
Enabling In-SRAM Pattern Processing With
Low-Overhead Reporting Architecture

Elaheh Sadredini , Reza Rahimi, and Kevin Skadron

Abstract—The demand for accelerated pattern matching hasmotivated several

recent in-memory accelerator architectures for automata processing, which is an

efficient computationmodel for sophisticated pattern matching. Existing in-memory

pattern matching architectures focus on accelerating the pattern matching kernel,

but either fail to support a practical reporting solution or overlook the reporting

stage. However, gathering and processing the reports can be themain bottleneck,

especially for applications with high reporting frequency. Moreover, all the existing

in-memory architectureswork with a fixed processing rate (mostly 8 bits per cycle),

and they do not adjust the input consumption rate based on the properties of the

applications, which can lead to throughput and capacity loss. To address these

issues, we present Sunder, an in-SRAM patternmatching architecture to processes

a reconfigurable number of nibbles (4-bit symbols) in parallel, instead of fixed-rate

processing, by adopting an algorithm/architecturemethodology to perform

hardware-award transformations. The key insight of our work is that transforming

the commonly-used 8-bit processing to nibble-processing reduces required

hardware resources (i.e., number of usedmemory rows) exponentially and achieves

higher information density. This frees up space for storing reporting data in-place,

which significantly eliminates host communication and reporting overhead. As a

result, Sunder enables a low-overhead, energy-efficient, and high-performance in-

memory pattern matching solution. Our results confirm that Sunder reporting

architecture has zero performance overhead for 95% of the applications and incurs

only 2% additional hardware overhead compared to the state-of-the-art solutions

with no support for the reporting stage.

Index Terms—In-SRAM processing, near-data processing, pattern matching,

automata processing

Ç

1 INTRODUCTION

THE performance gap between processor and memory, also known
as the memory wall, has been a primary performance concern for
many years. This problem is aggravated in memory-bound appli-
cations, such as pattern matching kernels in big-data domains,
where millions of patterns should be processed at once, mostly
with real-time and high-throughput processing requirements. Pat-
tern matching is involved in many applications such as network
security, bioinformatics, data mining, and natural language proc-
essing. These patterns are generally massive in number, complex
in structure, and dynamic in behavior. These properties, combined
with an increase in the volume and velocity of data, make high-
throughput pattern matching ever more challenging.

One leading methodology for inexact pattern matching is to use
regular expressions or equivalent finite automata to identify these
complex patterns. To address the memory-wall challenges, in-
memory architectures for automata processing have been intro-
duced to benefit from the massive internal memory bandwidth by
performing symbol matching using memory arrays [3], [6], [8].
They all support the execution of Non-deterministic Finite Autom-
ata (NFA) in memory arrays by providing a reconfigurable infra-
structure to implement finite automata in hardware.

In-memory automata processing model has three processing
stages; state-matching, state-transition, and report-gathering, and
can be combined in a pipeline fashion. In the state-matching stage,
the current input symbol is decoded and all the states whose sym-
bols match against it are detected by reading a memory row. In the
state-transition stage, successors of active states are determined by
propagating signals via an interconnect. In the report-gathering
phase, the report data is accumulated and eventually analyzed for
the final action or decision.

Prior work, including our own, has mostly neglected the real
cost of providing a reporting architecture and assumed that report-
ing is not a bottleneck [6], [7], [8] (and evaluated only the first two
stages). However, reporting incurs a significant cost when it is con-
sidered accurately. For example, the reporting architecture in the
Automata Processor [3] has 40% area overhead [4] and up to 46�
performance overhead due to stalls and host communications [9].

Moreover, existing in-memory automata accelerators have a
fixed processing rate set at design time—typically 8 bits. This can
limit the capacity and throughput benefits of in-memory solutions
for running a diverse set of applications. For example, if the hard-
ware capacity is more than what an application needs, then the
automata could be transformed to process multiple symbols per
cycle (i.e., higher throughput) at the expense of a higher number of
states, which translates to utilizing the unused hardware resources.
On the other hand, if the application has a small number of sym-
bols (e.g., genome sequencing with an alphabet of only four unique
symbols), then the automata hardware could use smaller struc-
tures, or the automata could again be transformed to process four
input symbols per 8-bit input. In short, a fixed 8-bit processing
architecture wastes memory resources.

To address these issues, we propose Sunder, a highly reconfig-
urable in-SRAM automata processing design with a flexible, com-
pact, and low-overhead memory-mapped reporting architecture.
Our main observation is that transforming the common, fixed 8-bit
automata processing rate (which requires 28 memory rows) to a
multiple of 4-bit automata or nibble processing (which requires mul-
tiple 24 memory rows) can greatly reduce the required memory ele-
ments in memory-based automata processing solutions. We
opportunistically utilize the saved memory rows in a subarray to
store the reporting data locally near the state-matching data. This
greatly eliminates data movement and stalls due to reporting, and
provides an easy and flexible mechanism for the host to analyze
any portion of reporting data at any time. In addition, the reconfig-
urable processing rate enables throughput and density benefits for
a diverse set of applications.

Our reporting architecture only incurs a negligible hardware
overhead (less than 2%), as it repurposes existing components for
state matching subarrays. Our experimental results show that
more than 95% of the real-world automata benchmarks [1], [10]
have almost no performance degradation with the Sunder report-
ing architecture (thanks to our compact and localized reporting
architecture and our optimized 3-stage pipeline) compared to prior
solutions that have overlooked the reporting stage. Sunder can be
realized by repurposing the available on-chip SRAM memory or
custom-designed memory arrays.

To support a larger automaton, Liu et al. [5] propose a hybrid solu-
tion to split an automaton between the CPU and the AP [3]. This
approach generates more intermediate results (or reports), which
needs to be transferred to the CPU, and thus, can significantly benefit
fromour compact and efficient reporting architecture.

In summary, this paper makes the following contributions.

� We present Sunder, a highly reconfigurable and flexible
in-SRAM pattern processing architecture using a well-
designed algorithm/architecture design methodology.

� Elaheh Sadredini is with the Department of Computer Science, UC Riverside, CA
92507 USA. E-mail: el.sadredini@gmail.com.

� Reza Rahimi and Kevin Skadron are with the Department of Computer Science, Univer-
sity of Virginia, Charlottesville, VA 22904 USA. E-mail: {rahimi, ks7h}@virginia.edu.

Manuscript received 5 Oct. 2020; revised 21 Nov. 2020; accepted 21 Nov. 2020. Date of
publication 3 Dec. 2020; date of current version 23 Dec. 2020.
(Corresponding author: Elaheh Sadredini.)
Digital Object Identifier no. 10.1109/LCA.2020.3042194

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 19, NO. 2, JULY-DECEMBER 2020 167

1556-6056� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 01,2021 at 19:33:24 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5834-4346
https://orcid.org/0000-0002-5834-4346
https://orcid.org/0000-0002-5834-4346
https://orcid.org/0000-0002-5834-4346
https://orcid.org/0000-0002-5834-4346
https://orcid.org/0000-0002-8081-9302
https://orcid.org/0000-0002-8081-9302
https://orcid.org/0000-0002-8081-9302
https://orcid.org/0000-0002-8081-9302
https://orcid.org/0000-0002-8081-9302
mailto:el.sadredini@gmail.com
mailto:rahimi@virginia.edu
mailto:ks7h@virginia.edu

� We thoroughly analyze the behavior of a diverse set of
applications to understand the reporting pattern.

� We introduce a compact, simple, and localized memory-
mapped reporting architecture to reduce data movement
and host communication, which results in significantly
higher performance and area efficiency.

� We provide an open-source framework for the algorithm
transformations, mapping, and placement.

2 BACKGROUND AND MOTIVATION

All the previous hardware implementations of automata proc-
essing [3], [7], [8] suffer from three problems. First, they all
have a fixed symbol processing rate decided at design time.
Second, they all have failed in realizing an efficient reporting
architecture design. Third, their rudimentary reporting architec-
ture does not provide any support to summarize reporting data
in hardware.

Fixed Processing Rate. Two critical design parameters for autom-
ata engines are the symbol size and the number of symbols being
processed per cycle, which determines system throughput. All pre-
vious in-memory automata processing architectures have a fixed
processing rate (usually 8 bits per cycle) [3], [7], [8]. This limitation
causes density and throughput disadvantages for some applica-
tions. For example, if the application size is smaller than the hard-
ware capacity, we can increase the processing rate (i.e.,
throughput) by utilizing the unused hardware resources. On the
other hand, if the application has a small number of unique sym-
bols (e.g., only four in genome sequencing), we can reduce the
symbol size to improve capacity, and be able to accommodate
more patterns in a unit of hardware.

Reporting Architecture Issues. The reporting architecture mod-
ule is responsible for collecting per-cycle report information
and storing them in a buffer temporarily, to be transferred to
the host whenever the host program needs to check for
matches. Realizing such a hardware module is not straightfor-
ward because there are a few concerns that need to be consid-
ered. First, report states are generated in different memory
arrays and need to be routed toward the global reporting buf-
fers, potentially with high latency. Second, choosing the right
buffer bit-width is challenging due to its effect on area cost. A
wide buffer solution (e.g., [3]) is attractive for an area-efficient
design, as many report states are combined to create a single
row of the report buffer, which results in smaller buffer control
logic. However, a wide buffer can be more troublesome for
applications with sparse and persistent reporting behavior, as
the buffer gets filled up frequently, mostly with 0s.

On the other hand, a narrow buffer solution (e.g., [9]) works
effectively for applications with sparse reporting behavior and can
physically be placed near to where the report states are generated.
Because buffers are narrow and their capacity is limited, we need
many of them to cover all the report states. The cost of the control
and access logic of the reporting buffers from the host is not negli-
gible as each needs to be controlled separately. We believe the lack
of a feasible and efficient reporting architecture in prior work is
one of the main concerns of integrating an efficient automata proc-
essing accelerator in a system.

Reporting Strategy. None of the prior work on reporting architec-
ture provides report summarization support, which can help to
reduce the reporting I/O cost. Instead, they move the entire report-
ing data from reporting buffers to the host, and have the software
to extract the information. For example, if an application only
wants to know if a specific state has been triggered since the last
time the report buffer was flushed, the host processor must cur-
rently first read all the reporting data of the buffer associated with
that state and calculate the row-wise logical OR of the reporting
cycles. But this is much more efficiently done in the report buffer.

3 SUNDER ARCHITECTURE

Sunder leverages the fact that 4-bit automata consume exponen-
tially fewer memory rows for state encoding than 8-bit automata
(24 versus 28). The unused memory rows in a standard memory or
cache subarray can be used to locally store the reporting data at a
minimal cost. Fig. 1 shows the overall architecture of Sunder for
one processing unit (PU). Each PU can process up to 256 automata
states, and allows up to 12 reporting states (i.e., final states) and
full connectivity among the states using memory-mapped full-
crossbar local and global switches.

3.1 State Matching

The state matching stage is realized by the one-hot encoding of the
state symbols in columns of a memory subarray. The green box in
Fig. 1 depicts one memory subarray of size 256 � 256 (conventional
subarray size in an L3 Cache [2]), and Sunder stores both state
matching and reporting data in the same subarray by employing a
precise and optimized algorithm/architecture methodology to
compress the state matching data and make room for reporting
information. This is unlike prior work [3], [8] that uses the whole
subarray to store state matching data. To be able to perform state
matching and store reporting data in the same subarrays in one
cycle, the PU subarrays are dual-ported (i.e., two sets of sense
amplifiers (SA) and two sets of decoders).

Algorithmic Transformation. We utilize our prior work, Impala
[6], and transform an NFA with m-bit symbols (m is usually 8 and
28 memory rows are required for one-hot encoding of states) to 4-
bit symbol automata, which we call it nibble processing. 4-bit sym-
bols only require 24 memory rows for one-hot symbol encoding.
We then use the temporal striding algorithm presented in Impala
[6] to stride the nibbles to our desired processing rate, and config-
ure the Sunder processing rate accordingly. This transformation
avoids any false positive reports by splitting the states when
needed (details in [6]).

Reconfigurable Nibble Processing. different from all previous
work, Sunder allows for a reconfigurable processing rate, i.e., 4-bit,
8-bit, and 16-bit processing. This can be specified at compilation
time (usually based on the properties of the target application). In
the State Matching/Reporting subarray in Fig. 1, Row[0:15] encodes
the first nibble, Row[16:31] encodes the second nibble, Row[32:47]
encodes the third nibble, and Row[48:63] encodes the fourth nibble
of the symbol. When the processing rate is 4 bits per cycle (1 nib-
ble), only the first 16 rows are used to encode the 4-bit symbols,
and thus, only the associated decoder to the first 16 rows will be
enabled. This means the remaining rows (i.e., Row[16:]) can be

Fig. 1. Sunder architecture for state matching, state transition, and reporting.

168 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 19, NO. 2, JULY-DECEMBER 2020

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 01,2021 at 19:33:24 UTC from IEEE Xplore. Restrictions apply.

used for storing the reporting data or normal cache data. The same
analogy applies to 8-bit and 16-bit processing.

The partial state-matching results from nibbles are combined
using bitwise operations with multi-row activation of 8T SRAM
arrays. For the 16-bit processing, four memory rows are activated
(with the four 4:16 decoders), and their matching results are bit-
wise ANDed to generate the final matching results.

3.2 Reporting Architecture

Many previously proposed architectures for automata processing
have neglected the reporting stage in automata processing, and
their performance and cost results are only based on state matching
and interconnect stages [6], [8]. Sunder improves upon this by
localizing the reporting data within the very same memory subar-
rays performing the state matching, with minimal hardware over-
head. This helps to avoid long wires from report states to buffers
and their likely latency and routing congestion. It also helps to
share many of the report buffer peripherals with the existing state-
matching stage logic.

Thanks to the nibble processing technique, which exponentially
saves the memory footprint in the state matching subarrays, and
the choice of dual-port 8T cells to isolate read port from write port,
Sunder is able to store the reporting data in each cycle at the bot-
tom rows of the state-matching subarrays (i.e., row 16 onward in
Fig. 1).

Report Storing Mechanism. Assume the processing rate is 16-bit;
therefore, the first 64 rows in the memory subarrays in Fig. 1 are
used for encoding the states. We assume m reporting states in each
memory subarrays, and we map the reporting states in an automa-
ton to the m-reporting-enabled states in the memory subarrays,
which are the last m memory columns. At run-time, in the autom-
ata-mode, after the current active states have been calculated, we
check if there is any reporting data is generated. This is done by O-
Ring the m-bit reporting states driven from the active state vector. If
at least one report is generated, we then need to store this informa-
tion along with the current cycle in which the report has happened.
The cycle count is generated from a global counter in the hardware.
Therefore, we concatenate the cycle number as the metadata to the
reporting data, and write it in the reporting region of the subarray
in a very compact way.

As 8T cells have different ports for read and write, the state
matching phase and reporting phase (from the previous cycle) can
be performed in pipeline. This approach does not need any addi-
tional hardware resources such as an arbiter or global buffer as
report information is locally stored in the same memory array as
matching data has been stored. This way, accessing the report
information is much easier as it translates to simply reading data
from memory. Sunder introduces several unique features, which
can greatly reduce the overhead of reporting.

� Report Summarization. An important concern in the report-
ing architecture is the I/O cost. We observed that not all
the applications required cycle-accurate report information
(such as SPM). All the previous accelerators are designed
to read bulky cycle-accurate report information and post-
process them on the host. In Sunder, report summarization
is achieved by performing the column-wise OR operation
among report rows. This feature is very beneficial for
applications that have a very frequent reporting behavior,

where the existence of a report in a specific duration mat-
ters to the user. In other words, the user does not care
about the specific cycle that the report has happened.

� Selective Reporting. Sunder provides great freedom to the
host to read the report status of every state at any cycle
with a constant time while the conventional approaches fill
the report buffers with report data that might not be inter-
esting at that particular time, and this introduces more
stalls to transfer reporting data.

� Optimized for Different Reporting Behaviors. When the appli-
cation has a dense but infrequent reporting behavior, the
reporting region does not usually fill, and thus, there will
be no stall during execution to flush the reporting data. On
the other hand, when the application has a sparse but fre-
quent reporting behavior, the reports are compacted in the
report-storing subarrays, and thus, reducing the need to
stall the application.

� FIFO Strategy for the Reporting Buffers. our study on real-
world applications reveals that they only generate at least
one report in less than 12% of total number execution
cycles. This implies that more than 88% of the cycles, no
report is generated, and nothing will be written in the sub-
array. We take advantage of this observation and start
reading the reporting data from the beginning of the
reporting region. When the report buffer is full from the
end, the reports will be written from the head of the buffer.
If the report generation rate is higher than consumption
and the report buffer is full, the execution is stalled.

4 EVALUATION METHODOLOGY

We evaluate our proposed claims and architectures using ANML-
Zoo [10] and Regex [1] benchmark suites. They represent a set of
diverse applications, including machine learning, data mining, and
network security. We use our open-source tool to perform autom-
ata simulation, automata transformation, and report analysis.

5 RESULTS

Table 1 shows a summary of the automata reporting statics and
behavior for a wide set of benchmarks [1], [10], which significantly
varies from application to application. #Subarrays is the number of
required memory subarray for each application. #Report Cycle
shows the number of cycles in which at least one report is gener-
ated, and #Reports/Report Cycle demonstrates the average number
of generated reports in each report cycle.

Reporting Behavior. Some applications report very infrequently
(i.e., Dotstar03 and Ranges05). This is mainly because the automata
in these applications are either a set of virus scanning signature or
detecting a bad behavior in a network, and this reporting behav-
iour is expected. In SPM, in each report cycle, 1394 reports out of
5025 report states are generated on average (i.e., 20% of the report-
ing states generate a report every 30 cycles). This implies that the
reporting architecture should be able to handle the bursty and
dense reporting behaviour of such applications to avoid significant
performance loss. These analyses have motivated Sunder reporting
architecture.

Performance Overhead. We employ the FIFO strategy to read out
the reporting data for the report buffer during the execution of an

TABLE 1
Reporting Statistics for Four Nibble Processing

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 19, NO. 2, JULY-DECEMBER 2020 169

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 01,2021 at 19:33:24 UTC from IEEE Xplore. Restrictions apply.

application. We calculate the total number of cycles for executing
each application including the report gathering and transferring to
the host. The last row of the Table 1 shows the overhead (number
of execution cycles) of Sunder architecture with a complete report-
ing solution compared to the prior work [6], [8]. Thanks to our
pipeline architecture and optimized design, the reporting stage
does not incur nearly any performance penalty compared to the
prior work, which only considers the execution cycles for the
matching kernel. SPM has 2.3% reporting overhead, and this is
because of the extremely high-frequency reporting behavior. Inter-
estingly, SPM application mostly requires to know if a single report
has happened for specific input intervals with no interest in know-
ing the exact cycle that report events have occurred. Our report
summarizing technique can further reduce the reporting overhead
close to zero.

6 CONCLUSION

We introduce Sunder, a fully reconfigurable, efficient, and low
overhead in-SRAM pattern processing accelerator. Our main obser-
vation is that prior work sparsely uses memory subarrays to
encode the matching data. Moreover, they do not provide efficient
and practical reporting architecture. Sunder leverages these obser-
vations and presents a concise and efficient algorithm/architecture
methodology to compress the matching data, which frees up space
and enables a localized, simple, and compact reporting architecture
with less than 2% hardware overhead compared to prior work that
overlooks the reporting stage. We also present a fully configurable
architecture to adjust the processing rate, reporting buffer size, and
normal cache data size based on the properties of the applications.
Our performance results reveal that Sunder’s reporting architec-
ture does not add performance overhead for more than 95% of the
applications due to our optimized pipeline design and simple and
localized data controlling mechanism.

ACKNOWLEDGMENTS

Thisworkwas supported, in part by theNSF underGrant CCF-1629450
and CRISP, one of six centers in JUMP, a Semiconductor Research Cor-
poration (SRC) program sponsored by MARCO and DARPA. Elaheh
Sadredini andRezaRahimi contributedEqually to thiswork.

REFERENCES

[1] M. Becchi, M. Franklin, and P. Crowley, “A workload for evaluating deep
packet inspection architectures,” in Proc. IEEE Int. Symp. Workload Charac-
terization, 2008, pp. 79–89.

[2] W. Chen et al., “A 22 nm 2.5 MB slice on-die L3 cache for the next genera-
tion Xeon processor,” in Proc. Symp. VLSI Circuits, 2013, pp. C132–C133.

[3] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes, “An
efficient and scalable semiconductor architecture for parallel automata proc-
essing,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 12, pp. 3088–3098,
dec. 2014.

[4] L. Gwennap, “New chip speeds NFA processing using DRAM
architectures,”Microprocessor Rep., 2014.

[5] H. Liu, M. Ibrahim, O. Kayiran, S. Pai, and A. Jog, “Architectural support
for efficient large-scale automata processing,” in Proc. 51st Annu. IEEE/
ACM Int. Symp. Microarchit., 2018, pp. 908–920.

[6] E. Sadredini, R. Rahimi, M. Lenjani, M. Stan, and K. Skadron, “Impala:
Algorithm/Architecture co-design for in-memory multi-stride pattern
matching,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit., 2020, pp.
86–98.

[7] E. Sadredini, R. Rahimi, V. Verma, M. Stan, and K. Skadron, “eAP: A scal-
able and efficient in-memory accelerator for automata processing,” in Proc.
52nd Annu. IEEE/ACM Int. Symp. Microarchitecture, 2019, pp. 87–99.

[8] A. Subramaniyan et al., “Cache automaton,” in Proc. 50th Annu. IEEE/ACM
Int. Symp. Microarchit., 2017, pp. 259–272.

[9] J. Wadden, K. Angstadt, and K. Skadron, “Characterizing and mitigat-
ing output reporting bottlenecks in spatial automata processing
architectures,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit.,
2018, pp. 749–761.

[10] J. Wadden et al., “ANMLZoo: A benchmark suite for exploring bottlenecks
in automata processing engines and architectures,” in Proc. IEEE Int. Symp.
Workload Characterization, 2016, pp. 1–12.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

170 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 19, NO. 2, JULY-DECEMBER 2020

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 01,2021 at 19:33:24 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

