
Impala: Algorithm/Architecture Co-Design for In-Memory
Multi-Stride Pattern Matching

Elaheh Sadredini∗, Reza Rahimi∗, Marzieh Lenjani, Mircea Stan, and Kevin Skadron

University of Virginia, Charlottesville, VA

{elaheh, rahimi, ml2au, mircea, skadron}@virginia.edu

ABSTRACT
High-throughput and concurrent processing of thousands of
patterns on each byte of an input stream is critical for many
applications with real-time processing needs, such as network
intrusion detection, spam filters, virus scanners, and many
more. The demand for accelerated pattern matching has mo-
tivated several recent in-memory accelerator architectures for
automata processing, which is an efficient computation model
for pattern matching. Our key observations are: (1) all these
architectures are based on 8-bit symbol processing (derived
from ASCII), and our analysis on a large set of real-world
automata benchmarks reveals that the 8-bit processing dramat-
ically underutilizes hardware resources, and (2) multi-stride
symbol processing, a major source of throughput growth, is
not explored in the existing in-memory solutions.

This paper presents Impala, a multi-stride in-memory au-
tomata processing architecture by leveraging our observa-
tions. The key insight of our work is that transforming 8-bit
processing to 4-bit processing exponentially reduces hard-
ware resources for state-matching and improves resource
utilization. This, in turn, brings the opportunity to have a
denser design, and be able to utilize more memory columns
to process multiple symbols per cycle with a linear increase
in state-matching resources. Impala thus introduces three-
fold area, throughput, and energy benefits at the expense of
increased offline compilation time. Our empirical evalua-
tions on a wide range of automata benchmarks reveal that
Impala has on average 2.7× (up to 3.7×) higher throughput
per unit area and 1.22× lower power consumption than Cache
Automaton, which is the best performing prior work.

1. INTRODUCTION
The growing performance gap between processor and mem-

ory, also known as the memory wall [1], has been a major
source of performance concern for many years; this prob-
lem is exacerbated in memory-bound applications, such as
pattern-matching kernels in big-data domains, where many
of patterns must be processed often with high-throughput or
even real-time requirements. Pattern matching is an important
task in many applications such as network security [2, 3, 4],
bioinformatics [5, 6], and data mining [7, 8]. These patterns
are often enormous in number and complex in static struc-
ture and dynamic behavior. This, combined with increasing
network bandwidth and real-time stream processing require-

∗Equal contribution

ments, makes pattern matching the performance bottleneck
for these applications.

Regular expressions are a widely used pattern specification
language, and they are efficiently implemented via Finite Au-
tomata (FA) [9]. The growing demand for high-performance
pattern matching has motivated several efforts in designing
software-based [10, 11, 12, 13, 14, 15, 16, 17] and FPGA-
based [4, 12, 18, 19, 20] multi-stride pattern processing solu-
tions that can process multiple-symbols per cycle. However,
multi-symbol processing forces more pressure on memory
bandwidth in CPU/GPU approaches and causes routing con-
gestion for complex patterns in FPGA solutions. Moreover,
FPGA solutions are mainly customized for network-based
patterns, so current FPGA solutions may not perform well
for other applications.

To address memory-wall challenges, recent studies explore
in-memory architectures for automata processing, where they
perform matching computation exactly where the data is
located, and benefit from the massive internal memory band-
width [21, 22, 23]. They all allow native execution of Non-
deterministic Finite Automata (NFA) by providing a reconfig-
urable substrate to lay out the rules in hardware. This allows
a large number of patterns to be executed in parallel, up to
the hardware capacity. If the size of an application exceeds
the hardware capacity, either several hardware units or sev-
eral rounds of re-configurations are required. Many studies
have shown that in-memory automata accelerators provide
significant speedup over existing software solutions, FPGA
implementation, and prior regex accelerators on a wide range
of applications [6, 7, 8, 22, 24, 25, 26, 27].

To process an automaton in memory-centric architecture
models, each input requires two processing phases: state-
matching, where the input symbol is decoded, and the states
whose symbols match the input are detected through reading
a row of memory; and state-transition, where successor states
are activated by propagating signals through an interconnect.

In the existing in-memory automata accelerators, 50%-70%
of hardware resources are spent for state-matching [22,23,28,
29]. We study the state-matching resource utilization across
a diverse set of automata benchmarks, and we found 86% of
the time, only 3% of resources are utilized! This is mainly
because in all these architectures, each state is modeled with
a memory column of size 256, and 8-bit symbols are one-
hot encoded in the memory columns to be able to accept a
range of symbols (up to 256 symbols) in each state. However,
the number of symbols accepted by a state is fewer than 8

86

2020 IEEE International Symposium on High Performance Computer Architecture (HPCA)

2378-203X/20/$31.00 ©2020 IEEE
DOI 10.1109/HPCA47549.2020.00017

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

symbols in 86% of the time. This, in turn, implies that the
classic approach of one-hot encoding for matching drastically
over-provisions state-matching resources, which incurs sig-
nificant performance penalties and leads to an inefficient and
costly design. Moreover, real-world automata benchmarks
are often extensive in terms of state count, too big to fit in a
single hardware unit, and in current memory-centric archi-
tectures, usually need multiple rounds of reconfiguration and
re-processing of the data. Therefore, design density plays a
vital role in overall performance.

To address this problem, we propose to reduce the mem-
ory column-height to 16, to take advantage of the common
case that few symbols matche any particular state, and at
the same time, convert (or squash) the automata to process
4-bit symbols instead of 8-bit per cycle without losing any
accuracy. With our proposed optimizations, this transforma-
tion increases the number of states on average just 1.7×, and
in turn, requires 1.7× more memory columns to encode the
states. However, the total required memory cells decreases

9.4× (or 256
16×1.7) because the columns are so much shorter.

This provides a higher total state capacity, which results in
fewer rounds of reconfiguration, and improves the overall
utilization and performance.

On the other hand, naively squashing 8-bit processing to
4-bit processing halves the throughput and limits the benefits
of our solution. We fix this issue by proposing an in-SRAM
multi-stride automata processing architecture that can process
multiple 4-bit symbols per cycle. Our architecture, Impala,
leverages the shorter memory subarrays and seeks a wider
parallel solution using multiple combined memory columns
to process multiple 4-bit symbols instead of a longer serial
memory column that processes only one 8-bit symbol. Im-
pala’s compiler pre-processes an automaton and makes it
compatible with our hardware design.

A transformed automaton (squashed and strided) has a
higher number of transitions (edges) than its original automa-
ton, and this makes the placement of transitions to intercon-
nect resources more challenging. To address this issue, our
compiler leverages the observation of Sadredini et al. [29]
that the real-world automata have a diagonal-shaped con-
nectivity pattern, which then can be efficiently compacted
in a hierarchical memory-mapped interconnect architecture.
We propose to use a genetic algorithm (GA) to intelligently
place the transitions into a compact design to amortize the
transition overhead.

In summary, this paper makes the following contributions:
• We propose Impala, an area-efficient, high-throughput,

and energy-efficient in-SRAM architecture for automata
processing. These three-fold efficiencies are obtained
from (1) an architectural contribution that utilizes shorter-
and-parallel SRAM-subarrays instead of longer-and-
serial subarrays, and (2) an algorithmic contribution
which efficiently transforms an automaton and maps it
to Impala’s resources. To the best of our knowledge,
this is the first work that observes state-matching inef-
ficiency in memory-centric accelerators and proposes
an algorithm/architecture co-design for multi-stride au-
tomata processing for in-situ computations.

• To minimize the number of states in the transformed
automata, we exploit Espresso [30], a CAD tool that ef-
ficiently reduces the complexity of digital circuits, and

maps our state minimization problem to a logic mini-
mization problem. Moreover, we propose an efficient
placement algorithm by leverage a genetic algorithm.

• We perform thorough performance analysis on Impala
and prior in-memory automata processing architectures.
Our sensitivity analysis reveals that the 4-stride design
on 4-bit nibbles (16-bit processing per cycle) provides
the best overall throughput per area on Impala, which
is up to 3.7× and 536× higher than Cache Automaton
(CA) [22] and the Automata Processor (AP) [21], re-
spectively. Moreover, Impala’s 16-bit design provides
2.8× higher throughput than CA, 1.4× of which comes
from our architectural contribution and 2× from the
algorithmic benefit that re-shapes an automaton to pro-
cess larger input size per cycle.

• We also compare Impala with FPGA multi-stride pat-
tern matching solutions. We conclude that Impala pro-
vides ~10× higher frequency and ~20× higher through-
put than the best performing solutions [4, 18] for 16-bit
symbol processing rate. Moreover, Impala’s 16-bit has
7.7× higher throughput than these FPGA solutions for
a 64-bit processing rate.

• We present APSim, an open-source toolkit for cycle-
accurate automata simulation, multi-symbol processing
transformation, minimization, and performance model-
ing on our proposed architecture.

2. BACKGROUND

2.1 Non-Deterministic Finite Automata Primer
An NFA is represented by a 5-tuple, (Q,Σ,Δ,q0,F), where

Q is a finite set of states, Σ is a finite set of symbols, Δ is
a transition function, q0 are initial states, and F is a set of
accepting states. The transition function determines the next
states using the currently active states, and the input symbol
just read. If an input symbol causes the automata to enter into
an accept state, the current position of the input is reported.

We use the homogeneous automaton representation in our
execution models (similar to ANML representation in [21]).
In a homogeneous automaton, all transitions entering a state
must happen on the same input symbol [31]. This provides
a nice property that aligns well with a hardware implemen-
tation that finds matching states in one clock cycle and al-
lows a label-independent interconnect. Following [21], we
call this element that both represents a state and performs
input-symbol matching in homogeneous automata a State
Transition Element (STE). Figure 1 (a) shows an example
of a classic NFA and its equivalent homogeneous represen-
tation. Both automata in this example accept the language
(A|C)∗(C|T)(G)+. The alphabets are {A,T,C,G}. In the
classic representation, the start state is q0, and accepting state
is q3. In the homogeneous one, we label each STE from
ST E0 to ST E3, so starting states are ST E0, ST E1, and ST E2,
and the accepting state is ST E3.

2.2 In-memory Automata Processing
To better understand Impala’s architecture, this section

presents a simplified two-level pipeline architecture for single-
symbol processing of common in-situ automata accelerators,
such as CA and the AP. In Figure 1 (b), memory columns are
configured based on the homogeneous example in Figure 1 (a)

87

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

Figure 1: (a) Classic vs homogeneous NFA, (b) In-memory
automata processing model.

for ST E0-ST E3. Generally, automata processing involves two
steps for each input symbol, state match and state transition.
In the state match phase, the input symbol is decoded, and the
set of states whose rule or label matches that input symbol
is detected through reading a row of memory (match vector).
Then, the set of potentially matching states is ANDed with
the active state vector, which indicates the set of states that
is currently active and allowed to initiate state transitions.
In the state-transition phase, the potential next-cycle active
states are determined for the currently-active states (active
state vector) by propagating signals through the interconnect
to update the active state vector for the next input symbol
operation.

In the example, there are four memory rows, and each is
mapped to one label (i.e., A, T, C, and G). Each state in the
NFA example is mapped to one memory column, with ’1’
in the rows matching the label(s) assigned to those STEs.
ST E0 matching symbols are A and C (Figure 1 (a)), and the
corresponding positions have ’1’, i.e., in the first and third
rows (Figure 1 (b)). Assume ST E0 is a current active state.
The potential next cycle active states (or enable signals) are
the states connected to ST E0, which are ST E0, ST E1, and
ST E2 (the enable signals for ST E0, ST E1, and ST E2 are ’1’).
Specifically, if the input symbol is ’C’, then, Row2 is read
into the match vector. Bitwise AND on the match vector
and potential next states (enable signal) determines ST E0 and
ST E1 as the current active states.

3. RELATED WORK
A number of multi-stride automata processing engines

have been proposed on CPUs and GPUs [10, 11, 12, 13, 14].
Generally, automata processing on von Neumann architec-
tures exhibits highly irregular memory access patterns with
poor temporal and spatial locality, which often leads to poor
cache and memory behavior [32] and makes compression
techniques [33] less efficient. Moreover, multi-symbol pro-
cessing causes more pressure on memory bandwidth, because
more states and transitions are required to be processed in
each clock cycle.

Several FPGA solutions for single-stride [3,34,35,36] and
multi-stride [4, 12, 18, 20] automata processing have been
proposed. Yang et al. [4] proposed a multi-symbol process-
ing for regular expressions on FPGA and utilizes both LUTs
and BRAMs. Their solution is based on a spatial stacking

technique, which duplicates the resources in each stride. This
increases the critical path when increasing the stride value.
Yamagaki et al. [18] proposed a multi-symbol state transi-
tions solution using a temporal transformation of NFAs to
construct a new NFA with multi-symbol characters. This ap-
proach only utilizes LUTs and does not scale very well due to
the limited number of lookup tables in FPGAs. In addition, in
their multi-striding method, the benefit of improved through-
put decreases in more complex regexes (with more characters
or highly connected automata), mostly due to routing conges-
tion. All the current multi-striding solutions are inspired by
networking applications such as Network Intrusion Detection
Systems (NIDS). However, patterns in other applications can
have different structure and behavior, e.g., higher fan-outs,
and this makes it difficult for NIDS-based FPGA solutions to
map other automata to FPGA resources efficiently [36].

Accelerators designed specifically for regex processing
have been proposed [37, 38, 39, 40] to accelerate pattern
matching and automata processing. In general, while these
solutions provide high line rates in principle, they are lim-
ited by the number of parallel matches, state transitions, and
shape of the automata. None of these solutions consider
multi-symbol processing, and Subramaniyan et al. [22] show
that their in-SRAM solution, Cache Automaton (CA), has
higher throughput and lower area consumption than these
accelerators.

Unlike FPGA and regex accelerators that are optimized for
pattern processing in network applications, several memory-
centric automata processing accelerators have been recently
proposed to improve the performance of general pattern
matching. The Micron Automata Processor (AP) [21] and
CA [22] propose in-memory hardware accelerators for single-
stride automata processing. They both allow native execution
of NFAs by providing a reconfigurable substrate to lay out
the rules in hardware. They exploit the inherent bit-level
parallelism of memory to support many parallel transitions
in one cycle. The AP provides a DRAM-based dedicated
automata processing chip, while the CA proposes an on-chip
solution by repurposing a portion of the last-level cache for
automata processing and has shown higher throughput than
previous solutions. Prior work has already shown that the
AP is at least an order of magnitude better than GPUs and
multi-core processors [41], and CA is at least an order of
magnitude better than the AP [22].

To improve throughput, Subramaniyan et al. [42] propose
a parallelization technique by replicating an automaton and
splitting the input stream among them, and show speedup
over the AP (such splitting is only needed when there are
not enough regexes to leverage the capacity of the automata
hardware). The speedup depends on the input stream, and
the upper-bound speedup is equal to the number of hardware
replications. High capacity in the automata accelerator is
beneficial, and this approach is complementary.

Liu et al. [43] demonstrated that not all the states in an
NFA are enabled during execution, and thus, do not need to
be configured on the hardware. This reduces the hardware
resources for an automaton on the in-memory automata ac-
celerators, which in turn increases the performance when
the application is very large and requires several rounds of
re-configurations. However, the benefits of their approach
is input-stream-dependent and cannot be directly compared

88

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

Figure 2: Normalized histogram of the states based on the
number of accepting symbols. More than 86% of the states
accept less than 8 symbols. More than 73% of the states only
accept one symbol.

with prior solutions.
None of the prior in-memory solutions explores multi-

symbol processing to increase throughput and overall per-
formance. This work is the first to present a multi-symbol
processing architecture co-designed with automata transfor-
mation to improve density.

4. ALGORITHMIC DESIGN

4.1 Motivation
Our key observation across a set of 20 real-world and

synthetic automata benchmarks reveals that about 73% of
the states only match against a single symbol (e.g., ST E1 in
Figure 1 (a) that only accepts symbol C). This implies that
only a single cell in a memory column of 256 cells is set to
1, and the rest are 0. Figure 2 demonstrates the frequency of
the number of matching-symbols across all the states in these
benchmarks normalized to the total number of states. This
histogram is highly skewed to the left, where more than 86%
of the states are matched against at most eight symbols. This
means only 3% of the cells in memory columns are utilized!

While a memory column with 256 cells is powerful enough
to implement any boolean function with eight inputs, exist-
ing automata computing architectures implement a relatively
simple function (e.g., 73% of the time, states are compar-
ing against a single symbol, which is a boolean function
with a single product term). In other words, a simpler low-
cost matching architecture targeting the dominant case of
a small number of matching symbols is more efficient than
the existing costly matching architecture targeting infrequent
complex matching conditions. To better utilize the state-
matching resources, we squash the 8-bit symbols to 4-bit,
and re-shape the automaton accordingly for correct and loss-
less functionality. The corresponding hardware change is that
state-matching columns now can be designed with shorter
subarrays (16 memory cells instead of 256), which reduces
the waste significantly.

Generally speaking, as technology shrinks, SRAM arrays
are moving from tall to wide structures with fewer rows
[44, 45, 46]. This provides a better SRAM energy efficiency
at a lower supply voltage. Recently, researchers have started
to explore shorter SRAM subarrays to design accelerators in
state-of-the-art applications, such as deep neural networks.
For example, Lie et al. [47] propose an in-SRAM compu-
tation for binary neural networks [48]. Interestingly, they
conclude that shorter SRAM subarrays (i.e., shorter memory
columns) provide a better classification accuracy due to a
smaller quantization error when calculating the partial sum

in convolution operation. These support the applicability of
Impala design, which relies on short memory subarrays.

A 4-bit automaton halves the processing rate. To increase
the throughput, Impala proposes to process multiple 4-bit
symbols/cycle versus one 4-bit symbol per cycle. The algo-
rithmic aspects are discussed in this section, and the corre-
sponding architectural solution is explained in Section 5.

4.2 Vectorized Temporal Squashing and Strid-
ing (V-TeSS)

Squashing: As discussed, the default 8-bit processing
uses memory columns with 256 cells; however, the matching
symbols of an STE are sparse, making this an underutilized
matching resource. The squashing step converts the default
8-bit automaton to its equivalent 4-bit automaton. With em-
pirical analysis, we realized that 4-bit conversion is the sweet
spot and incurs minimal overhead compared to other squash-
ing sizes (e.g., 2-bit or 3-bit processing - see [49] for more
detail). Squashing to 4-bit increases the number of states
2.52× on average. But, the memory column size is exponen-
tially decreased from 28 to 24.

Figure 3 (a) represents an 8-bit NFA in classical non-
homogeneous representation. Symbols are represented in
hexadecimal (e.g., \xBD represent an 8-bit symbol). Im-
pala’s compiler first reshapes the automaton to process 4-bit
symbols (Figure 3(b)). For simplicity, we picked a simple
automaton, and therefore, 8-bit to 4-bit conversion seems
straightforward. However, in an automaton with loops and
states with ranges of symbols (e.g., [X−Y] notation in regex),
we cannot simply break the states into two consecutive states
with 4-bit symbols each. Impala’s compiler first generates
single-bit-automata by replacing each edge in the 8-bit orig-
inal automaton with a sequence of states of length 8, and
then traverses the bit-automaton with paths of length 4 and
concatenates edges to generate 4-bit symbols. Due to space
limitation, we do not explain the details here, as the algorithm
to convert an 8-bit to 4-symbol automaton is not our main
contribution.

Vectorized Temporal Striding: As expected, the 4-bit
automata processing scheme halves the processing rate com-
pared to the 8-bit automata. To increase the throughput
(equals or more than 8-bit version), we again reshape the
squashed 4-bit automaton to find its equivalent automaton
that processes multiple 4-bit symbols per cycle. We call this
transformation Vectorized Temporal Striding, as the state’s
matching rules are organized in vectors. Arranging matching
symbols in vectors provides a nice property that is aligned
with Impala hardware support. Temporal Striding [50, 51]
and its vectorized version are transformations that repeatedly
square the input alphabet of an input automaton and adjust
its matching symbols and transition graph accordingly. The
transformed automaton is functionally equal to the original
automaton, but it processes multiple symbols per cycle, thus
increasing throughput.

Figure 3 (c) shows the 4-stride (i.e., processing four 4-bit
symbols per cycle) automaton in (b), and (d) converts it to its
homogeneous representation. In the notation ST Ey

x , x is state
index and y is the stride size. We call the resulting automa-
ton vectorized 4-stride because each 4-bit symbol in ST E4

0
represents one dimension in a four-dimensional vector, and
each dimension will be mapped to a separate memory column

89

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

Figure 3: (a) Original 8-bit automaton. (b) Squashing the automaton in (a) to 4-bit processing.
(c) Striding 4-bit automaton in (b) to process 16 bits/cycle. (d) Converting the automaton in (c)
to its homogeneous representation. (e) Mapping ST E4

0 in (d) to one capsule, which produces
false positive reports (e.g., (\xB,\xD,\xE,\xB) generates a false report). (f) Espresso solves it
with minimal state splitting. (g) The states in (f) are mapped to three capsules.

Figure 4: Offline pre-
processing steps to pre-
pare bit-streams to be con-
figured on Impala’s mem-
ory subarrays.

in Impala’s area-efficient matching architecture (described
in Section 5.1). The last two stars in the matching symbol
(\xA,\xB,∗,∗) are wildcards, which can be matched against
any 4-bit symbol. Wildcards are used as a padding method to
handle the cases where a report happens in the middle of a
16-bit input (the original automaton in (a) reports when the
input is \xAB).

We use the vectorization concept for efficient hardware
mapping. The temporal striding method is already discussed
in prior work [51] and is not a contribution of this paper.
Therefore, we do not discuss the details here.

Hardware efficiency: Naively increasing the processing
rate to achieve higher throughput in the classical 8-bit in-
memory architectures leads to a significant hardware cost.
This is because each extra bit will double memory column
size (e.g., 9-bit processing requires memory columns of 512
cells). This hardware consumption rate rapidly exceeds the
reasonable bitline length due to its exponential growth. In
addition, designing long bitlines is impossible without in-
troducing stacked memory subarrays with partial address
decoding and costly peripheral hardware. While the exponen-
tial hardware cost discourages a naive memory-based solution
for multi-symbol matching, Impala redesigns the matching
architecture to a set of short and parallel memory columns
(16 cell in each column) combined with an AND gate, where
every 4-bit increase in processing rate only requires an addi-
tional parallel 16-bit memory column. Columns are placed
in different subarrays, and each receives 4 bits of the input
symbols and processes it independently. This is a linear incre-
ment of hardware cost compared to the exponential growth
in the naive matching architecture.

We call each of these combined memory columns a cap-
sule. Capsules are suitable for states with a simple matching

character-set. For example, a single capsule can easily han-
dle the states with one matching vector, which are frequent
in real-world automata benchmarks (see Fig. 2). However,
there are infrequent matching cases that a single capsule can
not precisely implement, and this may lead to generating
false-positive reports. Figure 3(e) shows how using only one
capsule to implement ST E4

0 generates wrong reports when
the input is \xBDEB. The first column matches \xB, the sec-
ond column matches \xD, and the third and fourth columns
match \xE and \xB, respectively. However, this input is not

supposed to be matched by ST E4
0 . To address this issue, we

exploit Espresso [30] - a tool that was originally developed
for logic minimization problems - to find the minimum sym-
bol splits to avoid false positives. In our example, splitting
ST E4

0 to three states (Figure 3 (f)) and mapping them three
capsule (Figure 3 (e)) solves the problem. Details of this
refinement stage are explained in Section 5.1.2.

State and transition overhead: Temporal striding gener-
ally increases the length and cardinality of the alphabet and
transition count [18, 51]. We apply squashing, striding, and
false-positive matching removal on 21 real-world and syn-
thetic automata benchmarks [32,52] and observe that 2-stride
and 4-stride implementations have a slight state and transi-
tion overhead. However, in the 8-stride design, combinatorial
growth in the number of symbols (vectors) causes higher
state/transition overhead, and this amortizes the architectural
density benefits (details are discussed in Section 8.1). Our
experimental results reveal that 4-stride (16-bit processing)
yields the highest throughput per unit area (Section 8.4).

Theoretically, the area overhead of Impala’s state-matching
architecture is in the order of O(SN), where S is the stride
value (number of memory columns in a capsule is S) and N
is the number of nodes. The interconnect area usage is in the

90

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

AP FPGA CA Impala 4-stride
(APCompile [53]) (Xilinx tools) (APSim) (APSim)

>3 hours ~1 day ~5 minutes ~30 minutes

Table 1: Relative compilation time across architectures.

order of O(N2) (for a fully connected interconnect), which
is independent of stride value. This implies that striding
does not directly add any area overhead to the interconnect
(except the increase of nodes count). However, the increase
in the number of transitions means more switches in a full-
crossbar will be utilized. To efficiently map the transitions in
the strided automata to the Impala’s interconnect resources,
we adopt a genetic algorithm, and then generate bit-stream
configurations for Impala’s state-matching and interconnect
subarrays. Figure 4 summarizes the offline pre-processing
steps to map an automaton to Impala’s architecture.

Compile time: Combined algorithmic and architectural
benefits of Impala result in high-throughput and area/energy-
efficient design at the expense of higher compilation time (due
to some stages in Figure 4) compared to CA. The compilation
is only needed once per automaton before configuring the
final bit-stream on the architecture. Table 1 shows a relative
comparison for the compile/synthesis time for ANMLZoo
[32] on different architectures. Impala’s pre-processing stage
(which includes V-Tess and GA) increases the compilation
time compared to CA, but it is still much less than the AP
compiler and FPGA synthesis tools. APSim is our open-
source automata transformation and simulator and can be
found here 1.

5. ARCHITECTURAL DESIGN

5.1 State Matching
The blue box in Figure 5 shows the state-matching archi-

tecture, which processes four 4-bit symbols and detects all
the states that match against them. The matching operation is
performed in a group of memory subarrays to distribute the
matching burden among them in parallel. Memory columns
with the same index (or the same color in the figure) in sub-
arrays are combined using an AND gate to form a capsule.
Matching of each state will be assigned to one of these cap-
sules. Each memory column in a capsule processes a portion
(e.g., 4-bit) of the input symbols by a single memory row ac-
cess. The final single-bit matching result for each state is the
output of the AND gate in each capsule. Any additional 4-bit
input processing only adds one more column to each capsule.
Now, it is clearer how each dimension in V-TeSS vectors can
be mapped to the corresponding memory column index in a
capsule. Thanks to our parallel architecture, the latency of the
overall matching for every stride value is always equivalent
to read-cycle latency of a short bitline memory subarray plus
the latency of the AND gate in capsule.

5.1.1 Challenges of Matching with Capsules
As discussed in section 4 and shown in Figure 3 (d), simply

assigning each state to one capsule suffers from a possible
false-positive match. Figure 6 shows a more general exam-
ple of when a false match happens in the relatively complex

1https://github.com/gr-rahimi/APSim

matching regions of a 2-stride automaton using a 2D represen-
tation. In this Figure, the X-axis shows the matching symbols
of the first dimension (first 4-bit), and the Y-axis shows the
matching symbols of the second dimension (second 4-bit).
Each colored rectangle represents a matching region.

Figure 6: An example of an
STE matching regions in a
2-stride automaton.

For example, the bottom-
left-most region accepts
the symbol range of [\x2−
\x5] in its first dimen-
sion and symbol range of
[\x1−\x3] in the second
dimension. Impala’s com-
piler also uses a memory-
efficient range-based data-
structure to store the
matching data and this
speeds-up automata trans-
formation. Configuring
all these colored regions
in a single capsule gener-
ates false positive matching when the input is from the white
rectangular in the bottom-right-most region (i.e., [\x9−\xC]
in first dimension and [\x1−\x3] in the second dimension).

To address this issue, an easy solution would be to split
the seven colored regions to seven new states and assign one
capsule to each of them. However, this can be very costly,
especially when a state matches against several regions. We
observed that splitting into three states with matching regions
shown as pink, dark blue, and light blue, and assigning each
state to one capsule, would efficiently solve the problem.

However, refining matching regions to a minimal number
of sub-regions to increase the total capacity is a challeng-
ing problem, especially for high stride values with many
matching regions intersecting each other. We observed that
this minimization problem is equivalent to the minimiza-
tion version of set covering problem, which is known to be
NP-hard [54]. The next section explains how we solve this
problem efficiently using an existing tool.

5.1.2 Espresso
Espresso [30] is a CAD tool developed at IBM using heuris-

tics for efficiently reducing the complexity of digital circuits.
Interestingly, our state-splitting problem is similar to the Sum
Of Product (SOP) gate-level logic minimization problem with
the support for multi-valued variables [55]. In an SOP mini-
mization problem, Espresso tries to minimize the number of
products to use fewer resources in traditional Programmable
Logic Arrays (PLA) hardware [56]. Impala can be seen as
a PLA with 16-valued input variables, where each memory
column in a capsule is a discrete variable with 16 different
values. Columns in a capsule are combined with an AND
gate which translates to a product term of 4 variables each
with 16 values.

State refinement: In our problem, each product term will
physically be translated to a new state and implemented using
a capsule. The new states will replace the original state by
connecting all the parents and children of the original state to
all the new states. If the original state has a self-loop, then
all the new states should have self-loop as well and must
be connected to each other to keep the equivalence to the
original automaton. Fig. 7 shows an example of how the state

91

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

Figure 5: A 4-stride (16-bit) automata processing unit with a 2-level switch structure to support a larger automaton.

in red (which causes false positives) is split into two green
states. The number of splits is determined by Espresso.

Figure 7: Splitting a state to avoid
false positives.

Espresso input/output:
The input for Espresso
is a text file con-
taining the match-
ing vector of the
under process states,
represented as multi-
valued truth tables.
The output of the
Espresso is also a
text file that specifies the minimum number of required prod-
uct terms to cover the original matching space. Each of these
products is guaranteed to cause no false positive and can be
safely configured in Impala’s capsule.

5.2 Interconnect
The interconnect provides the functionality to move active

states forward in time toward the next states. A state S gets
activated if (1) the current symbol matches the state S and (2)
any of its parents were activated in the previous cycle. The
second condition implies that the interconnect should provide
the OR-functionality. CA [22] proposes a memory-mapped
full-crossbar interconnect based on 8T SRAM memory cells
to provide wired-OR functionally on bitlines. The memory
blocks are of size 256×256 (local switches), the word-lines
(rows) are driven by a set of states (one row per state), and
bitlines (columns) drive the same set of states (one column per
state). This arrangement accommodates connection among
every pair of 256 states, as every column intersects with every
row. The memory cell at row i and column j stores ’1’ if
there is an edge between state i and state j. To support larger
automata with more than 256 states, a two-level interconnect
model is proposed to provide inter-block connectivity among
local switches using global switches.

NFAs for real-world automata applications are typically
composed of many independent rules or patterns, which man-
ifest as separate connected components (CCs) with no tran-
sitions between them. The CA crossbar switch is utilized
by packing CCs as densely as possible using a greedy ap-
proach. Figure 8 is an example of how two CCs, each with
100 states, are packed in a local switch block. We found

that there are two problems with the state placement to the
interconnect resources in CA model. First, the switch re-
source from index 200 to 256 in Figure 8 remains unutilized
if the size of CCs are larger then unused portions. Second, if
an automaton is larger than 256 states and has long-distance
loops, it cannot be handled by CA’s placement algorithm. Our
general interconnect is based on CA’s full-crossbar design.
Sadredini et al. [29] showed that the connectivity patterns in
real-world automata are diagonal-shaped in a full-crossbar
design mapping, and this insight can be used to allow for
reduced crossbar switches. We take inspiration from this ob-
servation and present a placement solution that automatically
addresses the issues in CA placement for reduced crossbars
using a genetic algorithm.

Figure 8: Full-crossbar
resource utilization.

The gray box in Figure 5
shows the interconnect archi-
tecture using the local switch
and global switch. Local
switches are driven by the
currently active states, and
the output of the interconnect
subarray is combined with the
matching signals to compute
the active states for the next
cycle. Impala expands the
connectivity among local switches by letting 64 nodes in
a local switch (called port-nodes (PNs)) have full connectiv-
ity to all the port nodes of three other local switches using a
dedicated 256×256 global switch subarray. 64 PNs in local
switches are combined with 64 outputs of global switches
to provide inter-group connection. We call the set of 4 local
switches communicating with each other by their PNs (using
a global switch) as group of four (G4) (see Figure 10 (a)).

To address the placement problems in CA (to be able to
efficiently place any large automaton with up to 1024 states
in a G4 or break a small CC among two local switches to
utilize the unused portion of crossbar), a placement strategy
is required to consider (1) the limited inbound and outbound
connectivity in PNs and (2) the connectivity pattern of an
automaton to assign an integer label to each state, which later
is mapped to the interconnect resources in G4. Furthermore,
striding makes the connectivity pattern more sophisticated as
strided automata have more transitions [51]. Figure 9 shows

92

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

1-stride (Original) 2-stride 4-stride

Figure 9: Union heatmap of routing switches with BFS la-
beling for all the connected components in Dotstar06. States
are labeled with BFS starting from the start states. Each dark
point at (x,y) shows an edge from state y to state x.

the effect of striding on the interconnect pattern evolution for
Dotstar06 benchmark in ANMLZoo [32]. The 4-stride au-
tomata have higher transitions than 1-stride, which translates
to higher utilization in a full-crossbar interconnect.

5.2.1 G4 Visualization
Figure 10 (a) visualizes the expanded layout of all possible

connectivity supported in a G4 in a diagonal-shaped structure
(inspired from [29]) using all four local switches (gray rectan-
gles) and the global switch (purple rectangles). X axis shows
the source index and Y axis shows the destination index. For
example, if point (x,y) is in the gray rectangle, it is possible
to support connection from state indexed x to state indexed y
using local switches, or if it is in any of the purple regions,
the global switch can provide the connectivity. Otherwise, if
it is not in any of those regions, it is not possible to support
that connectivity. The G4 switches can accommodate CCs
of up to 1024 states. In our experiments, after striding, all
the connected components have fewer than 1024 states. To
support even larger automata, a higher-level switch can be
used to connect G4 switches. The global switches in the
upper-left or bottom-right cover the long-distance loops. Im-
pala’s compiler uses a genetic algorithm (GA) to effectively
try different combinations of assigned indices to states and
find a solution with zero missing connection in G4.

5.2.2 Placement using genetic algorithm
A genetic algorithm (GA) is a computation model inspired

by evolution and natural selection. In GA, the original prob-
lem model is interpreted as chromosome-like data representa-
tion, and evolution happens through three main operations:
selection, crossover, and mutation. GA begins with a set
of random chromosomes called a population. A population
tries to evolve to a better population in each generation by
prioritizing the fittest individuals (based on a goodness defi-
nition) to mate, mutate, and evolve into a new population of
individuals.

In Impala, we encode our placement assignment by defin-
ing each individual as an array of unique integers of length
1024 (the number of states that fit in a G4). We initially
assign unique labels to each state using the BFS algorithm
or random generators to fill the population for the first time.
The red dots in Fig. 10 (b) show the required connections
when states are indexed using BFS in G4. As can be seen,
there are many locations where the red dots locate outside of
local switches and regions covered by global switches. This
situation is anticipated, as BFS labeling assigns indices only

Figure 10: (a) G4 switch model and (b) its visualization.

based on the automata transition itself and does not consider
the G4 connectivity limitations.

Impala’s genetic algorithm placement evaluates the good-
ness of each individual based on the number of necessary
switches that are currently available in G4. This evaluation
increases the chance of individuals with better answers to
survive into the next generation. Crossover combines indi-
viduals to generate a new individual by inheriting from their
parents. Impala’s compiler uses an ordered crossover method
which swaps a random interval of two individuals with each
other while keeping the order. Mutation happens by ran-
domly swapping numbers inside each individual array. The
blue-dots in Fig. 10 (b) shows the state mapping in G4. This
indicates that our GA can successfully place all the states
within the G4 switch covering regions; therefore, this state
labeling is a valid placement solution.

Case Study: EntityResolution from the ANMLZoo bench-
mark suite is widely used for approximate string matching in
databases, and it has been shown that it has a complex con-
nectivity pattern [29]. It has 1000 CCs, and on average, each
CC has 95.12 states. We apply V-TeSS to this benchmark to
generate the 4-stride automata, where now each CC has 108.9
states on average. Our placement algorithm is able to fit all
these CCs in 117 G4 switches (on average, 930.7 states are
mapped to each G4). Interestingly, none of these CCs can fit
in G4 using a BFS labeling. We run the same experiments for
all the benchmark in Table 2 and discover that our placement
algorithm can successfully map all the states to G4 switch
patterns for up to 4-stride automata.

6. SYSTEM INTEGRATION
Configuration: Impala can be realized by re-purposing

the available on-chip SRAM memory or custom-designed
memory arrays. In on-chip SRAM arrays, column height
for local subarrays are 256 [22], and Impala can partially
utilize the available resources (16 out of 256 rows). However,
the original 8-bit automata can be strided, which then can
process multiple 8-bit symbols and utilize all 256 rows (eval-
uated in Section 11). On-chip solutions are more suitable
for small scale applications where off-chip communication
overhead becomes a concern, and low-latency designs are
more appropriate. On the other hand, off-chip designs are
more desired for large-scale applications where state capacity
plays an important role, and I/O becomes less of a concern.

Impala is fully memory-based, and setting memory values
configures the system for processing an input stream. After
compiling all the automata and applying squashing, striding,
and placement, the values for each memory cell in matching

93

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

and interconnect arrays are determined. Assuming Impala
is integrated into a system as a peripheral device, these val-
ues can be transferred to Impala using memory-mapped I/O
communication such as Linux mmap command [57] or PCI
commands. Fulcrum [58] proposes to employ CXL [59] in-
terface for in-memory accelerators, which enables another
option.

Run-time: Impala has two asynchronous FIFOs to hold
the input symbols in the input buffer (IB) and reports in the
output buffer (OB). At runtime, the host system communi-
cates with the IB and OB using interrupt triggered memory-
mapped IO or DMA while the interrupt service routine (ISR)
is responsible to fill in the IB and evict the OB. Assuming
5GHz frequency for Impala and 1 MHz frequency for inter-
rupt, an IB of size 2.5KB can store enough data to feed the
Impala until the next IB interrupt. Recently, [60] has char-
acterized the reporting statistics of ANMLZoo’s benchmark.
The results show that 10 out of 12 benchmarks produce fewer
than 0.5 reports per cycle. This investigation motivates us to
use 512 entries for the OB (4 bytes each for report meta-data)
in order to keep a similar interrupt rate as the IB.

7. EVALUATION METHODOLOGY
NFA workloads: We evaluate our proposed claims and ar-

chitectures using ANMLZoo [32] and Regex [52] benchmark
suites. They represent a set of diverse applications, including
machine learning, data mining, and network security. Au-
tomataZoo [61] is mostly an extension of ANMLZoo (9 out
of 13 applications are the same), and the difference is that
ANMLZoo is normalized to fill one AP chip (with up to 48K
states). To (i) provide a fair comparison with the AP, and (ii)
evaluate on real-size applications, we use ANMLZoo bench-
marks, but replicate each benchmark 1000 times to create
larger benchmarks. We present a summary of the applications
(in the original size) in Table 2.

Benchmark #Family #States #Transi- Ave. Node Largest
tions Degree CC Size

Brill [32] Regex 42658 62054 2.9 67
Bro217 [52] Regex 2312 2130 1.8 84

Dotstar03 [52] Regex 12144 12264 2.0 92
Dotstar06 [52] Regex 12640 12939 2.0 104
Dotstar09 [52] Regex 12431 12907 2.0 104
ExactMath [52] Regex 12439 12144 1.9 87
PowerEN [32] Regex 40513 40271 1.9 52
Protomata [32] Regex 42009 41635 1.9 123
Ranges05 [52] Regex 12621 12472 1.9 94
Ranges1 [52] Regex 12464 12406 1.9 96

Snort [32] Regex 100500 81380 1.6 222
TCP [52] Regex 19704 21164 2.1 391

ClamAV [32] Regex 49538 49736 2.0 515
Hamming [32] Mesh 11346 19251 3.3 122

Levenshtein [32] Mesh 2784 9096 6.5 116
Fermi [32] Widget 40783 57576 2.8 17

RandomForest [32] Widget 33220 33220 2.0 20
SPM [32] Widget 69029 211050 6.1 20

EntityResolution [32] Widget 95136 219264 4.6 96
BlockRings [32] Synthetic 44352 44352 2.0 231
CoreRings [32] Synthetic 48002 48002 2.0 2

Table 2: Benchmark Overview

Experimental setup: We use our Automata compiler
and simulator, APSim [62], to perform the pre-processing
steps (such as V-TeSS), and emulate Impala and CA [22].
We have verified the functional correctness of APSim with
VASim [63], which is an open-source automata simulator.
The simulator takes automata in ANML format and processes

Usage Cell Size Delay Read Power Area
Type (ps) (mW) (μm2)

State-matching (Impala) 6T 16×16 180 0.58 453
State-matching (CA) 6T 256×256 220 5.52 9394

Interconnect 8T 256×256 150 6.07 20102

Table 3: Subarray parameters for state-matching and inter-
connect (overhead of peripherals are included).

the input cycle-by-cycle. Per-cycle statistics are used to cal-
culate the number of active subarrays, which is then used
to calculate energy consumption. To estimate area, delay,
and power of the memory subarray in Impala and CA model,
we use a standard memory compiler (under NDA) for the
14nm technology node and nominal voltage 0.8V (details in
Table 3). The global wire-delays are calculated using SPICE
modeling in CA. In the memory compiler, the 8T-cell de-
sign has wider transistors than 6T; therefore, 8T subarrays
are faster and have higher area overhead than 6T subarrays.
Moreover, because the AP, CA, and Impala have similar run-
time execution models, we can disregard data transfer and
control overheads to make general capacity and performance
comparisons among these platforms.

Comparison metric: To compare spatial automata pro-
cessing architectures (the AP, CA, and Impala), we use through-
put per unit area. Throughput is defined as the number
of bits that can be processed in one second (f requency×
Bitwidth_size). If the automata (connected components) in
a benchmark cannot fit in one hardware unit (HU), we repli-
cate HUs until all the automata are accommodated. The total
area is calculated by multiplying the area of one HU and the
number of required HUs for each benchmark.

8. EXPERIMENTAL RESULTS
In this section, we evaluate Impala and compare it with the

state-of-the-art solutions, such as CA and the AP, as well as
multi-striding solutions on FPGAs.

8.1 Overhead Analysis of V-TeSS
Squashing to 4-bit design and then striding (V-TeSS) change

the shape of automata and increases the number of states and
transitions. Table 4 shows the number of states and transi-
tions in V-TeSS in different strides normalized to the original
8-bit automata designs across 21 automata benchmarks. We
observed that applications with higher average node degree,
such as EntityResolution, RandomForest, and SPM (see Ta-
ble 2) result in higher state and transition overhead. This
is mainly because more combinations of paths need to be
processed in temporal striding. On the other hand, CoreRings
and BlockRings have almost no overhead when striding (8-bit
and 16-bit). This is mainly because all states have equivalent
matching symbols (a single unique symbol) which can effec-
tively benefit from the classic NFA minimization techniques
such as prefix merge and suffix merge (both implemented
in Impala’s compiler). The state and transition overhead of
8-stride automata is higher; this is because the number of
symbols (32-bit symbols) increases, which results in more
vectors and a higher chance for false positives in each state.
Splitting the states extensively in 8-stride causes higher state
and transition overhead. This, in turn, surpasses the area
benefits of Impala. Therefore, we evaluate Impala for up to
4-stride design for the rest of the paper.

94

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

#States Normalized to #Transitions Normalized
8-bit original design 8-bit original design

Stride 1 2 4 8 1 2 4 8
Bits per cycle 4-bit 8-bit 16-bit 32-bit 4-bit 8-bit 16-bit 32-bit

Brill 2.18 1.05 2.03 16.99 1.87 1.07 3.31 42.35
Bro 2.19 1.08 1.17 4.29 2.50 1.18 1.28 4.94

Dorstar03 2.24 1.05 1.19 2.05 2.84 1.15 2.03 3.08
DotStar06 2.33 1.05 1.22 2.38 3.21 1.17 2.16 3.82
Dotstar09 2.45 1.06 1.25 2.53 3.65 1.18 2.30 4.29

ExactMatch 2.05 1.02 1.05 1.40 2.12 1.05 1.07 1.44
PowerEN 2.46 1.08 1.26 6.04 3.66 1.18 1.72 8.77
Protomata 3.08 1.44 1.98 6.22 4.01 2.03 3.63 7.43
Ranges05 2.08 1.03 1.10 3.38 2.24 1.09 1.50 4.14
Ranges1 2.10 1.04 1.15 3.60 2.29 1.13 1.80 4.99

snort 2.79 1.12 1.56 10.25 4.87 1.34 3.73 22.48
TCP 2.47 1.10 1.52 8.55 3.56 1.37 4.08 17.24

ClamAV 2.03 1.00 1.03 7.01 2.06 1.01 1.06 7.42
Hamming 1.99 1.01 1.73 22.97 1.59 1.01 2.65 31.31

Levenshtein 2.66 1.01 2.52 5.35 1.79 1.02 4.19 11.25
Fermi 2.23 1.03 1.06 26.75 2.11 1.04 1.34 30.71

RandomForest 5.07 1.82 3.74 27.75 9.22 3.42 13.97 82.19
SPM 2.60 1.40 5.11 11.88 2.55 2.21 23.44 32.20

EntityResolution 3.45 1.05 1.73 1.08 4.00 1.06 3.11 1.10
BlockRing 2.01 1.00 1.01 3.61 2.02 1.01 1.03 3.98
CoreRing 2.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00

Average 2.52 1.12 1.68 8.34 3.10 1.34 3.97 15.53

Table 4: States and transitions overhead in different strides
for V-TeSS normalized to the original 8-bit design.

Squashing the 8-bit design to 4-bit increases the number
of states 2.52×, and then striding the 4-bit design to 8-bit
(2-stride) and applying compiler minimizations reduces the
number of states very close to the original 8-bit design. Both
2-stride 4-bit and original 8-bit have similar throughput; how-
ever, the 4-bit design requires substantially smaller memory
subarrays. On average, the state overhead in 16-bit design
(processing four 4-bit symbols per cycle) is only 1.7× com-
pared to the original 8-bit design, but its processing rate is
twice and the design is denser. This explains that our V-
TeSS method co-designed with Impala architecture provides
a three-fold throughput, area, and energy-efficiency benefits
compared to prior 8-bit architectures (details in the following
Sections). This also confirms that Espresso has split the false-
positive states with minimal overhead. It is important to note
that transition overhead translates to higher utilization of the
crossbar interconnect and does not impose extra hardware
overhead (discussed in Section 5.2 and evaluated in Section
8.3).

8.2 Overall Performance
The overall performance of spatial automata processing

architectures is determined by f requency×bits/cycle. The
delays and frequencies of different pipeline stages for Impala,
CA, and the AP are shown in Table 5. Impala’s state-matching
delay is 180 ps (See Table 3) and it is similar for different
stride designs. This is because all capsules are processed in
parallel, and striding does not increase the pipeline stages de-
lay (except for the minor difference in the 2-input vs 4-input
AND gate delay in Impala design, which is less than 4ps in
14nm [65]. This is less than 2% of total delay in the state-
matching stage). Both CA and Impala have similar hierarchi-
cal interconnect designs, and both local and global switches
are evaluated in parallel (Figure 5). Following CA design, we
assume the SRAM-based CA design slice of 3.19mm×3mm.
Therefore, the distance between SRAM arrays and global
switch is assumed to be 1.5mm. From SPICE modeling, the
wire delay was found to be 66ps/mm; therefore, the wire de-
lay for global switches is 99ps. Global switch delay for CA
is 249 ps, which is composed of read-access latency (150ps)

Architecture State Local Global Max Operating
Matching Switch Switch Freq. (GHz) Freq. (GHz)

Impala (14nm) 180 ps 150 ps 170 ps 5.55 5
CA (14nm) 220 ps 150 ps 249 ps 4.01 3.6
AP (50nm) - - - 0.133 0.133

AP (14nm)* - - - 1.69 1.69

* Projected to 14nm

Table 5: Pipeline stage delays and operating frequency. The
detail implementation of the AP is not publicly available.

and wire delay latency (99ps). Impala state-matching size
for 4-stride design is ~5× less; therefore, we assume 20ps
wire-delay for Impala. Therefore, the global switch delay for
Impala is 170 ps (150ps+20ps).

The frequency is determined based on the slowest pipeline
stage, which is the global switch delay in both CA and Impala.
We assume the operating frequency for them to be 10% less
than what we have calculated, to consider potential estimation
errors. The AP is designed in 50nm DRAM technology. To
have a fair comparison, we project the frequency to 14nm
technology, which is an ideal assumption.

In all these spatial architectures, state matching and rout-
ing happen in parallel. This, in turn, means that they have a
deterministic throughput of one input symbol per cycle, and
it is independent of the input stream. Figure 13 presents the
overall achieved throughput for CA, AP, and Impala differ-
ent stride designs. Impala 4-stride design processes 16 bits
per cycle and achieves the highest throughput (5GHz×16-
bit=80 Gbps). This implies that if the application fits in the
hardware, the Impala 16-bit design provides 2.8× higher
throughput than CA. 2× of the benefit comes from the algo-
rithmic contribution, which reshapes the automata to process
16-bit symbols, and 1.4× from architectural contribution in
which shorter subarray design results in higher frequency.
Moreover, Impala 16-bit has 5.9× higher throughput than the
AP.

8.3 Area Overhead
Impala proposes area benefits coming from its architec-

tural contribution, which is smaller state-matching subarrays
and sharing interconnect resources while processing 16 bits
per cycle. Figure 14 compares the area overhead of state-
matching and interconnect of Impala 16-bit processing with
CA and the AP (all in 14nm) for 32K STEs. Impala 16-bit has
5.2× and 34.5× smaller state-matching area overhead than
CA and the AP (scaled to 14nm), respectively. Moreover, in
total, Impala 16-bit has 1.34× and 3.9× smaller area over-
head than CA and the AP, respectively. Sadredini et al. [29]
show that the AP interconnect incurs routing congestion and
limits the state-matching utilization. This implies that the
area overhead to accommodate 32K states would be higher
in practice for the AP.

Figure 14: Comparing area overhead for 32K STEs.

8.4 Throughput per unit area

95

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

Figure 11: Comparing throughput per mm2 area among Impala 4-bit design in different strides, Cache Automata (original 8bit
design) in 1-stride and 2-stride, and the Automata Processor (AP), all in 14nm.

Figure 12: (left) Overall energy consumption of Impala compared to CA. (right) Overall power consumption of Impala compared
to CA and the AP (reported by Micron [64]).

Figure 13: Overall performance of different spatial automata
accelerators in Gbps.

This section combines throughput, area, and striding over-
head effects all together and evaluates throughput per unit
area across 21 applications. To have a more comprehen-
sive comparison, we stride the original 8-bit automata us-
ing our temporal striding method and evaluate the Cache
Automaton for 16-bit processing. This is shown as Cache
Automaton (16-bit) in the Figure 11. From this figure, the
Impala 16-bit design provides on average 2.7× (up to 3.7×)
and 371× (up to 536×) throughput per unit area than CA
and the AP, respectively. The benefits are calculated as
T hroughput bene f it × Area bene f it

V−Tess overhead . For example, the benefits of

Impala 16-bit over CA 8-bit are calculated as 2.8×1.34
1.39 , where

the V-Tess state overhead (1.39×) is calculated for real-size
applications. The applications such as Bro, Dotstar03, Ex-
actMatch, snort, and Fermi have smaller striding overhead
for 2-stride and 4-stride designs (Table 4), and therefore, they
present higher throughput per area in Impala 16-bit. On the
other hand, SPM has a higher average node degree (Table
2), which results in a higher striding overhead (Table 4) and
lower throughput per area than Cache Automaton 8-bit.

8.5 Energy/Power Consumption
This section discusses the energy/power consumption of

Impala 16-bit and compares it to prior works assuming 10MB
of input. To calculate energy consumption, we need to know
(1) the number of active partitions for state-matching and
switch blocks, and (2) the number of transitions between
local switches to consider for the energy of driving wires.

Note that it is not possible to power-gate state-matching

memory arrays on a cycle-by-cycle basis. In order to power-
gate these subarrays, it is necessary to know the potential
next states beforehand. However, in the pipeline, the state-
matching results and the next potential state are calculated
simultaneously, which prevents the power-gating (one can
still power-gate an array that is unoccupied). This observa-
tion is not considered in CA. We update the energy/power
results in CA paper [22] based on this observation and our
14nm technology assumption. All the statistics per cycle are
extracted from our compiler.

Figure 12 (left) shows the energy per input symbol for
Impala and CA (energy details of the AP is not publicly avail-
able). We can observe that benchmarks with a larger number
of states, such as Entity Resolution, Snort, and SPM consume
higher energy. This is because these benchmarks have uti-
lized more state-matching and switch arrays to accommodate
a larger number of states. On average, CA consume 1.7×
more energy per symbol than Impala. Energy efficiency of
Impala comes from its density and compact design, which
results in consuming lower dynamic energy due to shorter
wires. Figure 12 (right) shows the average power consump-
tion across benchmarks. On average, the power consumption
of CA is 1.22× more than Impala. This is expected because:

CA−Energy
Impala−Energy × CA−Frequency

Impala−Frequency = 1.7× 1
1.39 = 1.22.

8.6 Comparison with multi-stride on FPGA
Yang et al. [4] and Yamagaki et al. [18] propose multi-

stride regex processing solutions on FPGA and have eval-
uated their solutions on Xilinx-Virtex5 LX-220 and Altera
Stratix II EP2S180, respectively (details are discussed in the
related work in Section 3). Table 6 compares Impala with
these solutions for 16-bit symbol processing rate on Snort
dataset. In summary, Impala provides ~20× higher frequency
and ~20× higher throughput than both of these solutions.
Moreover, Impala with 16-bit processing rate has 7.7× higher
throughput than these FPGA solutions for 64-bit processing
rate. Imapla’s compiler (pre-processing and placement) is
at least an order of magnitude faster than FPGA synthesis

96

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

(Table 1). The benefit of our approach, i.e., processing 4-bits
symbols, can be applied to FPGAs, as we concluded from our
preliminary FPGA-based experiments. Further exploration is
left for future works.

Bits/cycle Clock rate (GHz) Throughput (Gbps)
Yang et al. [4] 16 0.212 3.47

Yamagaki et al. [18] 16 0.239 3.91
Impala 16 5 80

Table 6: Comparison with mutli-stride FPGA solutions.

9. CONCLUSIONS
This paper presents Impala, an in-memory accelerator for

an efficient multi-stride automata processing. Impala is co-
designed with our automata transformation algorithm, called
V-TeSS, and leverages short and parallel memory columns to
implement a dense, high-throughput, and low-power multi-
symbol matching architecture. Overall, the benefits of Impala
comes from two observations: (1) smaller state-matching sub-
arrays provide higher utilization of memory-cells in memory
columns, and this translates to higher density, and (2) V-
TeSS transformation provides higher throughput with a linear
increase in state-matching resources (or memory columns)
relative to the original 8-bit design. This paper concludes that
an in-situ 4-stride automata processing with 16-bit memory
columns provides the highest performance, and has up to
3.7× higher throughput per area and 1.22× lower power
consumption than Cache Automaton.

10. ACKNOWLEDGEMENTS
We thank the anonymous reviewers whose comments helped

improve and clarify this manuscript. This work is funded, in
part, by the NSF (CCF-1629450) and CRISP, one of six cen-
ters in JUMP, a Semiconductor Research Corporation (SRC)
program sponsored by MARCO and DARPA.

11. REFERENCES
[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications

of the obvious,” ACM SIGARCH computer architecture news, vol. 23,
no. 1, pp. 20–24, 1995.

[2] M. Becchi, C. Wiseman, and P. Crowley, “Evaluating regular
expression matching engines on network and general purpose
processors,” in Proceedings of the 5th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems,
pp. 30–39, ACM, 2009.

[3] F. Yu, Z. Chen, Y. Diao, T. Lakshman, and R. H. Katz, “Fast and
memory-efficient regular expression matching for deep packet
inspection,” in Proceedings of the 2006 ACM/IEEE symposium on
Architecture for networking and communications systems, pp. 93–102,
ACM, 2006.

[4] Y.-H. Yang and V. Prasanna, “High-performance and compact
architecture for regular expression matching on FPGA,” IEEE
Transactions on Computers, vol. 61, no. 7, pp. 1013–1025, 2012.

[5] C. Bo, V. Dang, E. Sadredini, and K. Skadron, “Searching for
potential gRNA off-target sites for CRISPR/Cas9 using automata
processing across different platforms,” in 24th International
Symposium on High-Performance Computer Architecture, IEEE, 2018.

[6] I. Roy and S. Aluru, “Discovering motifs in biological sequences
using the micron automata processor,” IEEE/ACM transactions on
computational biology and bioinformatics, vol. 13, no. 1, pp. 99–111,
2016.

[7] E. Sadredini, R. Rahimi, K. Wang, and K. Skadron, “Frequent subtree
mining on the automata processor: challenges and opportunities,” in
International Conference on Supercomputing (ICS), ACM, 2017.

[8] K. Wang, E. Sadredini, and K. Skadron, “Sequential pattern mining
with the micron automata processor,” in Proceedings of the ACM
International Conference on Computing Frontiers, pp. 135–144, ACM,
2016.

[9] J. E. Hopcroft, Introduction to automata theory, languages, and
computation. Pearson Education India, 2008.

[10] N. Cascarano, P. Rolando, F. Risso, and R. Sisto, “iNFAnt: NFA
pattern matching on gpgpu devices,” ACM SIGCOMM Computer
Communication Review, vol. 40, no. 5, pp. 20–26, 2010.

[11] X. Wang, Y. Hong, H. Chang, K. Park, G. Langdale, J. Hu, and
H. Zhu, “Hyperscan: a fast multi-pattern regex matcher for modern
cpus,” in 16th USENIX Symposium on Networked Systems Design and
Implementation, pp. 631–648, 2019.

[12] L. Vespa, N. Weng, and R. Ramaswamy, “MS-DFA: Multiple-stride
pattern matching for scalable deep packet inspection,” The Computer
Journal, vol. 54, no. 2, pp. 285–303, 2010.

[13] M. Becchi and P. Crowley, “A-DFA: A time-and space-efficient DFA
compression algorithm for fast regular expression evaluation,” ACM
Transactions on Architecture and Code Optimization (TACO), 2013.

[14] Intel. https://github.com/01org/hyperscan.

[15] J. Qiu, Z. Zhao, and B. Ren, “Microspec: Speculation-centric
fine-grained parallelization for fsm computations,” in Proceedings of
the 2016 International Conference on Parallel Architectures and
Compilation Techniques, ACM, 2016.

[16] Z. Zhao and X. Shen, “On-the-fly principled speculation for fsm
parallelization,” in International Conference on Architectural Support
for Programming Languages and Operating Systems, ACM, 2015.

[17] Z. Zhao, B. Wu, and X. Shen, “Challenging the embarrassingly
sequential: parallelizing finite state machine-based computations
through principled speculation,” International Conference on
Architectural Support for Programming Languages and Operating
Systems, 2014.

[18] N. Yamagaki, R. Sidhu, and S. Kamiya, “High-speed regular
expression matching engine using multi-character NFA,” in Field
Programmable Logic and Applications, 2008. FPL 2008. International
Conference on, pp. 131–136, IEEE, 2008.

[19] M. Avalle, F. Risso, and R. Sisto, “Scalable algorithms for NFA
multi-striding and NFA-based deep packet inspection on gpus,”
IEEE/ACM Transactions on Networking, vol. 24, no. 3,
pp. 1704–1717, 2016.

[20] V. Kosar and J. Korenek, “Multi-stride NFA-split architecture for
regular expression matching using FPGA,” in Proceedings of the 9th
Doctoral Workshop on Mathematical and Engineering Methods in
Computer Science, 2014.

[21] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes,
“An efficient and scalable semiconductor architecture for parallel
automata processing,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 25, no. 12, 2014.

[22] A. Subramaniyan, J. Wang, E. R. M. Balasubramanian, D. Blaauw,
D. Sylvester, and R. Das, “Cache automaton,” in 50th Annual
IEEE/ACM International Symposium on Microarchitecture, 2017.

[23] E. Sadredini, R. Rahimi, V. Verma, M. Stan, and K. Skadron, “A
scalable and efficient in-memory interconnect architecture for
automata processing,” IEEE Computer Architecture Letters, 2019.

[24] K. Wang, E. Sadredini, and K. Skadron, “Hierarchical pattern mining
with the micron automata processor,” in International Journal of
Parallel Programming (IJPP), 2017.

[25] E. Sadredini, D. Guo, C. Bo, R. Rahimi, K. Skadron, and H. Wang, “A
scalable solution for rule-based part-of-speech tagging on novel
hardware accelerators,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
pp. 665–674, ACM, 2018.

[26] C. Bo, V. Dang, E. Sadredini, and K. Skadron, “Searching for
potential grna off-target sites for crispr/cas9 using automata
processing across different platforms,” in High Performance Computer
Architecture (HPCA), 2018 IEEE International Symposium on,
pp. 737–748, IEEE, 2018.

[27] K. Zhou, J. J. Fox, K. Wang, D. E. Brown, and K. Skadron, “Brill
tagging on the micron automata processor,” in International
Conference on Semantic Computing (ICSC), IEEE, 2015.

[28] L. Gwennap, “New chip speeds NFA processing using DRAM

97

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

architectures,” in In Microprocessor Report, 2014.

[29] E. Sadredini, R. Rahimi, V. Verma, M. Stan, and K. Skadron, “eAP: A
scalable and efficient in-memory accelerator for automata processing,”
in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 87–99, ACM, 2019.

[30] R. L. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued
minimization for PLA optimization,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 1987.

[31] V. M. Glushkov, “The abstract theory of automata,” Russian
Mathematical Surveys, 1961.

[32] J. Wadden, V. Dang, N. Brunelle, T. Tracy II, D. Guo, E. Sadredini,
K. Wang, C. Bo, G. Robins, M. Stan, et al., “Anmlzoo: a benchmark
suite for exploring bottlenecks in automata processing engines and
architectures,” in IEEE International Symposium on Workload
Characterization (IISWC), IEEE, 2016.

[33] M. Lenjani, P. Gonzalez, E. Sadredini, M. A. Rahman, and M. R. Stan,
“An overflow-free quantized memory hierarchy in general-purpose
processors,” IEEE International Symposium on Workload
Characterization, 2019.

[34] T. Xie, V. Dang, J. Wadden, K. Skadron, and M. Stan, “REAPR:
Reconfigurable engine for automata processing,” in Field
Programmable Logic and Applications (FPL), 2017 27th International
Conference on, pp. 1–8, IEEE, 2017.

[35] T. T. Hieu and N. T. Tran, “A memory efficient FPGA-based pattern
matching engine for stateful nids,” in Ubiquitous and Future Networks
(ICUFN), 2013 Fifth International Conference on, pp. 252–257, IEEE,
2013.

[36] R. Karakchi, L. O. Richards, and J. D. Bakos, “A dynamically
reconfigurable automata processor overlay,” in ReConFigurable
Computing and FPGAs (ReConFig), 2017 International Conference
on, pp. 1–8, IEEE, 2017.

[37] V. Gogte, A. Kolli, M. J. Cafarella, L. D’Antoni, and T. F. Wenisch,
“Hare: Hardware accelerator for regular expressions,” in
Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM
International Symposium on, pp. 1–12, IEEE, 2016.

[38] P. Tandon, F. M. Sleiman, M. J. Cafarella, and T. F. Wenisch, “Hawk:
Hardware support for unstructured log processing,” in Data
Engineering (ICDE), 2016 IEEE 32nd International Conference on,
pp. 469–480, IEEE, 2016.

[39] J. V. Lunteren, C. Hagleitner, T. Heil, G. Biran, U. Shvadron, and
K. Atasu, “Designing a programmable wire-speed regular-expression
matching accelerator,” in Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture,
pp. 461–472, IEEE Computer Society, 2012.

[40] Y. Fang, T. T. Hoang, M. Becchi, and A. A. Chien, “Fast support for
unstructured data processing: the unified automata processor,” in
Microarchitecture (MICRO), 2015 48th Annual IEEE/ACM
International Symposium on, pp. 533–545, IEEE, 2015.

[41] K. Wang, K. Angstadt, C. Bo, N. Brunelle, E. Sadredini, T. Tracy,
J. Wadden, M. Stan, and K. Skadron, “An overview of micron’s
automata processor,” in Hardware/Software Codesign and System
Synthesis (CODES+ ISSS), 2016 International Conference on, pp. 1–3,
IEEE, 2016.

[42] A. Subramaniyan and R. Das, “Parallel automata processor,” in 2017
ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), pp. 600–612, IEEE, 2017.

[43] H. Liu, M. Ibrahim, O. Kayiran, S. Pai, and A. Jog, “Architectural
support for efficient large-scale automata processing,” in 2018 51st
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 908–920, IEEE, 2018.

[44] F. Hamzaoglu, Y. Ye, A. Keshavarzi, K. Zhang, S. Narendra, S. Borkar,
M. Stan, and V. De, “Dual-v/sub t/sram cells with full-swing
single-ended bit line sensing for high-performance on-chip cache in
0.13/spl mu/m technology generation,” in ISLPED’00: Proceedings of
the 2000 International Symposium on Low Power Electronics and
Design, pp. 15–19, IEEE, 2000.

[45] K. Zhang, U. Bhattacharya, Z. Chen, F. Hamzaoglu, D. Murray,
N. Vallepalli, Y. Wang, B. Zheng, and M. Bohr, “Sram design on
65-nm cmos technology with dynamic sleep transistor for leakage
reduction,” IEEE Journal of Solid-State Circuits, vol. 40, no. 4,

pp. 895–901, 2005.

[46] A. Garg and T. T.-H. Kim, “Sram array structures for energy efficiency
enhancement,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 60, no. 6, pp. 351–355, 2013.

[47] R. Liu, X. Peng, X. Sun, W.-S. Khwa, X. Si, J.-J. Chen, J.-F. Li, M.-F.
Chang, and S. Yu, “Parallelizing sram arrays with customized bit-cell
for binary neural networks,” in Proceedings of the 55th Annual Design
Automation Conference, p. 21, ACM, 2018.

[48] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,”
in European Conference on Computer Vision, pp. 525–542, Springer,
2016.

[49] E. Sadredini, R. Rahimi, M. Lenjani, M. Stan, and K. Skadron,
“Flexamata: A universal and efficient adaption of applications to
spatial automata processing accelerators,” in The International
Conference on Architectural Support for Programming Languages and
Operating Systems, ACM, 2020.

[50] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A scalable architecture
for high-throughput regular-expression pattern matching,” ACM
SIGARCH computer architecture news, vol. 34, no. 2, pp. 191–202,
2006.

[51] M. Becchi and P. Crowley, “Efficient regular expression evaluation:
theory to practice,” in Proceedings of the 4th ACM/IEEE Symposium
on Architectures for Networking and Communications Systems,
pp. 50–59, ACM, 2008.

[52] M. Becchi, M. Franklin, and P. Crowley, “A workload for evaluating
deep packet inspection architectures,” in Workload Characterization,
2008. IISWC 2008. IEEE International Symposium on, pp. 79–89,
IEEE, 2008.

[53] K. Angstadt, W. Weimer, and K. Skadron, “Rapid programming of
pattern-recognition processors,” ACM SIGOPS Operating Systems
Review, vol. 50, no. 2, pp. 593–605, 2016.

[54] Wikipedia contributors, “Set cover problem — Wikipedia, the free
encyclopedia,” 2019. [Online; accessed 28-June-2019].

[55] C. Umans, T. Villa, and A. L. Sangiovanni-Vincentelli, “Complexity
of two-level logic minimization,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2006.

[56] Wikipedia contributors, “Programmable logic array — Wikipedia, the
free encyclopedia,” 2019. [Online; accessed 28-June-2019].

[57] “Linux programmer’s manual for mmap.”
http://man7.org/linux/man-pages/man2/mmap.2.html.
Accessed: 2019-07-15.

[58] M. Lenjani, P. Gonzalez, E. Sadredini, S. Li, Y. Xie, A. Akel, S. Eilert,
M. R. Stan, and K. Skadron, “Fulcrum: a simplified control and access
mechanism toward flexible and practical in-situ accelerators,” The
26th IEEE International Symposium on High-Performance Computer
Architecture, 2020.

[59] “Compute express link.”
https://www.computeexpresslink.org/.

[60] J. Wadden, K. Angstadt, and K. Skadron, “Characterizing and
mitigating output reporting bottlenecks in spatial automata processing
architectures,” in 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 749–761, IEEE,
2018.

[61] J. Wadden et al., “AutomataZoo: A modern automata processing
benchmark suite,” in IISWC, IEEE, 2018.

[62] https://github.com/gr-rahimi/APSim.

[63] J. Wadden and K. Skadron, “VASim: An open virtual automata
simulator for automata processing application and architecture
research,” tech. rep., Technical Report CS2016-03, University of
Virginia, 2016.

[64] Micron, “Micron automata processor.”
www.cs.virginia.edu/~skadron/grab/Skadron-Micron_AP_
Briefing_Deck_13032014a.pdf.

[65] V. B. Kleeberger, H. Graeb, and U. Schlichtmann, “Predicting future
product performance: Modeling and evaluation of standard cells in
finfet technologies,” in Proceedings of the 50th Annual Design

Automation Conference, ACM, 2013.

98

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 16,2020 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

