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Abstract—Regular expressions have been widely used in var-
ious application domains such as network security, machine
learning, and natural language processing. Increasing demand for
accelerated regular expressions, or equivalently finite automata,
has motivated many efforts in designing FPGA accelerators.
However, there is no framework that is publicly available,
comprehensive, parameterizable, general, full-stack, and easy-to-
use, all in one, for design space exploration for a wide range of
growing pattern matching applications on FPGAs. In this paper,
we present Grapefruit, the first open-source, full-stack, efficient,
scalable, and extendable automata processing framework on
FPGAs. Grapefruit is equipped with an integrated compiler with
many parameters for automata simulation, verification, mini-
mization, transformation, and optimizations. Our modular and
standard design allows researchers to add capabilities and explore
various features for a target application. Our experimental results
show that the hardware generated by Grapefruit performs 9%-
80% better than prior work that is not fully end-to-end and
has 3.4× higher throughput in a multi-stride solution than a
single-stride solution.

I. INTRODUCTION

Finite automata are an efficient computational model for

widely used pattern recognition languages such as regular

expressions, with applications in network security [1], [2], log

analysis [3], and newly-demonstrated other applications in do-

mains such as data-mining [4], [5], [6], [7], bioinformatics [8],

[9], machine learning [10], [11], natural language processing

[12], [13], and big data analytics [14] that have been shown

to greatly benefit from accelerated automata processing.

Researchers are increasingly exploiting hardware accelera-

tors to meet demanding real-time requirements as performance

growth in conventional processors is slowing. In particular,

several FPGA-based regex implementations for single-stride

[15], [16], [17], [18], [19] and multi-stride [20], [21], [22],

[23] automata processing have been proposed to improve the

performance of regex matching. These solutions provide a

reconfigurable substrate to lay out the rules in hardware by

placing-and-routing automata states and connections onto a

pool of hardware units in logic- or memory-based fabrics. This

allows a large number of automata to be executed in parallel,

up to the hardware capacity, in contrast to von Neumann

architectures such as CPUs that must handle one rule at a time

in each core. Most of the current FPGA solutions are inspired

by network applications such as Network Intrusion Detection

Systems (NIDS). However, patterns in other applications can

have different structure and behavior, e.g., higher fan-outs, and

this makes it difficult for NIDS-based FPGA solutions to map

other automata to FPGA resources efficiently [18], [24], [25].

To enable architectural research, trade-off analysis, and

performance comparison with other architectures on the grow-

ing range of applications, an open-source, full-stack, param-

eterized, optimized, scalable, easy-to-use, and easy-to-verify

framework for automata processing is required. REAPR [15] is

a reconfigurable engine for automata processing, and generates

FPGA configurations that operate very similarly to the Micron

Automata Processor (AP) style [26] processing model. The

RTL generated from the automata graph is a flat design, which

causes a very long compilation time. Due to this flat-design

approach, this solution is not scalable and the synthesizer fails

to generate RTL for larger designs. Moreover, REAPR only

generates the matching kernel and does not provide a full-stack

solution or even the automata reporting architecture.

Bo et al. [27] extend REAPR and provide an end-to-end

solution on FPGAs using SDAccel for the I/O. However,

their I/O design has two issues. First, the input stream should

be segmented into limited-size chunks. Second, the reporting

structure is very simple; whenever a state generates a report,

a long vector (the size of the vector is equal to the number of

total reporting states), mostly filled with zeroes, is read and

sent to the host. This reporting architecture may become a

bottleneck for applications with frequent but sparse reporting,

which is a common reporting behavior [28]. Casias et al. [29]

also extended REAPR and proposed a tree-shaped hierarchical

pipeline architecture. However, their solution generates the

HDL code for only the kernel and does not provide a full-

stack solution (i.e., broadcasting input symbols to the logic

elements and getting the reporting data out the FPGA chip).

Furthermore, their source code is not publicly available.

Researchers are interested in using a tool that gives them

the flexibility to explore design space parameters compre-

hensively. For example, in automata processing, symbol size

impacts the throughput and hardware cost [30], and none of

the prior tools provide support for that. Similarly, reporting

architecture can be a performance bottleneck that can reduce

the throughput significantly [28] (up to 46X stall overhead in

the Micron AP). To improve the performance, Liu et el. [31]
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Fig. 1. (a) Classic NFA, (b) Homogeneous NFA, (c) Equivalent 2-stride automata.

propose a hybrid automata processing approach by splitting

states between CPU and an automata processing accelera-

tor, and this incurs higher reporting rate on the accelerator.

Therefore, an efficient reporting architecture is more critical

for the end-to-end performance. In this paper, we present

Grapefruit (General and Reconfigurable Automata ProcEssing

FRamework Using Integrated Reporting and InTerconnect).

We prioritize flexibility, extensibility, and scalability while

developing this tool to provide an easy-to-understand interface

and easy-to-modify code for other researchers to explore new

features and design parameters.

In summary, this paper makes the following contributions:

• We present Grapefruit, the first open-source, full-stack,
comprehensive, and scalable framework for automata
processing on FPGAs1. Grapefruit provides an extensive

set of compiler optimizations, hardware optimizations,

and design parameters for design-space exploration on

a wide range of emerging applications.

• We present an optimized pipeline architecture, an adap-

tive priority-based reporting architecture, and an inter-

connect model to address the issues in prior tools and

support scalability to large numbers of rules/automata.

We also investigate LUT-based, BRAM-based, and the

combination of both in the design space.

• We present an integrated back-end compiler, with a rich

and descriptive interface, to define an automaton and

to perform cycle-accurate automata simulation, automata

transformation, and automata minimization. An impor-

tant feature provided in our framework is the support

for multi-symbol (multi-stride) processing with variable

symbol size, and this directly impacts throughput and

hardware cost.

• We perform thorough performance analysis with differ-

ent optimizations and parameters on a wide range of

automata applications on a Xilinx Virtex UltraScale+.

Our results confirm that we are achieving 9%-80% higher

frequency in a single-stride solution than prior works that

are not fully end-to-end (including reporting and I/O) and

3.4× higher throughput in a multi-stride solution than a

single-stride solution.

II. BACKGROUND

Finite Automata: A regular expression can be represented by

either deterministic finite automata (DFA) or non-deterministic

finite automata (NFA). A DFA allows only one transition per

1https://github.com/gr-rahimi/APSim (check temp scripts/FCCM folder)

input symbol. An NFA has the ability to be in several states

at once, meaning that transitions from a state on an input

symbol can be to any set of states. DFAs, NFAs, and regular

expressions are equivalent in computational power (and can be

converted to each other), but some applications are easier to

express directly as finite automata. However, a DFA can have

exponentially more states than an equivalent NFA (this is a

side effect of the rule that a DFA can only have one active-

state at a time), which greatly increases the memory footprint.

On the other hand, an NFA can have many parallel transitions,

which is bounded by the limited memory bandwidth in von-

neumann architectures. Hardware accelerators for automata

processing are based on NFAs, both to exploit parallel state-

matching and transitions, and the benefit of the NFA’s more

compact representation.

Non-Deterministic Finite Automata Primer: An NFA is

represented by a 5-tuple, (Q,Σ,Δ, q0, F ), where Q is a finite

set of states, Σ is a finite set of symbols, Δ is a transition

function, q0 are initial states, and F is a set of accepting states.

The transition function determines the next states using the

currently active states, and the input symbol just read. If an

input symbol causes the automata to enter into an accept state,

the current position of the input is reported.

We use the homogeneous automaton representation in our

execution models. In a homogeneous automaton, all transitions

entering a state must happen on the same input symbol [32].

This provides a nice property that aligns well with a hardware

implementation that finds matching states in one clock cycle

and allows a label-independent interconnect. Following [26]

and [33], we call this element that represents both a state and

performs input-symbol matching in homogeneous automata a

State Transition Element (STE).

Figure 1 (a) shows an example of a classic NFA and its

equivalent homogeneous representation (b). Both automata in

this example accept the language (A|C)+(C|T )(G)+. The

alphabets are {A, T,C,G}. In the classic representation, the

start state is q0, and accepting state is q3. In the homogeneous

one, we label each STE from STE0 to STE3, so starting state

is STE0, and the accepting state is STE2. Figure 1 (c) strides

the NFA in (b) and processes two symbols per cycle, and this

provides higher throughput. Details of striding is explained in

Section IV-B1.

III. RELATED WORK

A number of multi-stride automata processing engines have

been proposed on CPUs and GPUs [22], [34], [35], [36],

[37], [38]. Generally, automata processing on von Neumann
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architectures exhibits highly irregular memory access patterns

with poor temporal and spatial locality, which often leads

to poor cache and memory behavior [24] (which disables

prediction and data forwarding techniques [39]). Moreover,

multi-symbol processing causes more pressure on memory

bandwidth, because more states and transitions need to be

processed in each clock cycle.

FPGA implementations of regular expression matching are

often inspired by networking applications [15], [16], [17],

[18], [20], [40], which typically consist of many independent

matching rules. These are often implemented using automata-

based (NFA or DFA) computation. Hieu [17] proposes an

accelerated automata processing on FPGA using the Aho-

Corasick DFA model. DFAs can be easily mapped to BRAM,

and reconfiguration in BRAM is cheap. However, a DFA

model does not utilize the inherent bit-level parallelism in

FPGAs and is better suited to memory-bound von Neumann

architectures. Furthermore, DFAs are primarily beneficial for

von Neumann architectures, because DFAs only have one

active state at any point in time. But combining multiple

independent automata or regex rules into a single DFA leads

to a rapid blowup in the number of states, while keeping

multiple independent automata obviates the main benefit of

DFAs. NFAs are thus a better fit for a substrate with high

parallelism such as FPGAs or the Micron AP. Karakchi et al.

[18] present an overlay architecture for automata processing,

which is inspired by the Micron AP architecture. Karakchi’s

architecture forces fan-out limitation and thus fails to map

complex-to-route automata to the routing resources due to its

logical interconnect complexity. Our framework is optimized
for general NFA processing, and it provides the user with
a variety of parameter and flexibility to optimize the design
not only for network regexes but for general and emerging
automata applications.

To improve the throughput of automata processing, some

works have investigated multi-striding (multiple symbols per

cycle) on FPGAs [20], [21], [22], [23]. Yang et al. [20]

proposed a multi-symbol processing solution for regular ex-

pressions on FPGA which utilizes both LUTs and BRAMs.

Their solution is based on a spatial stacking technique, which

duplicates the resources in each stride. This increases the

critical path when increasing the stride value. Yamagaki et al.

[21] proposed a multi-symbol state transitions solution using a

temporal transformation of NFAs to construct a new NFA with

multi-symbol characters. This approach only utilizes LUTs and

does not scale well due to the limited number of lookup tables

in FPGAs. None of these works provide an open-source tool.
Our proposed framework provides a temporal multi-striding
solution, and the user can choose to use the LUTs, BRAMs,
or the combination of LUT/BRAM for design exploration.

Furthermore, alphabet compression techniques [36], [41],

[42], [43], [44] may be employed to reduce memory require-

ments in CPU/GPU and FPGA-based solutions. Becchi et al.

[41] propose to merge symbols with the same transition rules.

This reduces the number of unique alphabets in an automaton.

However, 8-bit hardware accelerators cannot benefit from the

compression techniques if the reduced alphabet size requires

fewer than 8-bit symbols. Our compiler can be utilized to
reshape the compressed automaton to 8-bit symbol processing
while keeping the benefit of compression. This provides full
hardware utilization on the target FPGA and at the same time,
increases the processing rate and throughput.

REAPR [15] is an FPGA implementation of a single-stride

NFA processing engine, and takes advantage of the one-to-

one mapping between the spatial distribution of automata

states and hardware resources such as lookup tables and block

RAMs. REAPR uses VASim [45] as its backend compiler.

VASim is hard-coded to 8-bits (256 symbols) and does not

provide any freedom to modify the bitwidth. It also does

not have any built-in function procedure to handle bitwidth

transformations. In addition, the design space exploration for

the interconnect does not exist natively in this tool. Further,

HDL generation in VASim is not in release mode. Automata

generated with VASim needs to be ported by automata descrip-

tor formats such as ANML to other tools such as REAPR [46]

to generate HDL code targeting FPGAs, which again works

with fixed to 8-bit symbols and does not support other variable

bitwidth processing or symbol striding.

IV. GRAPEFRUIT FRAMEWORK

A. Architecture

This section describes an overview of the system design for

an efficient automata processing on FPGAs using Figure 2 and

explains some of the features and optimizations.

1) Pipeline design: NFAs for real-world applications are

typically composed of many independent patterns, which man-

ifest as separate connected components (CCs) with no transi-

tions between them. Each CC usually has a few hundred states.

All the CCs can thus be executed in parallel, independently of

each other. Grapefruit uses a pipelining methodology to cluster

the automata into smaller groups, each group with several

CCs (Figure 2 - Automata Plane). The original automata are

first partitioned to multiple sets of automata (the number of

automata in each set can be defined by the user), and each set is

implemented in the same pipeline stage. Each incoming input

symbol first is matched against all the CCs in the first pipeline

stage and then travels to the next stage, being processed by the

next stage while the first stage processes the second symbol.

Our pipelining structure reduces synthesis time compared

to REAPR’s flat design [15] because the synthesizer only

considers the automata in the same stage, as they share the

same input signal. On the other hand, using pipelining reduces

the report vector size to the total number of reporting states

in CCs of the same stage.

2) Reporting architecture: The reporting states fire a signal

when a match happens. Collecting the reporting data for

automata processing is another dimension that affects the area,

power, delay, and throughput in a system. In Grapefruit, all

the report states in the same pipeline stage create a bit-vector

(each vector index is assigned to one report state). If any of

the report states gets activated (meaning there is at least one

report in that cycle), a snapshot of the report vector is sent
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Fig. 2. Automata processing architecture on FPGAs. The cloud-shaped entities show several connected components.

to the report buffer allocated for each stage separately. Report

buffers are flushed by the Data Plane interconnect toward the

DDR memory. The Data Plane consists of a hierarchy of AXI-

4 interconnects running at 250 MHz, which provides a path

between every reporting buffer and the memory controller.

Each report buffer is equipped with a DMA (Direct Memory

Access) module to generate the memory address for storing

the report data.

Current results are generated for a Xilinx VCU118 evalu-

ation board, which has two DDR4 memory channels running

in 1200 MHz. Grapefruit uses one memory channel for the

report data and the other channel for the input symbols. Each

memory channel has 5 DRAM chips, each with 16-bit data-

width (80 bits in total). However, the Xilinx’s IP core for

memory controller only uses a 64-bit interface when ECC

functionality is disabled. Therefore, in total, each memory

channel can provide up to 18.75 GBps bandwidth. Using

the hierarchical topology for the interconnect helps to avoid

the signal congestion by distributing the complexity across

multiple interconnect modules and providing a high-frequency

yet area-efficient interconnect design.

In addition, our hierarchical design helps make the system

scalable for larger applications, especially when the number of

report buffers increases significantly. Grapefruit gives the user

the flexibility to specify the desired Data Plane interconnect

as an abstract tree data structure and generates the necessary

scripts in the backend to implement it in an FPGA. As

each of the automata pipeline stages has different report

firing rate (which depends on the automata itself and the

input characteristics), it is necessary to assign the Data Plane

bandwidth wisely to the stages with a higher report rate (and

possibly more filled reporting buffer). In addition, a static

policy is not suitable as the input symbol pattern may change

at run time, and this can lead to dynamic change in the

reporting rate of different stages. To solve this issue, the

Control Plane (shown in Figure 2) is used, where a MicroBlaze

Fig. 3. Automata mapping in LUT-based design.

processor monitors the capacity of buffers to detect the highly

reporting stages. The code running in the MicroBlaze reads

the buffer size of each pipeline stage in a loop and configures

the DMAs of buffers that running low in capacity to flush

them into the off-chip DDR memory. The Control Plane uses

AXI-Lite standard (no burst transmission) as transactions are

simple register-reads/writes (buffer capacity and DMA control

registers). In addition, Grapefruit utilizes the on-chip memory

as the main memory for the MicroBlaze to make sure its

instruction/data traffic does not interfere with the Data Plane

memory operations.

3) Mapping Automata to LUT Resources: This section dis-

cusses the mapping of an automaton (represented in Automata
Plane in Figure2) to the LUT resource of the FPGA using an

example. In Figure 3 (a), a homogeneous automaton is shown

that processes two 8-bit symbols (16-bit) per cycle. STE2
0 is

the start state, and STE2
1 and STE2

2 are the reporting states.

The states are color-coded to represent their equivalent units

in the circuit shown in Figure 3 (b). Symbol matching is done

entirely in LUTs based on the 16-bit symbols. Theoretically,

FFs are equivalent to the states that may be activated in the

following cycle. Once a state is activated, all of its children

are considered as potential active states.

The input signals of the FFs come from an OR gate, which is

the OR signal of all the states that have incoming transitions

to that specific state. The states that have common parents
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can share their FFs and save resources. However, in theory,

their corresponding states cannot be merged since they are

not equivalent states. The report signals of the final states

are generated from the AND gate of matching signals and

potential active states.

4) Mapping Automata to BRAM Resources: In Addition to

LUTs, FPGAs have fast and area-efficient on-chip memory

resources such as BlockRAMs (BRAMs) and UltraRAMs

(available in newer Xilinx FPGAs). An alternative to LUT-

based design is to utilize the on-chip memories to calculate

the symbol matching part efficiently. Technically, the symbol

matching is responsible for detecting all the states that match

against the current symbol, and BRAMs can implement this

logic by simply putting each unique matching condition in

one column and store ‘1‘ if the matching condition matches

the cell location, assuming the input symbol is used as a read

address at runtime; otherwise ‘0‘ is stored. In other words,

each column is one STE. Because each pipeline stage is

processing different symbols, it is not possible to combine

matching rules from different stages into one BRAM. To

minimize the BRAM waste in cases where the number of

unique matching rules in a stage is not enough to fill all the

available memory columns, Grapefruit configures the BRAMs

in their narrowest configurations with smallest column-count

and most-minor-row-size bigger than 256 (36 columns and 512

rows in Xilinx BRAMs).

Matching for higher stride values (processing multiple sym-

bols per cycle) needs more bits to evaluate compared to the

one symbol per cycle case. Xilinx BRAMs in their tallest

configuration have 14 bits as the address input and one bit data

output. This configuration is not even enough to implement

the two symbols per cycle case (16-bit symbols). To solve

this issue, Grapefruit combines multiple BRAMs (equivalent

to the stride value) to implement multi-symbol conditions.

Each BRAM is responsible for decoding 8 bits of the input

symbol, and the final matching signal is calculated by applying

a binary AND operation on the BRAMs output signals. For

example, in Figure 3, the automaton on the left processes

two symbols per cycle. Considering STE1 as an example,

it needs to compare the first and second 8-bit against ‘C‘.

Two BRAMs (shown as two arrays in part b) are used for

matching; the left array handles the first 8-bit, and the second

array handles the second 8-bit. The character ‘C‘ has been

decoded in both these arrays in two separate columns (one

column in each array), their output is ANDed, and its result

is routed as the final match signal. In this design, columns

with the same matching conditions can be merged to save the

BRAM resources. For example, in Figure 3, both STE1 and

STE2 compares the first 8 bits against ‘C‘, so they can share

the same column in the left array. However, the second 8-bit

needs two separate columns, as their matching conditions are

different (‘C‘ versus *). Grapefruit looks for these common

matching conditions in each array and tries to save BRAMs as

much as possible by assigning the same column to equivalent

matching considerations.

Addressing false positive issues for combined BRAMs:

Fig. 4. Automaton mapping in BRAM-based design.

combining multiple BRAMs with an AND operation enables

utilizing these on-chip memory resources for multi symbol

matching, but it needs to be applied with careful consideration.

Simply putting every 8-bit matching condition to one column

of a BRAM array can potentially lead to a false-positive

matching situation. For example, let us assume that one STE

has a matching condition AB,CD for an automaton that

processes two symbols per cycle. Putting matching symbols

A,C of the first input symbol in one BRAM column and B,D
in another column of a separate BRAM can mistakenly match

against AD or CB. Generally, every possible combination of

matching symbols in each dimension can also be matched,

as we generate the final matching symbol by an AND gate.

To solve this issue, we need to detect states with possible

false-positive matching conditions and refine the matching

with simpler conditions that each can be implemented without

regenerating this issue. In our previous example, if we split

the matching conditions into two simpler cases, AB and

CD, we do not encounter this problem anymore. Grapefruit

detects states with bogus matching conditions (if implemented

directly in BRAM) automatically and refines them to min-

imum possible matching conditions and assigns each newly

generated rule to a new state and removes the original state.

Grapefruit repurposes the Espresso [47] logic minimizer to

find the minimum number of refined rules set to implement

every matching condition with BRAMs without generating

false-positives. More details on this can be found in [48].

5) Signal Sharing: while LUTs are very flexible in imple-

menting any matching condition (and generally in implement-

ing every boolean function) without generating false positives,

it is not the most efficient way to use them for pure LUT-

based design. Our approach with BRAMs, to implement the

matching condition partially and to combine them with an

AND gate, can be emulated with LUTs as well. The benefit

of this approach is that the middle 8-bit partial matching can

share this signal with other states as well. For example, in

Figure 5, part (a) shows an NFA that processes two 8-bit

symbols per cycle. A pure LUT design without emulating

BRAM design leads to the design in part (b). In this case, we

rely only on synthesizer to reuse signals without any guide
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Fig. 5. An example on signal sharing.

via the generated HDL code. However, following the partial

matching approach leads to the design in part (c). In this

design, every partial matching condition is implemented in

LUT, and each STE picks its required matching condition

in different dimensions and combines them with an AND

operation. As shown in part (c), STEs can share the partial

matching conditions and save the total number of required

LUTs. Design (c) needs to go through the false-positive

checking procedure, as it is vulnerable to this issue, but it

can be resolved using our matching refinement procedure

explained for the pure BRAM design.

In summary, Grapefruit supports three matching architec-

tures: pure BRAM, pure LUT, and LUT with signal-sharing.

The user can select its preferred architecture at compilation

time, and Grapefruit generates all the HDL codes necessary

to implement it. In addition, Grapefruit can also implement a

hybrid version of pure BRAM and LUT with signal-sharing

by letting the user to freely put partial matching-conditions in

BRAMs or LUTs.

B. Compiler Optimizations

In the application layer, researchers want to have access

to a tool that gives them a rich and descriptive interface

to define an automaton and examine/debug them with an

input stream. Our compiler, called APSim, uses a well-known

and actively maintained python graph processing package,

NetworkX, as its main building block to benefit from its

reliability, speed, and extensive documentation with examples

for further development by other collaborators. In APSim, an

automaton is considered as a directed multigraph where the

nodes or edges can carry symbol data and NFA metadata.

All the automata related algorithms have been implemented

on top of this concept. For example, a strided automaton that

consumes two symbols per cycle can be achieved by finding

every path of length two in the input automaton and replace

it with a single edge in the strided automaton.

Stream-based transformation verification is also supported

in APSim to check the correctness of transformations. Users

can develop their own transformations and easily compare

Fig. 6. Different components in our back-end compiler.

report status of the new automaton with the original automaton

by streaming the same input to both of them and check the

equivalence of report states status per cycle. This functionality

also works with striding, where a multi-strided automaton can

be compared against its original representation. APSim pro-

vides a comprehensive, parameterizable, and easy-to-modify

tool. Figure 6 shows different components of APSim.

1) Temporal Striding: researchers are interested in using

a tool that gives them enough flexibility to explore design

space parameters comprehensively to discover high-throughput

and efficient designs. One crucial design parameter in the

architectural domain of automata processing is the symbol’s

bit-width (or alphabet size), which is mainly determined by the

application. APSim provides temporal striding functionality,

which is a set of transformations to change the bitwidth

processing while keeping the automaton functionality intact.

Temporal Striding [41], [43] is a transformation that re-

peatedly squares the input alphabet of an input automaton and

adjusts its matching symbols and transition graph accordingly.

The transformed automaton is functionally equivalent to the

original automaton, but it processes multiple symbols per

cycle, thus increasing throughput. On the other side, the

strided automata can cause state and transition overhead.

The transformation overhead depends on the properties of

automata, such as the in/out degree of states, the number

of symbols, and the number of transitions. This creates an

interesting performance vs. resource overhead tradeoff, and

our framework supports and facilitates exploration of it and

gives the hardware designer the chance to pick the sweet spot

for a specific hardware platform. This sweet spot may vary

significantly across different hardware domains such as in-

memory processing, FPGA, or Von Neumann machines.

V. EVALUATION METHODOLOGY

NFA workloads: We evaluate our proposed claims using

ANMLZoo [24] and Regex [49] benchmark suites. They

represent a set of diverse applications, including machine

learning, data mining, and network security. AutomataZoo [50]

is mostly an extension of ANMLZoo (9 out of 13 applica-

tions are the same), and the difference is that ANMLZoo is

normalized to fill one AP chip (with up to 48K states). To

provide a fair comparison with prior work, we use ANMLZoo

benchmarks because the prior work has used ANMLZoo in
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their evaluation, and their source code is not publicly available

for evaluation with the AutomataZoo benchmark.

We present a summary of the applications in Table I, includ-

ing the number of states and transitions in each benchmark

as well as the average degree (the number of incoming and

outgoing transitions) for each state. The higher the degree, the

more challenging the benchmark is to map efficiently to the

FPGA’s underlying routing network.

TABLE I
BENCHMARK OVERVIEW

Benchmark #Family #States #Transitions Ave. Node
Degree

Brill [24] Regex 42658 62054 2.90

Bro217 [49] Regex 2312 2130 1.84

ClamAV [49] Regex 49538 49736 2.0

Dotstar [49] Regex 96438 94254 1.95

ExactMath [49] Regex 12439 12144 1.95

PowerEN [24] Regex 40513 40271 1.98

Protomata [24] Regex 42009 41635 1.98

Ranges05 [49] Regex 12621 12472 1.97

Snort [24] Regex 100500 81380 1.61

TCP [49] Regex 19704 21164 2.14

EntityResolution [24] Widget 95136 219264 4.60

Fermi [24] Widget 40783 57576 2.82

RandomForest [24] Widget 33220 33220 2

SPM [24] Widget 69029 211050 6.11

Hamming [24] Mesh 11346 19251 3.39

Levenshtein [24] Mesh 2784 9096 6.53

Experimental setup: all the FPGA results are obtained on

a Xilinx Virtex UltraScale+ XCVU9P with a PCIe Gen3 x16

interface, 75.9 Mb BRAM, and 1182k CLB LUTs in 16nm

technology. The FPGA’s host computer has an eight-core Intel

i7-7820X CPU running at 3.6 GHz and 128 GB memory.

Designs are synthesized with the Xilinx Vivado v2019.2.

For the interconnect structure, we follow an area-efficient

tree structure for Data Plane and Control Plane. In the Data

Plane, we construct the tree by starting from the report buffers

and assign every five buffers to one AXI interconnect. Every

five AXI interconnects are connected to the next level of AXIs.

This iterative approach continues until we reach a single AXI

interconnect and connect its master port to the DDR memory

controller. The same procedure is applied for the Control Plane

by letting ten nodes connected to the interconnects (instead of

five), as the Data Plane is running at a slower frequency and

a high-bandwidth design is not necessary. Register slicing and

AXI datapath FIFOs are enabled for the Data Plane with the

burst-size set to its maximum possible value (256), following

Xilinx recommendations for high-throughput design. Bus-

width in both Data Plane and Control Plane is set to 32 to

reduce the routing congestion. All these parameters can be set

to different values in compile time thanks to our rich compiler

APIs. Moreover, we set the clock constraint to 250MHz to be

satisfied by the synthesizer.

VI. EXPERIMENTAL RESULTS

A. LUT-based vs. DRAM-based design

Table II shows different statistics for LUT-based design

and BRAM-based design. As expected, benchmarks with a

higher number of states and transitions (shown in Table I have

higher LUT, FF, and BRAM usage, and also higher power

consumption. However, the frequency is a function of both

automata size (number of state/transitions) and automata struc-

ture (such as fan in/out or average node degree). For example,

EntityResolution has 95,136 states and SPM has 69,029 state.

However, SPM frequency is 175.6 MHz while EntityResolu-

tion frequency is 228.8 MHz (30% higher frequency). This is

because the average node degree in EntityResolution is 4.6,

while the average node degree for SPM is 6.11.

BRAM-based design reaches a higher operational frequency

for larger benchmarks, such as PowerEN, Protamata, and

Snort, possibly due to the limitations of LUTs. LUTs in

Xilinx FPGA’s can implement a single 6-bit boolean function.

To implement 8-bit functions, multiple LUTs need to be

serially connected, which leads to a higher latency. How-

ever, BRAMs can implement 8-bit boolean functions with

a single memory read operation. For smaller benchmarks,

the sparsity of BRAMS across the chip and routing latency

associated with it become a disadvantage, and the popularity

of LUTs becomes a winning factor. The number of utilized

BRAM18s in BRAM-based design is always higher than the

number of utilized BRAM18s in LUT-based design because

matching logic is implemented in BRAM18s blocks. However,

BRAM36 remains the same for both designs as Grapefruit only

uses the BRAM18 for matching, and BRAM36 is mainly used

by the report interconnect. The number of LUTs in LUT-based

design is always higher than BRAM-based design because

these resources are utilized mostly for matching. However, a

significant fraction of the LUTs are used for the interconnect

logic. The number of FFs remains mostly the same as both

designs have the same number of STEs.

B. Striding and signal sharing effects

Table III represents various statistics for the TCP benchmark

when applying the temporal striding technique to both BRAM-

based and LUT-based designs, and when applying signal-

sharing optimization to the LUT-based design.

As discussed, temporal striding increases the number of

state and transitions, which translates to higher LUT, FF, and

BRAM utilization and slightly higher power consumption.

However, it significantly increases throughput as it processes

multiple symbols in one cycle. In BRAM-based design, in-

creasing processing rate from one symbol per cycle (8-bit

processing) to four symbols per cycle (32-bit processing)

results in 3× higher throughput at the expense of only 2.37×
higher LUTs, 1.7× higher FFs, 2.5× BRAMs, and 1.26×
higher power consumption. Similarly, In LUT-based design,

increasing the processing rate from one symbol per cycle (8-

bit processing) to four symbols per cycle (32-bit processing)

results in 3.4× higher throughput at the expense of only 1.15×
higher LUTs, 1.01× higher FFs, 1.58× BRAMs, and 1.01×
higher power consumption. In summary, striding capability

gives the user the ability to explore the area, power, delay,

and throughput trade-offs and makes the best design choices

based on the target objectives.
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TABLE II
COMPARING LUT-BASED DESIGN VS BRAM-BASED DESIGN (IN SINGLE-STRIDE AUTOMATA OR 8-BIT PROCESSING).

Benchmark LUT-based BRAM-based
LUTs FFs BRAM18 BRAM36 Power (W) Clock (MHz) LUTs FFs BRAM18 BRAM36 Power (W) Clock (MHz)

Brill 144,273 205,162 82 503 6.9 231.3 130,876 203,385 160 503 7.1 258.1

Bro217 31,442 45,552 9 72 4.2 291.0 30,413 45,086 20 72 4.2 264.8

ClamAV 90,747 113,685 23 149 5.7 259.9 89,919 115,729 96 149 5.8 245.9

Dotstar 247,999 324,571 116 710 9.7 237.6 222,694 321,527 292 710 9.5 240.6

ExactMatch 43,442 58,568 13 99 4.6 278.6 41,684 58,262 31 99 4.5 260.8

PowerEN 192,204 278,126 117 779 8.4 166.7 172,119 275,330 233 779 8.5 247.2

Protomata 171,941 230,871 95 591 7.6 170.7 149,861 228,257 367 591 8.0 249.0

Ranges05 44,008 58,527 13 100 4.6 253.2 41,702 58,198 31 100 4.5 260.9

Snort 202,488 279,736 116 763 9.0 163.5 179,862 273,870 243 763 8.6 232.6

TCP 69,685 95,531 31 208 5.3 254.6 64,278 59,822 67 208 5.2 264.1

EntityResolution 122,452 148,907 41 268 6.1 228.8 108,406 148,611 81 268 7.2 248.9

Fermi 145,439 221,904 97 604 6.9 203.4 133,357 221,011 255 604 8.1 208.3

RandomForest 126,562 170,431 69 435 6.4 244.1 80,364 111,977 156 316 6.0 253.1

SPM 179,597 244,101 153 893 9.3 175.6 153,790 242,659 244 893 9.6 201.7

Hamming 29,066 40,703 7 60 4.2 293.3 27,848 40,611 15 60 4.3 271.7

Levenshtein 20,356 27,563 3 41 4.0 303.4 20,719 28,564 4 41 4.0 262.7

TABLE III
STRIDING AND SIGNAL-SHARING EFFECT FOR TCP BENCHMARK.

Design Parameter Symbol Size LUTs FFs BRAM18 BRAM36 Power (W) Clock (MHz) Throughput (Gbps)

BRAM-based
8-bit 64,278 59,822 67 208 5.2 264.1 2.06

16-bit 64,083 96,862 115 296 5.7 244.5 3.82

32-bit 73,773 106,138 184 489 6.5 198.6 6.21

LUT-based
8-bit 69,685 95,531 31 208 5.3 254.6 1.99

16-bit 105,150 96,604 33 362 5.3 225.5 3.52

32-bit 165,228 97,016 33 362 5.4 217.8 6.81

Signal-Sharing 8-bit 65469 94900 31 208 4.8 245.6 1.92

on 16-bit 69,559 97,110 43 296 5.0 243.7 3.81

LUT-based 32-bit 78,412 106,265 37 489 5.3 223.1 6.97

The signal-sharing technique is applied to the LUT-based

design. This optimization reduces the number of LUTs 1.5×
in 16-bit design and 2.1× in 32-bit design. Moreover, signal

sharing improves throughput and reduces power consumption.

C. Comparison with prior work

We compare Grapefruit (in 8-bit processing) with REAPR+

[29]. This tool only generates the kernel and does not consider

the I/O. The authors have evaluated their solution on AN-

MLZoo benchmarks using Xilinx Kintex-Ultrascale xcku060-

ffva1156-2-e FPGA. Figure 7 shows that the Grapefruit full-

stack solution performs 9%-80% better than kernel results in

REAPR+ for the majority of the benchmarks. On average,

Grapefruit has 3.8× more LUTs and 5.9× more FFs, and this

is mainly because Grapefruit supports I/O.

REAPR+ performs better for Hamming and Levenshtein,

and this is because these benchmarks are relatively small,

and the designer can force a higher clock constraint. Our

clock constraint is set to 250 MHz and increasing the clock

constraint can significantly increase the frequency for smaller

benchmarks, such as Hamming and Levenshtein.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents Grapefruit, a publicly available frame-

work for automata processing on FPGAs. Grapefruit con-

sists of two main components: (1) an integrated compiler

for automata simulation, minimization, transformation, and

optimization, and (2) an HDL generator that produces a

full-stack design for a set of automata to be processed on

Fig. 7. Comparing Grapefruit (8-bit) with REAPR+ [29].

FPGAs. We develop an efficient reporting architecture and

pipeline design, along with a set of hardware optimizations and

parameters. Our framework allows researchers to investigate

frequency and resource-usage trade-offs and provides an easy-

to-understand and easy-to-modify code for them to explore

new ideas. Grapefruit provides up to 80% higher frequency

than prior works that are not fully end-to-end and 3.4×
higher throughput in a multi-stride solution than a single-

stride solution. An interesting direction for future work would

be automatic learning-based parameter tuning using static and

dynamic behavior of automata in an application.
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