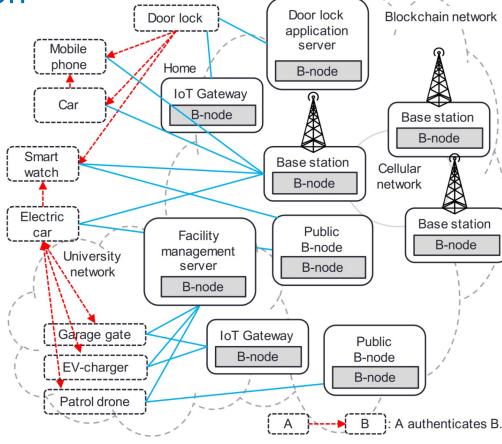
What is Cryptographic Hash

- □ Input M: a binary string of any bit-length
- Output H: a multi-bit string
- Practically infeasible to invert or reverse the computation

Post-quantum Cryptography

Motivating Example: Secure Communication

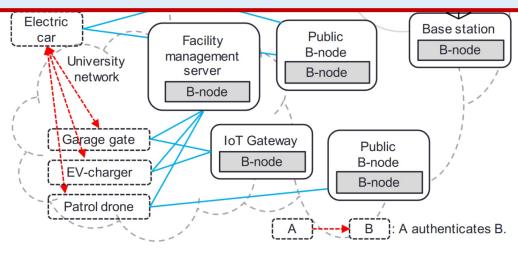
- Moreover, hashing can provide Identity Authentication
 - They establish a mutual Secret Key with key encapsulation mechanism (KEM)
 - Alice combines Message + Secret Key to create Digest by Hashing
 - Bob verifies by calculating Hash of Message + Secret Key
 - Message was not modified in transit ----- Integrity
 - Alice had the identical Secret Key ----- Authentication


https://www.youtube.com/watch?v=doN3lzzNEIM&t=96s

More Vulnerability in IoT Era

Attackers can effortlessly obtain physical access to edge devices

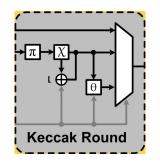
Though hash-based public key infrastructure can be used for Data


Integrity and Identity Authentication

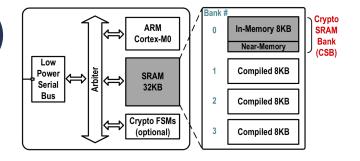
More Vulnerability in IoT Era

- Attackers can effortlessly obtain physical access to edge devices
- Though hash-based public key infrastructure can be used for Data Integrity and Identity Authentication Door lock Blockchain network

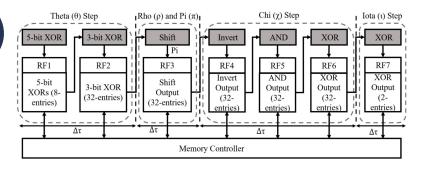
Demand for low-latency, high-throughput and energy-efficient hashing in IoT devices



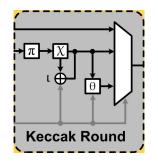
application


Door lock

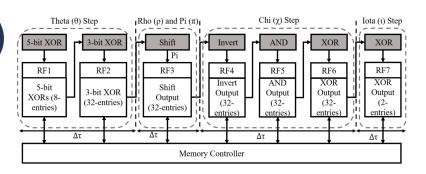
△ Challenges: Performance, Energy, Area


- Dedicated hardware engine on chip (ISSCC'16)
 - Low throughput
 - High area overhead on chip

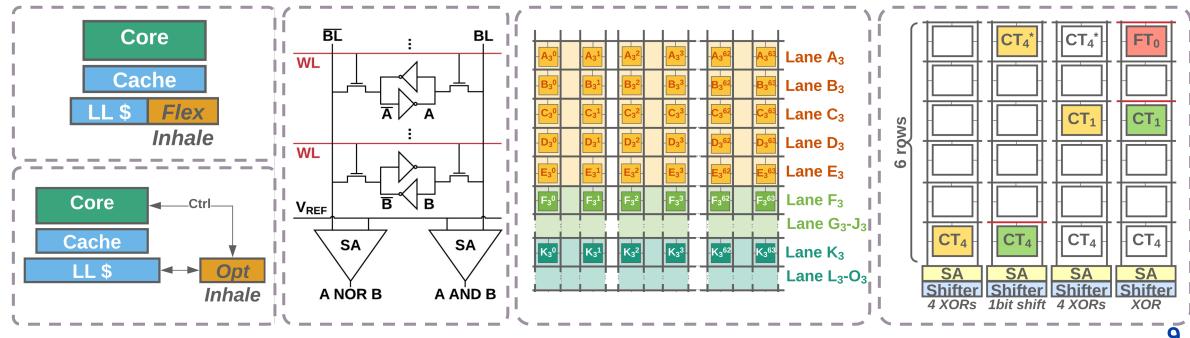
- General-purpose in-memory acceleration (JSSC'18)
 - High latency
 - Low throughput per unit area



- □ Dedicated in-memory acceleration (ISLPED'19)
 - High area overhead
 - Low flexibility

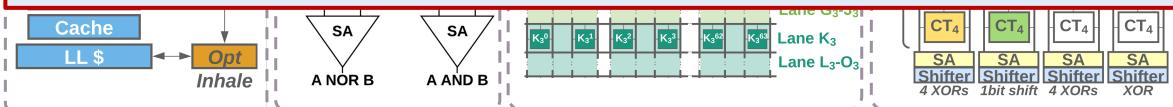

△ Challenges: Performance, Energy, Area

- Dedicated hardware engine on chip (ISSCC'16)
 - Low throughput
 - High area overhead on chip


Demand for low-latency, high-throughput, energy-efficient, low-overhead hashing in IoT

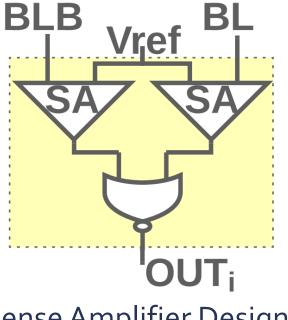
- □ Dedicated in-memory acceleration (ISLPED'19)
 - High area overhead
 - Low flexibility

Overview of Our Solution: Inhale


- On-chip Hashing -> high security level
- Bitline Computing -> high throughput
- Shift-optimized Data Alignment -> low latency, energy
- In-Place Read/Write Strategy -> low overhead

Overview of Our Solution: Inhale

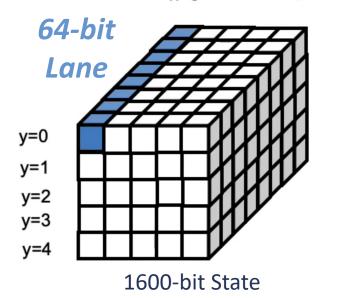
- On-chip Hashing -> high security level
- Bitline Computing -> high throughput
- □ Shift-optimized Data Alignment -> low latency, energy
- □ In-Place Read/Write Strategy -> low overhead


Inhale can achieve up to 14x throughput-perarea, 172x throughput-per-area-per-energy than state-of-the-art

Inhale: Bitline Computing

Bitline Computing [1]

- Activate two wordlines simultaneously
- Inherently perform logic operations
 - NOR
 - AND
- Additionally support other logic operations
 - XOR
- Provide high parallelism

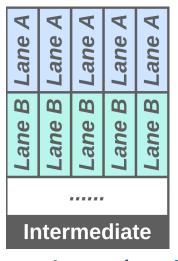


Sense Amplifier Design

Inhale: Shift-optimized Data Alignment

Existing Data Alignments

- o JSSC'18:
 - hard for inter-lane and intra-lane shift
- o ISCA'18:
 - high latency, high control overhead (>10x JSSC'18)

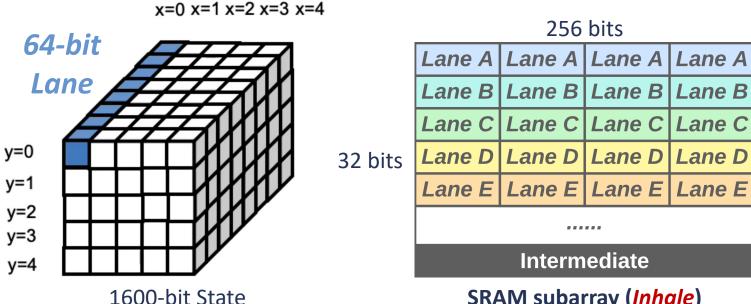


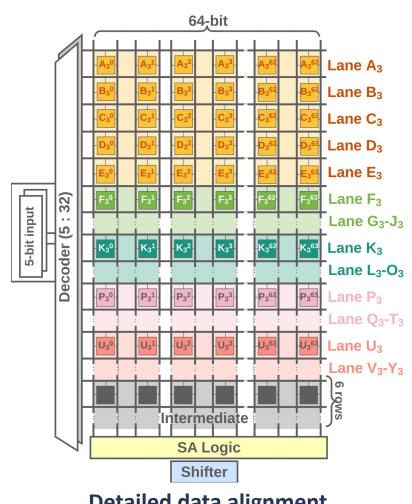
> 320 bits

Lane A	Lane B	Lane C	Lane D	Lane E						
Lane F	Lane G	Lane H	Lane I	Lane J						
Lane K	Lane L	Lane M	Lane N	Lane O						
Lane P	Lane Q	Lane R	Lane S	Lane T						
Lane U	Lane V	Lane W	Lane X	Lane Y						
Intermediate										

SRAM subarray (JSSC'18)

> 1600 bits

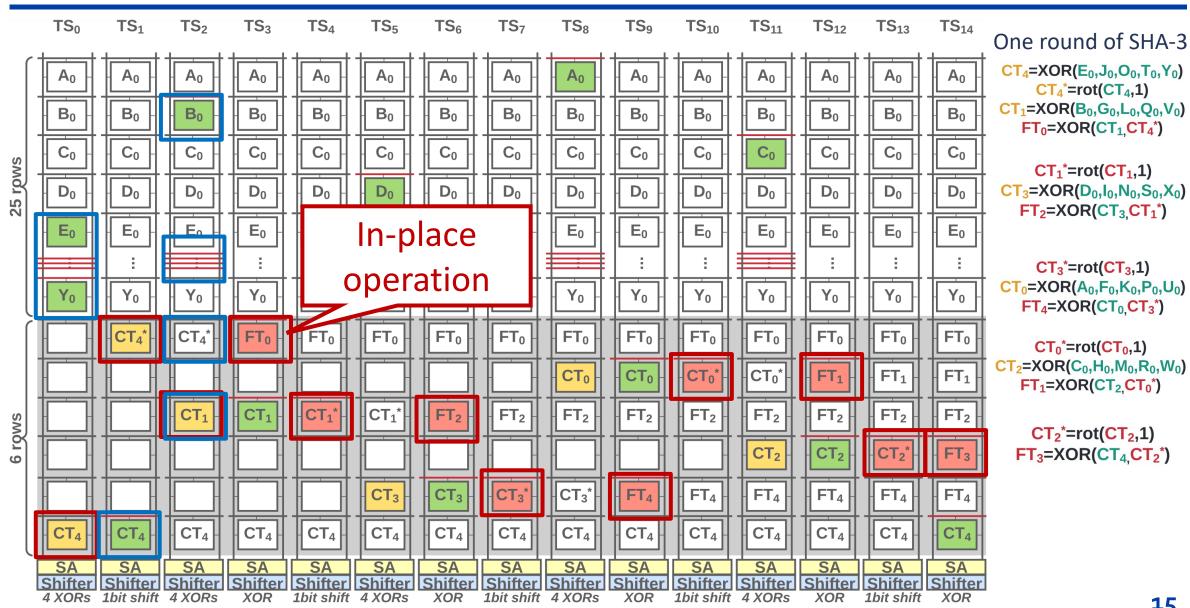



SRAM subarray (ISCA'18)

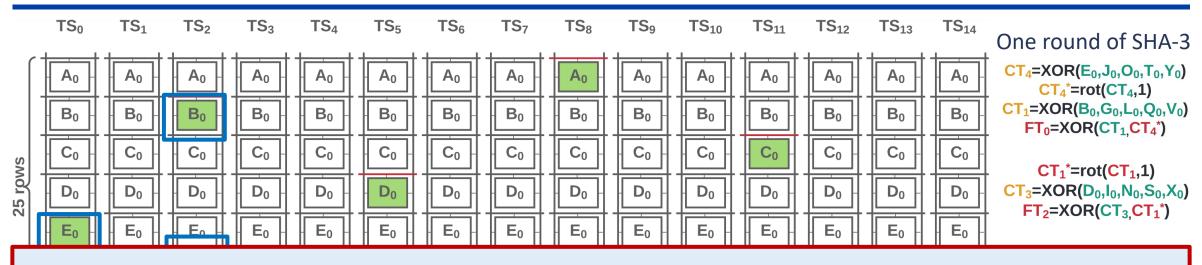
Inhale: Shift-optimized Data Alignment

Shift-optimized Data Alignment

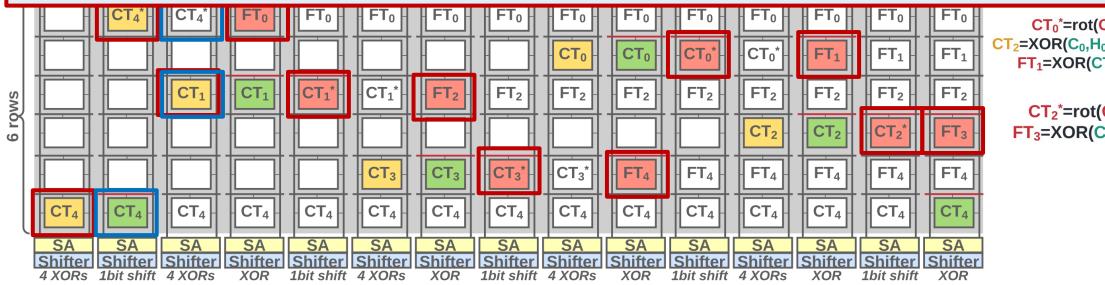
- Place lane per row
- *Inter-lane* shifts are costless with the controller
- *Intra-lane* shifts are performed with small shifters
- Well balance the performance and overhead


Detailed data alignment

Inhale: In-place read/write strategy

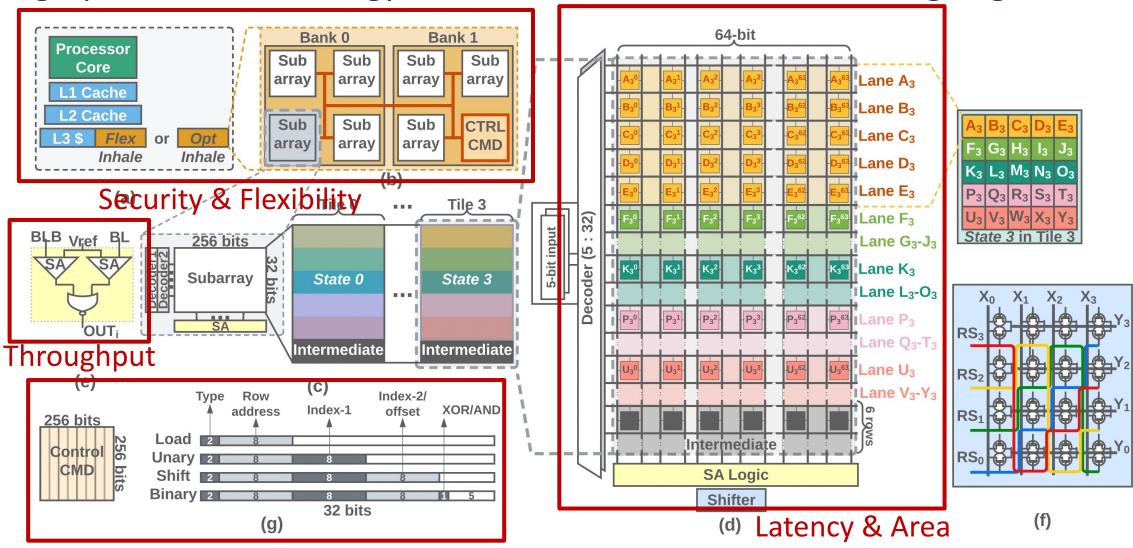

■ In-place read/write strategy

 Read/write order and address are carefully designed to save memory capacity and maintain generality of our solution in varied IoT devices


Inhale: In-place read/write strategy

Inhale: In-place read/write strategy

More than 50% of intermediate rows are saved



 $CT_0^*=rot(CT_0,1)$ $CT_2 = XOR(C_0, H_0, M_0, R_0, W_0)$ $FT_1=XOR(CT_2,CT_0^*)$

> CT_2 *=rot(CT_2 ,1) $FT_3=XOR(CT_4,CT_2^*)$

Inhale: Overall Architecture

High-performance, energy-efficient and low-overhead hashing engine

Evaluation Methodology

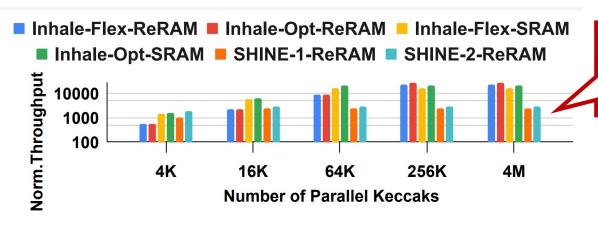
- Read and write latency:
 - PyMTL3 and OpenRAM for generating SRAM arrays
 - Synopsys Design Compiler for extracting latencies
 - Latencies of ReRAM array from DESTINY simulator
- Area and energy numbers simulated by DESTINY simulator
 - Kilo Gate Equivalent (KGE) is used to decouple the area overhead from the technology node
- For apples-to-apples comparison between different designs
 - Inhale and SHINE in 28nm ReRAM and SRAM are all evaluated

	Tech.	Max f (MHz)	Area (KGE)	Latency (cycles)	Latency (ns)	Tput. (Mbps)	Tput./Area (Mbps/KGE)	Energy (nJ)	Tput./Area/En (Mbps/(KGE·nJ)
Inhale-Opt-SRAM	28nm	6.7K	63.6	564	83.6	52K	818	0.456	1.8K
Inhale-Flex-SRAM	28nm	6.1K	386	564	91.9	47.3K	123	0.596	206
In-memory o	omput	ing br	ings	£	39.1	111K	225	-	-
· .	_			P	20.7	210K	293	_	-
auv	antage	5)	4.8K	226	0.377	2.03	0.186
Inhale-Opt-ReRAM	28nm	2.4K	19.1	564	235	18.6K	970	0.348	2.79K
Inhale-Flex-ReRAM	28nm	2.3K	56.3	564	240	18.1K	322	0.446	721
SHINE-1-ReRAM[19]	65nm	2K	494	264	132	33K	66.8	4.13	16.2
SHINE-2-ReRAM[19]	65nm	2K	717	140	70	62.2K	86.7	3.5	24.8
SHINE-1-ReRAM (projected)	28nm	4.6K	494	264	56.9	76.5K	155	-	-
SHINE-2-ReRAM (projected)	28nm	4.6K	717	140	30.2	144K	201	-	-
Akın[2]	90nm	455	10.5K	25	54.9	19.8K	1.89	>43.5	< 0.043
Tillich[28]	180nm	488	56.3K	25	51.2	21.2K	0.377	>43.5	< 0.009
Pessl-V1 [22]	130nm	1	5.5K	10.7K	10.7M	0.102	18.5e-6	>43.5	<4.25E-7
Pessl-V2 [22]	130nm	1	5.9K	7.4K	7.4M	0.147	24.9e-6	>43.5	<5.73E-7
Wong[30]	65nm	1K	105K	-	-	48K	0.457	>43.5	< 0.011

	Tech.	Max f (MHz)	Area (KGE)	Latency (cycles)	Latency (ns)	Tput. (Mbps)	Tput./Area (Mbps/KGE)	Energy (nJ)	Tput./Area/En. (Mbps/(KGE·nJ))
Inhale-Opt-SRAM	28nm	6.7K	63.6	564	83.6	52K	818	0.456	1.8K
Inhale-Flex-SRAM	28nm	6.1K	386	564	91.9	47.3K	123	0.596	206
SHINE-1-SRAM	28nm	6.7K	494	264	39.1				-
SHINE-2-SRAM	28nm	6.7K	717	140	20.7	High	er freque	ency	-
Recryptor[34]	40nm	28.8	600	139	4.8K		·	·	0.186
Inhale-Opt-ReRAM	28nm	2.4K	19.1	564	235	18.6K	970	0.348	2.79K
Inhale-Flex-ReRAM	28nm	2.3K	56.3	564	240	18.1K	322	0.446	721
SHINE-1-ReRAM[19]	65nm	2K	494	264	132	33K	66.8	4.13	16.2
SHINE-2-ReRAM[19]	65nm	2K	717	140	70	62.2K	86.7	3.5	24.8
SHINE-1-ReRAM (projected)	28nm	4.6K	494	264	56.9	76.5K	155	-	-
SHINE-2-ReRAM (projected)	28nm	4.6K	717	140	30.2	144K	201	-	-
Akın[2]	90nm	455	10.5K	25	54.9	19.8K	1.89	>43.5	< 0.043
Tillich[28]	180nm	488	56.3K	25	51.2	21.2K	0.377	>43.5	< 0.009
Pessl-V1 [22]	130nm	1	5.5K	10.7K	10.7M	0.102	18.5e-6	>43.5	<4.25E-7
Pessl-V2 [22]	130nm	1	5.9K	7.4K	7.4M	0.147	24.9e-6	>43.5	<5.73E-7
Wong[30]	65nm	1K	105K	-	-	48K	0.457	>43.5	< 0.011

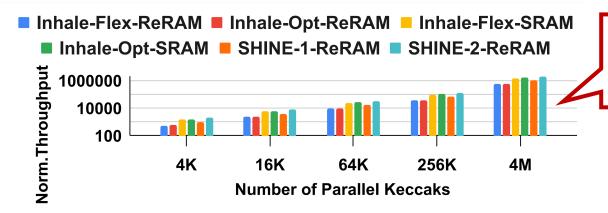
	Tech.	Max f (MHz)	Area (KGE)	Latency (cycles)	Latency (ns)	Tput. (Mbps)	Tput./Area (Mbps/KGE)	Energy (nJ)	Tput./Area/En. (Mbps/(KGE·nJ))
Inhale-Opt-SRAM	28nm	6.7K	63.6	564	83.6	52K	818	0.456	1.8K
Inhale-Flex-SRAM	28nm	6.1K	386	564	91.9	47.3K	123	0.596	206
SHINE-1-SRAM	28nm	6.7K	494	264	39.1	111K	225	-	-
SHINE-2-SRAM	28nm	6.7K	717	140	20.7	210K	293	-	-
Recryptor[34]	40nm	28.8	600	139	4.8K	De	dicated	multi-	bit ¹⁸⁶
Inhale-Opt-ReRAM	28nm	2.4K	19.1	564	235		VOD I	• _	⁷ 9K
Inhale-Flex-ReRAM	28nm	2.3K	56.3	564	240		XOR Id	ogic	21
SHINE-1-ReRAM[19]	65nm	2K	494	264	132	ээК	66.8	4.13	16.2
SHINE-2-ReRAM[19]	65nm	2K	717	140	70	62.2K	86.7	3.5	24.8
SHINE-1-ReRAM (projected)	28nm	4.6K	494	264	56.9	76.5K	155	-	-
SHINE-2-ReRAM (projected)	28nm	4.6K	717	140	30.2	144K	201	-	-
Akın[2]	90nm	455	10.5K	25	54.9	19.8K	1.89	>43.5	< 0.043
Tillich[28]	180nm	488	56.3K	25	51.2	21.2K	0.377	>43.5	< 0.009
Pessl-V1 [22]	130nm	1	5.5K	10.7K	10.7M	0.102	18.5e-6	>43.5	<4.25E-7
Pessl-V2 [22]	130nm	1	5.9K	7.4K	7.4M	0.147	24.9e-6	>43.5	<5.73E-7
Wong[30]	65nm	1K	105K	1-	-	48K	0.457	>43.5	< 0.011

	Tech.	Max f (MHz)	Area (KGE)	Latency (cycles)	Latency (ns)	Tput. (Mbps)	Tput./Area (Mbps/KGE)	Energy (nJ)	Tput./Area/En. (Mbps/(KGE·nJ))
Inhale-Opt-SRAM	28nm	6.7K	63.6	564	83.6	52K	818	0.456	1.8K
Inhale-Flex-SRAM	28nm	6.1K	386	564	91.9	47.3K	123	0.596	206
SHINE-1-SRAM	28nm	6.7K					225	-	-
SHINE-2-SRAM	28nm	6.7 F	Inhala	hacen	aallar	oroo	293	-	-
Recryptor[34]	40nm	28.8	innaie	has sn	nalier	area	0.377	2.03	0.186
Inhale-Opt-ReRAM	28nm	2.4K	19.1	564	255	~V	970	0.348	2.79K
Inhale-Flex-ReRAM	28nm	2.3K	56.3	564	240	18.1K	322	0.446	721
SHINE-1-ReRAM[19]	65nm	2K	494	264	132	33K	66.8	4.13	16.2
SHINE-2-ReRAM[19]	65nm	2K	717	140	70	62.2K	86.7	3.5	24.8
SHINE-1-ReRAM (projected)	28nm	4.6K	494	264	56.9	76.5K	155	-	-
SHINE-2-ReRAM (projected)	28nm	4.6K	717	140	30.2	144K	201	-	-
Akın[2]	90nm	455	10.5K	25	54.9	19.8K	1.89	>43.5	<0.043
Tillich[28]	180nm	488	56.3K	25	51.2	21.2K	0.377	>43.5	< 0.009
Pessl-V1 [22]	130nm	1	5.5K	10.7K	10.7M	0.102	18.5e-6	>43.5	<4.25E-7
Pessl-V2 [22]	130nm	1	5.9K	7.4K	7.4M	0.147	24.9e-6	>43.5	<5.73E-7
Wong[30]	65nm	1K	105K	-	-	48K	0.457	>43.5	< 0.011


	Tech.	Max f (MHz)	Area (KGE)	Latency (cycles)	Latency (ns)	Tput. (Mbps)	Tput./Area (Mbps/KGE)	Energy (nJ)	Tput./Area/En. (Mbps/(KGE·nJ))
Inhale-Opt-SRAM	28nm	6.7K	63.6	564	83.6	52K	818	0.456	1.8K
Inhale-Flex-SRAM	28nm	6.1K	386	564	91.9	47.3K	123	0.596	206
70x fewer ce	llc <i>Q</i> . 13	21v	494	264	39.1	111K	225	-	-
			717	140	20.7	210K	293	_	-
fewer periph	fewer peripheral logics		600	139	4.8K	226	0.377	2.03	0.186
Inhale-Opt-ReRAM	28nm	U	19.1	564	235	18.6K	970	0.348	2.79K
Inhale-Flex-ReRAM	28nm	2.3K	56.3	564	240	18.1K	322	0.446	721
SHINE-1-ReRAM[19]	65nm	2K	494	264	132	33K	66.8	4.13	16.2
SHINE-2-ReRAM[19]	65nm	2K	717	140	70	62.2K	86.7	3.5	24.8
SHINE-1-ReRAM (projected)	28nm	4.6K	494	264	56.9	76.5K	155	-	-
SHINE-2-ReRAM (projected)	28nm	4.6K	717	140	30.2	144K	201	-	-
Akın[2]	90nm	455	10.5K	25	54.9	19.8K	1.89	>43.5	< 0.043
Tillich[28]	180nm	488	56.3K	25	51.2	21.2K	0.377	>43.5	< 0.009
Pessl-V1 [22]	130nm	1	5.5K	10.7K	10.7M	0.102	18.5e-6	>43.5	<4.25E-7
Pessl-V2 [22]	130nm	1	5.9K	7.4K	7.4M	0.147	24.9e-6	>43.5	<5.73E-7
Wong[30]	65nm	1K	105K	1-	-	48K	0.457	>43.5	< 0.011

	Tech.	Max f (MHz)	Area (KGE)	Latency (cycles)	Latency (ns)	Tput. (Mbps)	Tput./Area (Mbps/KGE)	Energy (nJ)	Tput./Area/En. (Mbps/(KGE·nJ))
Inhale-Opt-SRAM Inhale-Flex-SRAM	28nm 28nm	6.7K 6.1K	63.6 386	564 564	83.6 91.9	52K 47.3K	818 123	0.456 0.596	1.8K 206
SHINE-1-SRAM SHINE-2-SRAM	28nm 28nm	6.7K 6.7K	494 717	lmost	no int	er-su	barray	-	-
Recryptor[34]	40nm	28.8	600	dat	a mov	veme	nt	2.03	0.186
Inhale-Opt-ReRAM Inhale-Flex-ReRAM	28nm 28nm	2.4K 2.3K	19.1 56.3	564 564	235 240	18.6K 18.1K	322	0.348 0.446	2.79K 721
SHINE-1-ReRAM[19]	65nm	2K	494	264	132	33K	66.8	4.13	16.2
SHINE-2-ReRAM[19] SHINE-1-ReRAM (projected)	65nm 28nm	2K 4.6K	717 494	140 264	70 56.9	62.2K 76.5K	86.7 155	3.5	24.8
SHINE-2-ReRAM (projected)	28nm	4.6K	717	140	30.2	144K	201	-	-
Akın[2]	90nm	455	10.5K	25	54.9	19.8K	1.89	>43.5	< 0.043
Tillich[28]	180nm	488	56.3K	25	51.2	21.2K	0.377	>43.5	< 0.009
Pessl-V1 [22]	130nm	1	5.5K	10.7K	10.7M	0.102	18.5e-6	>43.5	<4.25E-7
Pessl-V2 [22] Wong[30]	130nm 65nm	1 1K	5.9K 105K	7.4K -	7.4M -	0.147 48K	24.9e-6 0.457	>43.5 >43.5	<5.73E-7 <0.011

	Tech.	Max f (MHz)	Area (KGE)	Latency (cycles)	Latency (ns)	Tput. (Mbps)	Tput./Area (Mbps/KGE)	Energy (nJ)	Tput./Area/En. (Mbps/(KGE·nJ))
Inhale-Opt-SRAM Inhale-Flex-SRAM	28nm 28nm	6.7K 6.1K	Fe	wer tr	aversa	al time	e on	0.456 0.596	1.8K 206
SHINE-1-SRAM SHINE-2-SRAM	28nm 28nm	6.7K 6.7K			oitline	es es		-	- -
Recryptor[34]	40nm	28.8	60	139	4.8K	226	0.377	2.03	0.186
Inhale-Opt-ReRAM	28nm	2.4K	19.1	564	235	18.6K	970	0.348	2.79K
Inhale-Flex-ReRAM	28nm	2.3K	56.3	564	240	18.1K	322	0.446	721
SHINE-1-ReRAM[19]	65nm	2K	494	264	132	33K	66.8	4.13	16.2
SHINE-2-ReRAM[19]	65nm	2K	717	140	70	62.2K	86.7	3.5	24.8
SHINE-1-ReRAM (projected)	28nm	4.6K	494	264	56.9	76.5K	155	-	-
SHINE-2-ReRAM (projected)	28nm	4.6K	717	140	30.2	144K	201	-	-
Akın[2]	90nm	455	10.5K	25	54.9	19.8K	1.89	>43.5	< 0.043
Tillich[28]	180nm	488	56.3K	25	51.2	21.2K	0.377	>43.5	< 0.009
Pessl-V1 [22]	130nm	1	5.5K	10.7K	10.7M	0.102	18.5e-6	>43.5	<4.25E-7
Pessl-V2 [22]	130nm	1	5.9K	7.4K	7.4M	0.147	24.9e-6	>43.5	<5.73E-7
Wong[30]	65nm	1K	105K	-	1-1	48K	0.457	>43.5	< 0.011


Performance Scaling

With power constraint

SHINE hits power earlier than *Inhale*

Without power constraint

IoT devices have tight power budget

Conclusion

Inhale provides high performance, energy efficiency, low overhead all by proposing an in-SRAM hashing engine

Shift-optimized data alignment and in-place read/write strategy are proposed to efficiently map the algorithm to the *Inhale* architecture

□ *Inhale* can achieve **up to 14x** throughput-per-area, **172x** throughput-per-area-per-energy than state-of-the-art

□ Future work is providing an end-to-end solution for IoT security

Q&A