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Abstract
Pattern matching, especially for complex patterns with many
variations, is an important task in many big-data applica-
tions and maps well to finite automata. Recently, a variety of
research has focused on hardware acceleration of automata
processing, especially via spatial architectures that directly
map the patterns to massively parallel hardware elements,
such as in FPGAs and in-memory solutions.We observed that
all existing automata-acceleration architectures are designed
based on fixed, 8-bit symbol processing, derived from ASCII
processing. However, the alphabet size in pattern-matching
applications varies from just a few up to billions of unique
symbols. This makes it difficult to provide a universal and ef-
ficient mapping of this wide variety of automata applications
to existing automata accelerators.
In this paper, we present FlexAmata, a compiler solution

for efficient adaption of applications with any alphabet size
to existing pattern-matching accelerators. We demonstrate
that this can increase automata processing efficiency in two
ways. First, this improves resource utilization for applica-
tions with small alphabets and enables hardware acceleration
for applications with very large alphabets (which otherwise
would not map to hardware accelerators). Second, this en-
ables the exploration of optimized bitwidth processing for
future spatial hardware accelerators. We leverage FlexAm-
ata and investigate the hardware implications of different
bitwidth processing rates on the two state-of-the-art spatial
accelerators, Cache Automaton (CA) and FPGAs. Our explo-
ration across a wide range of automata benchmarks reveals
that 4-bit processing rate on CA and 16-bit processing rate
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on FPGAs results in higher performance than the default
8-bit processing rate in these existing approaches.
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1 Introduction
Identifying complex patterns within large datasets is a promi-
nent and time-consuming task in many big-data applications.
Finite automata are an efficient computational model for
widely used pattern matching languages such as regular ex-
pressions. There are many applications in domains such as
data mining [9, 35, 46–48], bioinformatics [8, 30, 40], and
natural language processing [31, 56] that have been shown
to greatly benefit from accelerated automata processing. The
automata structure in these applications differs significantly
in static structure and dynamic behavior from common regex
structures [1, 43]. Moreover, there is a large body of research
on using finite automata in formal verification such as sat-
isfiability and model-checking problems in temporal logics
[36, 39, 41], and these can benefit from high-performance
automata processing, especially for real-time verification.

The growing demand for accelerated automata processing
has motivated many efforts in designing Spatial automata
accelerators, such as processing-in-memory (PIM) architec-
tures [14, 34, 37, 38] and FPGA solutions [18, 20, 50, 53, 54],
where they have shown significant speedup over the existing
CPU- and GPU-based solutions on a wide range of applica-
tions [38, 45]. Spatial memory-centric accelerators provide
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a reconfigurable substrate to lay out the rules in hardware
by placing and routing states and connections onto a pool
of hardware units in logic- or memory-based fabrics. This
allows a large number of automata to be executed in parallel,
up to the hardware capacity, to provide a high-throughput
automata computation. If an application is too large to fit in
a given hardware capacity, in many cases, multiple passes
over the input are required. Liu et al. [25] show that many
applications can be partitioned to cold and hot states so that
only the most frequently-used (hot) states run on the accel-
erator, and the infrequent (cold) states are supported on the
CPU.
Because regular expressions have most commonly been

used for text, packet, and other byte-oriented processing,
all existing automata accelerators are designed based on an
8-bit (ASCII) symbol processing scheme, similar to software
solutions [6, 12, 19, 42, 49]. This means that the automata
structure is based on 8-bit symbols, and an 8-bit input is
processed in each cycle. However, real-world automata ap-
plications can have a very small or very large alphabets, and
we observed that directly adapting these applications to the
spatial automata accelerators (1) causes area and throughput
inefficiencies, (2) limits the application generality on these
accelerators, and (3) diminishes the benefits of automata
optimization techniques, such as compression.

In memory-based solutions, symbols are encoded in mem-
ory columns, such that each symbol activates a different
row of memory. This tends to reinforce designs based on
8-bit symbols because 256 (28) is a fairly conventional sub-
array height. However, this can be extremely inefficient,
especially when the application alphabet (symbol-set) size
is very small, and the number of rows in a subarray is more
than required. For example, in genomics, the alphabets are
A,T ,C, and G, and a 2-bit automata organization with only
22 rows is enough to perform the string matching. This is
64× smaller than what existing spatial architectures provide!

On the contrary, the 8-bit symbol processing architectures
can limit the generality of the architecture for applications
that have more than 256 symbols. For example, in sequential
pattern mining [48], the input database can be quite large,
such as market basket analysis datasets from Amazon, and
the number of unique items (or symbols) can be very large
(on the order of 220 or more). In formal verification prob-
lems, the symbols map to the events, and thus, the automata
symbol-set size can be extremely large [41, 57]. However,
due to delay, power issues, and signal integrity, it is imprac-
tical to change the hardware to support 220 rows in each
memory subarray. Moreover, simply daisy-chaining multi-
ple states to support larger alphabets results in false report
generation. Therefore, an efficient and accurate symbol-size
transformation technique is required.

Another problem with the existing 8-bit approach for spa-
tial accelerators is that, if the memory subarray size of the
underlying memory technology changes, then there is a

need to make sure that the application symbol-set size is
still compatible with the memory architecture. For example,
Cache Automaton (CA) [38] re-purposes caches in conven-
tional processors for automata processing. If the number of
rows in the subarrays of a cache structure changes, then the
automata structure and input bitwidth consumption need
to be changed for correct functionality and full hardware
utilization.
To address these issues, this paper presents FlexAmata,

a compiler solution that decouples applications (with any
alphabet size) from the details of the memory architecture
(e.g., number of rows per subarray). FlexAmata acts as an ad-
justable wrench and transforms an arbitrarym −bit process-
ing automaton to its equivalentn−bit processing unit, where
n can be larger or smaller thanm, depending on the target
architecture. FlexAmata offers arbitrary bitwidth processing,
thus improving efficiency for small alphabets, enabling hard-
ware acceleration for large alphabets that were nearly impos-
sible to process efficiently up till now, and maintains appli-
cation compatibility with the future automata hardware ac-
celerators. FlexAmata, therefore, improves small-symbol-set
efficiency and provides large-symbol-set compatibility even
for conventional in-memory solutions such as CA. Thanks
to our fine-grain, bit-level optimizations in FlexAmata, state
and transition overhead of a transformed automaton is rea-
sonably low.

All the aforementioned problems target the application’s
alphabet-size incompatibility with the existing automata
accelerators. On the other hand, there are unanswered fun-
damental research questions from the hardware perspective:
what is the best bitwidth size for automata processing on spa-
tial platforms? Does the conventional 8-bit processing offer the
highest throughput-per-area? To the best of our knowledge,
this is the first work that addresses all these issues/questions
on spatial automata processing architectures.
To answer these questions, we employ FlexAmata and

perform a sensitivity analysis for various bitwidths using
several automata applications from the ANMLZoo [43], Au-
tomataZoo [44], and Regex [7] benchmark suites on existing
memory-centric automata processing models. We apply the
necessary changes to the Cache Automaton [38] hardware
model (e.g., changing the height of memory subarrays) and
re-calculate area and frequency parameters. We find that
4-bit processing as the base processing granularity results in
2.2× higher throughput-per-area than 8-bit processing. This
efficiency comes from the fact that 4-bit processing design
requires 16× shorter memory subarrays than 8-bit process-
ing design. The area efficiency introduced by FlexAmata
provides an opportunity to design denser state-matching re-
sources, which can accommodate more states and results in
fewer spatial resources. Moreover, to analyze the effect of dif-
ferent bitwidth processing on FPGAs, FlexAmta is equipped
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with a backend HDL generator. We observe that 16-bit pro-
cessing on FPGAs performs better than the 8-bit processing
and has up to 4.9× higher throughput-per-LUT.

In summary, this paper makes the following contributions:
• We identify an inevitable compatibility gap between
the applications (which are designed solely based on
patterns and independent of the target hardware con-
straints) and spatial automata processing accelerators,
and we observe that this causes performance and feasi-
bility issues. To address this, we present FlexAmata, a
compiler solution to bridge the application/hardware
gap by transforming automata structure and provid-
ing application compatibility with existing and future
spatial automata architectures, which allows execu-
tion efficiency and feasibility of applications with very
small or large alphabets, respectively (evaluated in
Section 5 using case studies).

• Furthermore, we observe that the 8-bit processing on
existing automata hardware accelerators is unwisely
derived from software-based computing models, with-
out analyzing hardware-specific parameters. By lever-
aging FlexAmata, we explore themost efficient bitwidth
processing granularity on these accelerators. To do
so, (1) we change the architecture of an existing in-
memory automata accelerator and (2) we develop an
FPGA kernel for processing different bitwidth size.
Our exploration on a large number of benchmarks
concludes that 4-bit processing on the in-memory ar-
chitecture and 16-bit processing on FPGAs have higher
performance than the original 8-bit processing.

• We present an open-source toolkit for automata sim-
ulation, minimization, transformation, performance
modeling on in-memory architectures, and performance
evaluation on FPGAs.

2 Background
To better explain the claims and contributions of the paper,
this section presents a simplified two-level pipeline orga-
nization used in memory-centric automata-processing ar-
chitectures, such as Cache Automaton [38], the Automata
Processor [14], and REAPR (BRAM-based FPGA design) [50].
Figure 1 (right) shows an example of a classic NFA and

its equivalent homogeneous representation [16]. In a homo-
geneous automaton, all transitions entering a state must
happen on the same input symbol. This provides a nice
property that aligns well with a hardware implementation
that finds matching states in one clock cycle and allows a
label-independent interconnect. Following [14], we call this
element that represents both a state and performs input-
symbol matching in homogeneous automata a State Transi-
tion Element (STE). Both automata in this example, accept
the language (A|T )(A|G)(C)+. The alphabet is {A,T ,C,G}.

Figure 1. (Left) A simplified in-memory automata process-
ing model. (Right) Classic and homogeneous NFA represen-
tations.

Throughout the paper, the states with a black triangle are
the start states and the double circled states are final states.
Figure 1 (left) shows the simplified in-memory architec-

ture, where memory columns are configured based on the
homogeneous example in Figure 1 (a) for STE0-STE2. Each
STE is one-hot encoded in a memory column (the "character
class"). Generally, automata processing involves two steps
for each input symbol, state match and state transition. In the
state match phase, the input symbol is decoded, and the set
of states whose rule or label matches that input symbol are
detected through reading a row of memory (match vector).
Then, the set of potentially matching states is combined with
the active state vector, which indicates the set of states that
are currently active and allowed to initiate state transitions;
i.e., these two vectors are ANDed. In the state-transition
phase, the potential next-cycle active states are determined
for the currently active states (active state vector) by propa-
gating signals through the interconnect to update the active
state vector for the next input symbol operation.
In the example, there are four memory rows, and each

is mapped to one symbol (i.e., A, T, C, and G). Each STE
in the example is mapped to one memory column, with ’1’
in the rows matching the label(s) assigned to those STEs.
STE0 matching symbols are A and T, and the corresponding
positions have ’1’. Assume STE0 is a currently active state.
The potential next cycle active states (or enable signals) are
the states connected to STE0, which is STE1 (the enable sig-
nal for STE1 is ’1’). Specifically, if the input symbol is ’A,’
then Row0 is read into the match vector. A bitwise AND
on the match vector and potential next states (enable signal)
determines STE1 as the current active state.

3 Prior Work
Data movement is highly expensive, much more expensive
than the computation [10, 22–24]. Generally, automata pro-
cessing on von Neumann architectures exhibits highly ir-
regular memory access patterns with poor temporal and
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spatial locality, which often leads to poor cache and memory
behavior [43], and this increases the cost of data movement.

Several memory-centric automata processing accelerators
have been recently proposed to improve the performance of
general pattern matching [14, 33, 38]. The Micron Automata
Processor (AP) [14] and Cacue Automata (CA) [38] propose
in-memory hardware accelerators for single symbol per cycle
(single-stride) automata processing. They both allow native
execution of NFAs by providing a reconfigurable substrate
to lay out the rules in hardware. They exploit the inherent
bit-level parallelism of memory to support many parallel
transitions in one cycle. The AP provides a DRAM-based
dedicated automata processing chip while the CA proposes
an on-chip solution by repurposing a portion of the last-
level cache for automata processing and has shown higher
throughput than previous solutions. Prior work has already
shown that the AP is at least an order of magnitude better
than GPUs and multi-core processors [45], and CA is at
least an order of magnitude better than the AP [38]. All
these architecture are designed based on an 8-bit symbol
processing scheme, and we are not aware of any prior work
that reshapes an automaton structure to efficiently adapt an
application to the in-memory automata accelerators.

To increase the processing rate in regex/automata process-
ing, a number of multi-stride (processing mutiple symbols
per cycle) automata processing engines have been proposed
on CPUs/GPUs [2, 12, 19, 42, 49] and FPGAs [21, 42, 52, 53].
Yang et al. [53] proposed a multi-symbol processing for regu-
lar expressions on FPGA and utilized both LUTs and BRAMs.
Their solution is based on a spatial stacking technique, which
duplicates the resources in each stride. Yamagaki et al. [52]
proposed a multi-symbol state transitions solution using a
temporal transformation of NFAs to construct a new NFA
with multi-symbol characters. Generally speaking, the prior
multi-striding solutions (on CPUs/GPUs/FPGAs) take the
original 8-bit processing and increase the processing rate 2x,
4x, 8x, etc. per cycle. Themain difference between FlexAmata
and multi-striding approaches is that FlexAmata can provide
bit-level transformation on an automaton (which is useful
to adjust bitwidth based on hardware constraints), whereas
multi-striding solutions only provide byte-level transforma-
tion and do not consider hardware parameters. The main
purpose of FlexAmata is transforming an application to a
target spatial automata accelerator architecture for higher ef-
ficiency and feasibility (and also to enable portability among
architectures, current and future). For example, the BRAM
memory height in recent FPGAs can be at least 512 rows [51]
(and it may possibly change for future generations), which
means that if we directly map an 8-bit processing automaton
to FPGA’s BRAM resources, at least half of the BRAM block
capacity is wasted. FlexAmata can convert an automaton to
9-bit processing units to fully utilize the 512-rows memory
blocks. The multi-striding techniques are orthogonal to our

contribution and can be applied to process multiple 9-bit
symbols per cycle in our example.
Furthermore, alphabet compression techniques [4–6, 11,

27] are employed to reducememory requirements in CPU/GPU
and FPGA-based solutions. Becchi et al. [5] propose to merge
symbols with the same transition rules. This reduces the
number of unique alphabets in an automaton.

FlexAmata vs. compression techniques: In alphabet-
compression, each automaton alphabet is compressed inde-
pendently of others, and as a result, each automaton will
have a different compressed symbol-set size (which is basi-
cally a function of an automaton state, connectivity pattern,
and accepting symbols of each state). For example, based on
our experiment, the length of symbol size can vary from 1
to 6 bits across all the connected components in the Snort
dataset after the compression technique from [5] is applied.
This variation brings up two main problems for in-memory
accelerators when it is used as a technique for reducing the
symbol size. First, all the existing in-memory accelerators
process the input with a fixed symbol size to allow a fixed
rate of N symbols/cycle. However, compression techniques
result in variable symbol size across the automata in a bench-
mark, which makes it unsuitable for spatial accelerators.
Second, assuming that by chance, the destination sym-

bol size of the compression is compatible with the hard-
ware parameters. However, it may potentially impose new
challenges in the symbol matching subarrays. As each au-
tomaton has its own symbol compression mapping table,
a single input-symbol may need to be mapped to different
compressed symbols for different connected components.
However, if two connected components are placed in the
same memory subarray, they can only match against one
common input symbol as the memory address decoder input
is shared among all the rows. On the other hand, FlexAmata
changes the bitwidth processing of all the automata in an ap-
plication to a fixed target processing rate, which is consistent
with the hardware capabilities.

4 FlexAmata
This section explains FlexAmata with a simple example. We
then discuss (1) application compatibility implications in
Section 5 and (2) bitwidth-size explorations on spatial archi-
tectures in Section 6, which both are derived from FlexAmata.

Algorithm: FlexAmata transforms an m-bit automaton
A to an equivalent n-bit automaton B, where n can be larger
or smaller thanm. This transformation is done in two steps;
(1) converting A to a bit-level representation (Ab ), and (2)
generating automaton B by transforming Ab to process n-
bit in each cycle. To generate the n-bit automaton, we find
all the unique paths of size n in Ab and replace each of
them as a single edge (or equivalently transition rule) in
B. The algorithm performs bit-level minimization on the
automata and merges the states and transitions in binary
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paths when applicable. Finally, automaton B is converted to
its homogeneous representation to properly be configured
on an in-memory platform or FPGAs.
In Figure 2, we explain how an 8-bit automaton is trans-

formed into 3-bit and 4-bit automata. In the notation STE
y
x ,

x is state index and y is the bitwidth size. The original homo-
geneous automaton (a) has two states and accepts language
(A|B)C+. Using FlexAmata, we generate binary automata (b)
and minimize the states when possible. For example, the first
6 bits of symbols A and B can be merged. Then, 3-bit (c) and
4-bit (d) are generated from the bit-automaton.

In the 3-bit automaton, STE30 is an start state and STE35 ,
STE38 , and STE311 are final states. Each state processes one or
more 3-bit symbols. STE116 in 1-bit-automata is equivalent
to reaching the state STE34 in the 3-bit automaton. STE117 is
a report state, and there is a loop back to the state STE110.
Assume STE116 in 1-bit-automaton is an active state, and the
next input character is "1", then it should generate a report.
Equivalently in the 3-bit automaton, STE34 is an active state,
and because the next input is a 3-bit chunk, then, "1**" should
generate a report. In order to address this unalignment in the
bitwidths, we generate residual states (Res) to report when
a match happens in the middle of a multi-bit input. STE35 is
a residual state that reports when the matching happens in
the first bit of the 3-bit input. The residual states are used to
locate match occurrence in the input stream accurately.

In 4-bit automaton, no residual state is needed as 8 (from
original 8-bit automaton) is divisible by 4, and this property
avoids mis-alignment in the input symbols. In order to get
the correct functionality, we always make sure the input size
is divisible by the bitwidth size by padding the input stream.
In the interest of space, we skip the details of the algo-

rithm. Instead, we utilize the space to discuss the benefits
of this transformation on the universal application adaption
and parameter tuning on spatial automata accelerators. In-
terested readers can find the algorithm details here1 and its
implementation here2.

Transformation Soundness: Correctness of an m-bit to
an n-bit automaton can theoretically be proven using con-
tradiction in two parts. First, the equivalence of the m-bit
automaton to its 1-bit automaton, and the equivalence of
the 1-bit automaton to the n-bit automaton. First, we show
that for every edge in the m-bit automaton, there is one and
only one unique path of length m in the 1-bit automaton
(with no common edge between paths). Second, we show
that for every edge in the n-bit automaton, again, there is
a unique path with length n in the 1-bit automaton. Using
contradiction, assuming there is an edge in the m-bit au-
tomaton that can not be mapped to a path of length m in the
1-bit automatons. However, this is impossible as the algo-
rithm process every edge in m-bit automaton in breadth-first

1https://github.com/gr-rahimi/APSim/blob/ASPLOS_AE/supp.pdf
2https://github.com/gr-rahimi/APSim/tree/ASPLOS_AE

search (BFS) manner and for each edge, creates one path in
the 1-bit version (all middle states in the 1-bit automaton
are created uniquely and the destination state is added if
the destination node has not been previously visited in the
m-bit automaton). Similarly, it is not possible to find a path
of length m in the 1-bit automaton that can not be mapped
into an edge in the m-bit automaton.
In terms of implementation validation, we re-transform

a reshaped automaton to the original bitwidth and check
for equivalence with the original automaton. In addition,
we have verified the correctness of our implementation by
streaming input to both automata (original automaton and
transformed version) and compared the report information
between them. In both analyses, we have not found any
inconsistency.

Time complexity: The offline compilation process for
converting an m-bit automaton to its equivalent n-bit au-
tomaton has two main steps; (1) converting the m-bit au-
tomaton to a 1-bit automaton: assuming the input automaton
has a total of ’s’ matching symbols across all the states (m
bits each). For every symbol, we need to find its binary rep-
resentation and add a new chain of states (with lengthm) for
each symbol in the binary automaton. Therefore, the time
complexity for this stage is O(m × s).
(2) Converting a binary automaton with t states to an n-bit
automaton: we use dynamic programmingwith backtracking
to solve this problem efficiently. Our converter implementa-
tion starts from the start states in the binary automaton and
moves forward towards the report states. When a new state
is reached, the path from all its parents (ancestors with a
maximum distance of n) is added to a dictionary to be reused
later again when necessary. In the worst-case, it needs a
table of n entries for each of the t states. Each state with
n entries keeps the reachable states (from itself as source)
with different distance ranging from 1 to n. To calculate the
missing entries in the table, we need to iterate through direct
neighbors of nodes and reuse data from the existing entries
of the table (if the neighbor has an entry in the table) and
combine them or recursively go through their neighbors. For
a binary automaton with average out-degree of e, assuming
combining entries takesO(1) times, the timing complexity is
O(t × e ×n) where t × n is the table size, and e is the number
of times that a combining operation needs to be applied.

Non-divisible bitwidths effect: As Figure 2 illustrates,
the 3-bit automaton has more state and transition overhead
than a 4-bit automaton. From our experiments, we observed
that when re-shaping an n-bit automaton to anm-bit automa-
ton, the overhead would be minimum if eitherm mod n = 0
or n modm = 0. Figure 3 explains the reason with an orig-
inal state with four 8-bit symbols. First, a 1-bit automaton
is generated. Then, 3-bit and 4-bit automata are generated
from the 1-bit form. In 3-bit, because 8 mod 3 ! = 0, it needs
to generate more states and transitions to consider for com-
binations of paths when a jump is needed. However, the 4-bit
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Figure 2. An 8-bit automaton (a) is converted to the minimized 1-bit automaton (b). The 3-bit (c) and 4-bit (d) automata are
generated from the 1-bit automaton.

Figure 3. State and transition overhead is less in divisible
bitwidths (4-bit) than non-divisible bitwidths (3-bit).

design has a relatively very low state and transition over-
head. This observation is later used to find the best bitwidth
processing size for spatial accelerators.

5 Universal Application Adaption
The existing automata processing accelerators are designed
based on an 8-bit symbol processing scheme. However, the
applications can have a very small or large alphabet (symbol-
set). FlexAmata provides application compatibility with the
existing automata hardware accelerators, meaning that if
the application has a small alphabet size, then FlexAmata
can generate the 8-bit automata to increase the processing
rate and fully utilize the hardware. On the other hand, if
the application has a very large alphabet size, FlexAmata
transforms the automaton into an 8-bit automaton, which
provides feasibility support for the application.

5.1 Utilization for smaller symbol-sets
Figure 4 shows an example of how FlexAmata improves the
utilization and throughput of an application with a small al-
phabet size on an existing 8-bit automata accelerator, such as
CA. Assume the application has four symbols, A, T, C, and G.
Therefore, 2 bits are enough to encode the symbols. Directly
processing an automaton with only four symbols on an 8-bit
accelerator under-utilizes the state-matching resources 64×

Figure 4. (a) The original automaton has 4 symbols and can
be represented with two bits. (b) FlexAmata generates 1-bit
from original automaton. (c) Then 8-bit is generated from
1-bit, and can process 4× more symbols.

(i.e., 28/22). This is because, in the 8-bit scheme, state symbols
are encoded in a 256-bit memory column. However, an appli-
cation with 2-bit symbols only needs memory columns with
four rows. By leveraging FlexAmata, we stride the original 2-
bit automaton (Figure 4 (a)) and generate the 8-bit automaton
(Figure 4 (C)). In this example, the 8-bit automaton has only
25% more states and 25% more transitions compared to the
original 2-bit automaton. However, this transformation re-
sults in 4× higher processing rate (i.e., 4× higher throughput)
with minimal resource overhead, totally based on a software
solution (no hardware modification needed).

Case study: We use Levenshtein automata3 from the Au-
tomataZoo benchmark suite [44] as a real-world case study
to evaluate the benefits of FlexAmata when adapting appli-
cations with small alphabet-size on spatial 8-bit automata
accelerators. Levenshtein automata are designed to calcu-
late the edit distance between two strings that are useful for
some genomic and text-processing applications.
First, we generate a set of Levenshtein automata for dif-

ferent string lengths with 2% edit distance. The strings are

3https://github.com/tjt7a/AutomataZoo/tree/master/Levenshtein
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Figure 5. Comparing throughput-per-area for Levenshtein
with different string lengths in original 2-bit automata design
and optimized FlexAmata 8-bit design.

randomly generated with A,T ,C and G symbols to resem-
ble read-alignment in genome sequencing. Clearly, 2 bits is
enough to represent the symbols and input characters. Then,
using FlexAmata, we transform 2-bit automata to 8-bit au-
tomata, which processes 4 of 2-bit symbols in each cycle. Con-
sequently, the generated 8-bit design can be efficiently pro-
cessed on the existing 8-bit accelerators. To jointly consider
the effect of (1) state/transition overhead (resulting from
transformation) and (2) increased symbol processing rate,
we evaluate the FlexAmata contribution using throughput-
per-unit-area metric on CA hardware model [38].

Fig. 5 compares throughput-per-unit-area for Levenshtein
with different string sizes in the original 2-bit automata de-
sign (1 symbol per cycle) and the FlexAmata 8-bit design (4
symbols per cycle). On average, FlexAmata has 2.1× more
states than the original design. However, because of its higher
processing rate (4 symbols per cycle), it has 2.5× higher
throughput per area. This all implies that using FlexAmata
as a backend compiler increases the performance of appli-
cations with smaller symbol-set sizes without the need to
change the existing hardware accelerators.

5.2 Feasibility for very large alphabet-size
Many applications with pattern matching tasks, such as nat-
ural language processing with words as symbols or pattern
mining with items in market basket as symbols, can have a
very large alphabet size. Increasing the memory column size
requires long bitlines, which is impossible without introduc-
ing stacked memory subarrays with partial address decoding
and costly hardware peripherals. Moreover, simply breaking
a state with 16-bit symbols to two states with 8-bit symbols
(or in other words, daisy-chaining two symbols) could result
in false report generations. We explain this problem by using
an example in Figure 6. For simplicity, assume the target
architecture supports 2-bit symbol processing, but the ap-
plication has 16 unique symbols and requires support for
4-bit symbol processing. The left-side automaton (a) accepts
(0011|1100)+. To process this automaton in a 2-bit architec-
ture, chaining to two states introduces false positives: the
automaton in (b) breaks the STE40 into two states (STE20 and
STE21), which now can accept (0011|1100|0000|1111)+.

Figure 6.The problemwith chaining two symbols to support
larger symbol-sets.

Figure 7. Comparing the number of states and transitions
in different sequence sizes for the original and 8-stride au-
tomata.

To preserve the correctness of original automata and avoid
false positives, FlexAmata performs minimal state splitting
on the 1-bit automaton to reduce the overall state and tran-
sition overhead.

Case study: To evaluate the generality of FlexAmata,
we use the SPM (sequential pattern matching) benchmark4
from AutomataZoo [44] and generate frequent sequences for
BIBLE dataset5. BIBLE has 13905 distinct items (symbols);
therefore, support for at least 14-bit processing is required.

Fig. 7 shows the average number of states and transitions
for the SPM automata in each iteration. The original au-
tomata require a 14-bit symbol processing architecture. This
means that the memory should provide 214 rows in each
subarray, which is very costly and extremely inefficient. The
symbol-set size can easily increase in a larger dataset, which
makes increasing the memory column size infeasible.
FlexAmata provides a scalable and feasible solution by

(1) generating 1-bit automata from the original 14-bit au-
tomata and then, (2) creating 8-bit automata from the 1-bit
automata. The resulting 8-bit design provides a reasonably
low-overhead and feasible solution on the existing 8-bit pro-
cessing architectures, which requires only up to 2.1× more
states and 1.5× more interconnect resources compared to
the original automata (Figure 7). This is a very small price
to pay for feasibility!

6 Hardware Implications
In this section, we explore the effect of various bitwidth
size on the performance of spatial automata accelerators.
We leverage FlexAmata to transform the automata across
4https://github.com/tjt7a/AutomataZoo/tree/master/SeqMatch
5http://www.philippe-fournier-viger.com/spmf
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Table 1. Average state and transition overhead for different
bitwidths, normalized to the original 8-bit automata.

Bitwidth 1 2 3 4 5 6 7 8 9 12 16
#States 9.9 5.2 11.2 2.3 12.0 5.9 12.9 0.98 13.7 2.9 1.1
#Trans 10.5 6.6 16.1 2.8 19.4 8.3 22.6 0.98 26.7 4.4 1.6

a diverse set of 20 applications from ANMLZoo [43] and
Regex [7] benchmark suites into various bitwidth sizes and
then map these automata to the spatial hardware accelera-
tors. NFAs for real-world automata applications are typically
composed of many independent rules or patterns, which
manifest as separate connected components (CCs) with no
transitions between them. Each connected component usu-
ally has a few hundred states. All the connected components
can thus be executed in parallel and independent of each
other.

Table 1 shows the average number of states and transitions
in different bitwidths across the 20 benchmarks, normalized
to the number of states and transitions in the original 8-bit
automata. These averages mask some important individual
application behaviors that are addressed in Section 8.1. 2-
bit and 4-bit designs process one-fourth and one-half of an
8-bit symbol in each cycle, and on average, incur 5.2× and
2.4× state overhead, and 6.6× and 2.8× transition overhead,
respectively, compared to the 8-bit design. However, the 8-
bit design requires memory subarrays with 256 rows (see
Section 2), while 2-bit and 4-bit designs only need mem-
ory subarrays with 4 and 16 rows, respectively. The signif-
icant area saving proposes the potential of more efficient
in-memory automata processing in smaller bitwidths than
the conventional 8-bit designs.

On average, 16-bit design incurs only 1.2× state overhead
and 1.6× transition overhead and permits a higher processing
rate. However, it is very costly to encode 16-bit symbols to
a memory column with 216 rows. On the other hand, 16-
bit symbols can be efficiently stored in look-up-table (LUT)
resources on FPGAs. The larger bitwidth processing (e.g., 32-
bit, 64-bit, etc.) causes a dramatic increase in the number of
symbols (e.g., up to 232 symbols in 32-bit processing), which
in turn, causes a very high state/transition overhead. We
leave exploration for large bitwidths to future work.
Based on these observations and different properties of

automata in each bitwidth, we perform a sensitivity analysis
to identify the best bitwidth-size processing on spatial au-
tomata accelerators. To do so, we change the subarray sizes
in CA to support 1-bit, 2-bit, and 4-bit automata process-
ing (we call them Reduced Bitwidth Designs or RBDs). We
then present and evaluate a reconfigurable FPGA solution
for different bitwidth processing (2, 4, 8, and 16-bit).

6.1 Reduced Bitwidth Design
We explore different bitwidth sizes in CA architecture, which
is an in-memory automata processing accelerator. To do so,

Figure 8. A 4-bit automata processing unit (4-bit CA-RDB).

we change the memory subarray heights in CA design to
match the symbol processing rate. We refer to these modified
designs as CA-RDBs (reduced bitwidth designs).
Figure 8 represents the 2-stage pipeline architecture of a

4-bit automata processing unit (4-bit CA-RDB), which can
process an automaton with up to 256 states and arbitrary
connectivity pattern. In the state matching phase, the 4-bit
input is decoded as the input of the SRAM-based memory
subarray. The states whose symbols match the input is read
to the row-buffer and stored in the match vector. In the state
transition stage, the potential next states (the states that
are connected to the currently active states), are discovered
through the local switches. Finally, bitwise AND operation
of the potential next states and match vector recognizes the
states that (1) are matched with the current input symbol
and (2) their parents were active states in the previous cycle.
To support an automaton of a larger size, which is espe-

cially needed when processing a different bitwidth automa-
ton, we utilize a hierarchical interconnect to connect local
switches through a global interconnect [32, 34]. Both local
and global interconnects are full-crossbar and support full
connectivity in an automaton, meaning there can be an edge
between every two states. A switch in the crossbar is mod-
eled with an 8T SRAM memory cell following prior works
[32, 34, 38].
The 1-bit and 2-bit designs are similar to Figure 8, but

with state matching subarrays of size 2×256 and 4×256, re-
spectively. Compared to the 8-bit design (original CA), the
subarray size decreases 128×, 64×, and 16× for 1, 2, and 4-bit
designs, respectively. Moreover, the memory decoder size,
the access latency, and energy consumption for accessing
state matching subarrays of 1, 2, and 4-bit designs decrease
accordingly.

Generally speaking, as technology shrinks, SRAM arrays
are moving from tall to wide structures with fewer rows
[15, 17, 55]. This provides a better SRAM energy efficiency
at a lower supply voltage. Recently, researchers have started
to explore shorter SRAM subarrays to design accelerators in
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Figure 9.Mapping an automaton to the FPGA resources.

state-of-the-art applications, such as deep neural networks.
For example, Lie et al. [26] propose an in-SRAM compu-
tation for binary neural networks [29]. Interestingly, they
conclude that shorter SRAM subarrays (i.e., shorter memory
columns) provide a better classification accuracy due to a
smaller quantization error when calculating the partial sum
in convolution operation. These support the applicability of
CA-RDB designs, which rely on short memory subarrays.

Moreover, memory technologies such as reduced latency
DRAMs (RLDRAM) [28] have smaller column sizes in each
subarray to achieve a higher memory access rate. The effi-
ciency of 4-bit automata processing architecture introduces
the potential of alternative use of memory technologies (e.g.,
RLDRMAs) for automata processing.

6.2 FPGA
To study the effect of different bitwidths on FPGAs, we
equipped Flexamata with an HDL generator targeting Xil-
inx FPGAs, and implemented a two-stage pipeline automata
processor similar to REAPR [50] but with symbol bit-width
length as a parameter. FlexAmata transforms the automata
to the target bitwidth, and then generates the HDL code
for FPGA backends. This section discusses the automata
processing engine on the FPGA to highlight the insights of
processing variable bitwidths on this spatial platform.
In Figure 9 (a), a homogeneous automaton is shown that

processes two 8-bit symbols (16-bit) per cycle. States have
been color-coded to represent their equivalent units in the
circuit shown in Figure 9 (b). Symbol matching is done en-
tirely in LUTs, based on the 16-bit symbols. Theoretically,
flip-flops (FFs) are equivalent to potential next-state registers
in Figure 8, and they represent that a state may be active in
the next cycle.

The input signals of the FFs come from an OR gate, which
is the OR signal of all the states that have incoming tran-
sitions to that specific state. This is compatible with our
previous definition, where once a state is activated, all of its
children are considered as potential active states. The states
that have common parents can share their FFs and save
resources. However, in theory, their corresponding states
cannot be merged since they are not equivalent states. Just as
in Figure 8, the report signals of the final states are generated
from the AND gate of matching signals and potential active
states.

We observed that small bitwidths (< 8) do not utilize FPGA
LUT resources well. This is mainly because LUTs in Xilinx
FPGAs can implement up to two functions with five inputs or
one function with six inputs, and thus, 1, 2, and 4-bit designs
operate inefficiently on LUTs. On the other hand, processing
more symbols per cycle leads to a more complex matching
with many intervals from different states combined to a sin-
gle state. This situation makes matching using 6-inputs LUTs
inefficient in terms of resource usage and clock frequency
(longer critical path), as LUTs need to be combined to imple-
ment bigger functions. We observed that the middle-sized
bitwidths (e.g., 16-bit) could efficiently utilize the resources
and achieve higher performance (explained in Section 8.3).

7 Evaluation Methodology
NFA workloads: We evaluate our proposed claims using
ANMLZoo [43], AutomataZoo [44], and Regex [7] bench-
mark suites. They represent a set of diverse applications,
including machine learning, data mining, and network se-
curity. We present a summary of the applications in Table
2, including the number of states and transitions in each
benchmark, as well as the average node degree for each state
and symbol density. Symbol density metric represents the
average number of symbols per state, and it is calculated by
dividing the total number of symbols over the total number
of states in each benchmark. We later show that the higher
symbol density causes the higher state and transition over-
head when transforming an automaton to a higher number
of bits per symbol.

Table 2. Benchmark Overview

Benchmark #Family #States #Transitions Ave. Node Symbol
Degree Density

Brill [43] Regex 42658 62054 2.90 52.2
Bro217 [7] Regex 2312 2130 1.84 1.8

Dotstar03 [7] Regex 12144 12264 2.01 3.1
Dotstar06 [7] Regex 12640 12939 2.04 4.8
Dotstar09 [7] Regex 12431 12907 2.07 6.7
ExactMath [7] Regex 12439 12144 1.95 1
PowerEN [43] Regex 40513 40271 1.98 5.8
Protomata [43] Regex 42009 41635 1.98 116
Ranges05 [7] Regex 12621 12472 1.97 1.2
Ranges1 [7] Regex 12464 12406 1.99 1.2
Snort [43] Regex 66466 78315 2.35 13.1
TCP [7] Regex 19704 21164 2.14 10.1

Hamming [43] Mesh 11346 19251 3.39 113
Levenshtein [43] Mesh 2784 9096 6.53 1

EntityResolution [43] Widget 95136 219264 4.60 47
Fermi [43] Widget 40783 57576 2.82 7.1

RandomForest [43] Widget 33220 33220 2 179
SPM [43] Widget 69029 211050 6.11 26.5

BlockRings [43] Synthetic 44352 44352 2 1
CoreRings [43] Synthetic 48002 48002 2 1

Experimental setup: To calculate area, power, and clock
cycle for CA-RBDs and CA, we use CACTI 7.0. We assumed
a 4MB SRAM-based memory with eight banks on 22nm tech-
nology and operating temperature 360K. All FPGA results
are obtained on a Xilinx Virtex UltraScale+ XCVU9P with
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Figure 10. State overhead in different bitwidths normalized to the original 8-bit automata.

Figure 11. Transition overhead (#edges) in different bitwidths normalized to the original 8-bit automata.

a PCIe Gen3 x16 interface, 75.9 Mb BRAM and 1182k CLB
LUTs in 16nm technology. The FPGA’s host computer has an
eight cores Intel i7-7820X CPU running at 3.6 GHz and 128
GB memory. Designs are synthesized with the Xilinx Vivado
v2018.3.

Because the AP, CA-RDBs, CA, and our FPGA solution
have similar run-time execution models and all are PCI-
Express boards, we can disregard data transfer and control
overheads to make general capacity and performance com-
parisons between these platforms.

Comparison metric: To compare in-memory automata
processing architectures (the AP, CA, and RBDs), we use
throughput per unit area. Throughput is defined as the num-
ber of bits that can be processed in one second (f requency ×
Bitwidth_size). We then calculate the throughput per area
(the total area used for a benchmark) to consider the effect
of consumed spatial resources used in each architecture. If
the automata in a benchmark cannot fit in one hardware
unit (HU), we replicate HUs until all the automata are ac-
commodated. The total area is calculated by multiplying the
area of one HU and the number of required HUs for each
benchmark.
ANMLZoo benchmarks are designed to fit into an AP

chip (with up to 48K states). However, because of the AP
inefficient routing, the ANMLZoo benchmarks cannot utilize
all 48K states, and thus, the benchmarks are shrunk and
do not indicate a real-size application. We replicate each
benchmark 1000 times to create a larger set of automata for

each benchmark. This makes sure that all the benchmarks
require at least one unit of hardware in the architectures we
study.

8 Results
In this section, first, we analyze the state/transition over-
head in various bitwidths on the automata benchmarks. We
then leverage these analyses to evaluate the performance of
CA-RDBs and compare them with the AP, CA, and FPGA
solutions.

8.1 Complexity Analysis of Different Bitwidths
This section discusses the state and transition overhead in
different bitwidths. We use FlexAmata to generate n-bit au-
tomata (n=1-16) for the benchmarks. Figures 10 and 11 show
the number of states and transitions in each bitwidth, nor-
malized to the number of states and transition in the original
8-bit design. Due to space constraints, we only represent
the ones with the lowest overhead (i.e., 1, 2, 4, and 16-bit
designs).
We observed that benchmarks with higher symbol den-

sity (last column in Table 2), such as Brill, EntityResolution,
Hamming, Protomata, and RandomForest have higher state
and transition overhead in different bitwidths. Interestingly,
the number of states in EntityResolution in 16-bit design is
less than the original 8-bit design. This is because, when the
original design is converted to 1-bit automata, FlexAmata
applies bit-level minimization to merge states. Therefore, the
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Table 3. Comparison among 1, 2, 4, and 8-bit RBDs and the AP. RBDs are all based on 4MB SRAM-based memory.

Architecture Symbol Subarray Number of Number of State matching Interconnect Frequency Area Total Dynamic R/W Total leakage
size (bit) Size subarrays States delay (ns) delay* (ns) (GHz) (mm2) energy (nJ) per access power (mW)**

RBD (22nm)

1 R=2, C=256 65,536 16,384K 0.11 2.7 0.368 13.14 0.53 1895
2 R=4, C=256 32,768 8,192K 0.11 0.368 2.7 10.29 0.45 1969.24
4 R=16, C=256 8,192 2048K 0.15 0.368 2.7 7.76 0.39 1664
8 R=256, C=256 512 128K 0.23 0.368 2.7 5.06 0.35 1396

AP (50nm) 8 R=256, C=256 192 48K 7.5 7.5 0.133 144 N/A N/A
* In CA-RDBs, critical path is state transition stage (interconnect), which is similar for all CA-RDBs. Therefore, they all have a similar clock frequency.

** The details of energy and power are not available for the AP. The estimated TPD is 4W maximum.

Figure 12. Comparing throughput-per-area (mega-bit processing per second per 1mm2 area) in RBDs with the AP and CA.
RDBs and CA are in 22nm, so we scale the AP to 16nm. On average, 4-bit processing has 2.2× and more than 100× higher
throughput-per-unit-area than CA and the AP, respectively.

16-bit designs generated from the optimized bit-automata
have fewer states compared to the original 8-bit design. This
shows that FlexAmata is useful to minimize an automaton
when its original design is not optimized. Moreover, the ap-
plications with higher node degree, such as Levenshtein,
have higher state/transition overhead.
On average, 1, 2, 4, and 16-bit designs have 13.2×, 7.5×,

3×, and 1.2× more states and 16.2×, 12.1×, 4.2×, and 1.6×
more transitions over the original 8-bit designs. The increase
in the number of states translates to utilizing more memory-
column resources in in-memory designs and LUTs in FP-
GAs. The increase in the number of transitions translates to
utilizing more interconnect resources in FPGAs. However,
transitions in RBDs are implemented with a memory-based
full crossbar interconnect (Figure 8), which supports full
connectivity. This means that the higher transition count in
smaller bitwidths utilizes the existing hardware switches in
full crossbar and does not incur extra resource overhead.

Using the analysis presented in this section, we calculate
hardware-related parameters to identify the best bitwidth-
size in spatial accelerators.

8.2 Reduced Bitwidth Designs
This section evaluates reduced bitwidth designs and com-
pares them with the AP and CA models. Table 3 presents
the architectural parameters for different CA-RDBs (1, 2, 4,
and 8-bit) and the AP. The 8-bit design represents CA model.
Generally, in an in-memory automata design, the number of

states shows the number of required memory columns, and
2biwidth−size shows the number of required memory rows.

All CA-RDBs are designed assuming a 4MB SRAM-based
memory. The smaller bitwidth designs have smaller subar-
rays, and thus, they have a higher state density and smaller
read and write access time. To calculate clock frequency,
we found that the critical path is the state transition stage,
where local and global switch arrays are calculating the po-
tential next states in parallel (see Figure 8). The global switch
stage requires 0.368ns composed of 0.125ns due to wire-delay
(SPICE modeling) and 0.243ns due to global switch. The dis-
tance between SRAM arrays and global switch arrays is esti-
mated to be smaller than 1.9mm assuming maximum state
matching dimension of 3.5mm × 3.75mm (for 1-bit design).
The pipeline clock frequency is determined by the slowest
stage. Thus, the maximum possible frequency is 2.7GHz. We
choose to operate at 2.5GHz. The area, total read/write ac-
cess, and total leakage power of a smaller bitwidth design
are higher. This is because more subarrays incur more sense-
amplifier and higher wiring overhead.

Figure 12 compares throughput per unit area in CA-RDBs
with the original CA design (in 8-bit) and the AP across sev-
eral benchmarks. The applications with more states, such
as Entity Resolution, Snort, and SPM require more hard-
ware resources, and therefore, have lower throughput-per-
area. Within each application, the 1-bit design has the lowest
throughput-per-area. This is because the state and transition
overhead in 1-bit design will not be amortized by the higher
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Table 4. Comparing FPGA performance results for different bitwidths and a modified version of REAPR (8-bit) [13].

Benchmark Number of LUTs Number of FFs Frequency (MHz)
2-bit 4-bit 8-bit 16-bit REAPR 2-bit 4-bit 8-bit 16-bit REAPR 2-bit 4-bit 8-bit 16-bit REAPR

Brill 118,220 65,589 39,102 87,191 27,621 147,768 72,044 32,441 44,772 27,782 93 141 165 214 166
PowerEN 130,193 88,252 49,526 53,711 35,359 192,418 89,281 38,398 23,427 31,530 153 174 286 279 163
Protomata 127,237 73,745 47,092 46,706 49,791 194,629 90,628 34,491 19,866 36,285 116 196 167 263 126

Snort 75,754 43,829 22,601 31,610 43,061 345,239 148,443 58079 44,456 28,047 97 117 89 162 98
Hamming 31,170 13,876 7,380 9,302 5,602 139,885 17,884 6,702 3,450 6,637 62 118 187 210 312
Levenshtein 14,286 4,209 2,278 9,877 2,538 17,921 6,090 2,346 3,128 2,242 609 514 719 406 434

Entity Resolution 423,515 178,125 65,020 244,925 50,349 412,980 165,450 53,605 61,890 47,102 85 82 175 97 212
Fermi 113,460 44,729 27,804 38,743 36,314 165,495 71,682 29,555 20,127 32,261 183 376 393 225 116

Random Forest 215,066 89,544 41,907 27,971 50,349 321,262 118,944 30,961 15,571 25,769 80 135 205 233 200
SPM 254,038 14,441 87,435 219,014 64,615 381,749 173,161 57,008 84,244 59,106 185 136 264 168 126

BlockRings 110,782 88,507 41,201 22,496 44,446 177,675 88,875 44,367 22,368 44,185 126 53 123 86 256
Average 146,702 75,893 39,213 71,959 37,276 227,002 94,771 35,268 31,209 30,995 163 186 252 213 201

Figure 13. Comparing throughput-per-LUT (kilo-bit processing per second per LUT) in FPGA kernels. 16-bit processing has
up to 4.9× higher throughput-per-LUT than 8-bit designs.

state density of 1-bit architecture. On average, 2-bit and 4-bit
designs have 1.4× and 2.2× higher throughput-per-area than
original 8-bit design, respectively. This means that to reach
the same throughput, an 8-bit design requires 1.4× and 2.2×
more hardware units on average than 2-bit and 4-bit designs.

This is mainly because state density in the 2-bit and 4-bit
designs is exponentially (64× and 16×, respectively) higher
than 8-bit design (column 5 in table 3). This means that more
automata can be configured in a similar amount of area,
which reduces the total hardware resource requirements.
The higher state density can pay for 7.5× and 3× higher state
count and larger total area (column 9 in table 3) in the 2-bit
and 4-bit designs compared to the 8-bit design. On average, 2-
bit and 4-bit designs have 126× and 192× higher throughput
per area than the AP.
Using FlexAmata toolchain, we find that the number of

states in a connected component does not exceed 1024, which
is in compliant with our interconnect model (Figure 8). More-
over, our investigations show that the interconnect of larger
connected components can entirely fit into a four 256×256
crossbar switch designs, with allowing up to 64 connections
between each with a global switch.
In summary, we conclude that the 4-bit processing design

for in-memory automata accelerators results in higher overall

performance than the existing 8-bit solutions. Therefore, this
paper suggests the 4-bit processing architectures for the next-
generation in-memory automata accelerators.

8.3 FPGA Results
Performance results for FPGA-based implementations are
presented in Table 4. A modified REAPR is presented in [13]
on thirteen benchmarks from ANMLZoo. We compared our
results to this implementation from the published results and,
thus, limit Table 4 to these thirteen benchmarks. Compared
to REAPR (which is an 8-bit design), our 8-bit design has a
higher frequency and higher LUTs/FFs usage. Our design
uses a staging technique to localize signals and avoid high
fan-out wires (e.g., input signal). This reduces the critical
path, which increases frequency by 25% at the expense of 4%
more LUTs and 12% more FFs.
On average, 2-bit and 4-bit processing require 3.7× and

1.9× more LUTs and 6.4× and 2.7× more FFs compared to
the original 8-bit design, respectively. This is mainly due to
the higher state and edge overhead in the smaller bitwidths
(see Figure 10 and 11). LUTs can have one input and up to
two outputs, and, therefore, they cannot accommodate more
states in smaller bitwidth designs. They also have 26% and
35% lower frequency and, thus, lower throughput compared
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Table 5. Comparison across architectures. Throughput is av-
eraged over 20 benchmarks in Table 2 for the FPGA solution.

Architecture Technology Size (nm) Throughput (Gbps)
CA-RDB (4-bit) 22 (original) 10

AP (8-bit) 50 (original) 1
FPGA (16-bit) 16 (original) 3.7
CA-RDB (4-bit) 16 (projected) 13.75

AP (8-bit) 16 (projected) 1.37

to the original 8-bit design. All these confirm that small-
bitwidth processing is not suitable for FPGAs.
Compared to 8-bit, a 16-bit design has 1.8× more LUTs,

11% fewer FFs, and 15% lower frequency. However, the in-
put processing rate of the 16-bit design is 2× higher than
the 8-bit design. This implies that, for the applications with
real-time processing needs, a 16-bit design with 2× higher
throughput can be used. In larger bitwidths (e.g., 16-bit),
the number of symbols increases, and thus, more LUTs are
required. However, in 16-bit design, there are more states
with common parents than 8-bit, which can share the FFs.
Therefore, more LUTs are used than FFs in larger bitwidths.
In smaller bitwidths, more FFs are used than LUTs. This is
because there is a higher chance that two states share one
LUT when having 2-bit symbols.

Figure 13 compares throughput/LUT for different bitwidths
in our FPGA solution. As expected, 2-bit and 4-bit designs
have lower throughput-per-LUT than 8-bit design. Bench-
marks with higher average node degree, such as Levenshtein
and SPM, require relatively more LUTs in 16-bit design
than 8-bit design (see Table 2 and Table 4). This decreases
throughput-per-LUT in these applications in 16-bit design.
On average, the 16-bit design has up 4.9× higher throughput-
per-LUT than 8-bit design. Overall, for regular expressions
with relatively lower average node degree than mesh and
widgets, 16-bit designs perform best on FPGAs.

8.4 Comparison Across Architectures
This section compares the best designs across spatial archi-
tectures, i.e., the AP (8-bit), FPGA (16-bit), and an in-memory
CA-RDB (4-bit) solutions, in terms of throughput. On aver-
age, 4-bit CA-RDB has 3.7× and 10× higher throughput than
16-bit FPGA and the AP solutions, respectively, on the same
technology node (16nm).
The 4-bit CA-RDB efficiency is derived from (1) the re-

duced state-matching subarrays (16× smaller than the 8-bit
design) and (2) an efficient and flexible routing architecture,
which is a memory-based full-crossbar interconnect that
can connect any two states. This results in higher automata
density because the state-matching resources are not under-
utilized due to routing congestion. The automata with more
complex routing structures incur routing congestion on the

AP and FPGA (FPGAs can handle more complex routing bet-
ter than the AP), and thus, incur higher area overhead than
CA-RDB to accommodate all the automata in a benchmark.

Moreover, our place-and-route algorithm on CA-RDBs is
1-2 orders of magnitude faster than the AP compiler, and
the AP compiler is 1-2 orders of magnitude faster than the
FPGA tools. With a large application and a limited number
of hardware units, the application might need several rounds
of reconfigurations on the hardware. This implies that the
AP or FPGA will incur a significant performance penalty
when an application does not fit on the available hardware
resources.

9 Conclusions and Future Work
This paper presents FlexAmata, a compiler solution that
reshapes an automaton to process an arbitrary-size input
alphabet. This can be done as an offline pre-processing stage.
The main two benefits of FlexAmata are: (1) to provide a
universal and efficient mapping of any applications with
arbitrary alphabet size to any spatial automata hardware ac-
celerators with a built-in fixed-size input processing rate, and
(2) to rethink the commonly used 8-bit processing designs in
the existing spatial automata accelerators and explore other
alternative processing rates that results in higher through-
put per unit area. Using real-world automata case studies,
we show that FlexAmata provides higher throughput and
state-density for applications with small alphabet-size and
makes automata acceleration feasible for applications with a
very large alphabet size. We then perform a sensitivity anal-
ysis for different processing rates on the Cache Automaton
architecture (which is the best performing prior work) and
our FPGA-based automata processing kernel using a wide
range of automata applications, and we discover that the
Cache Automaton architecture with a 4-bit processing rate
design results in a 2.2× higher throughput-per-area than
the default 8-bit processing rate architecture. Moreover, our
16-bit processing design on the FPGA LUT-based implemen-
tation results in up to 4.9 higher throughput-per-LUT than
the default 8-bit processing engine. These provide insights to
design the future automata accelerators more efficiently. Fu-
ture work will explore striding techniques (or multi-symbol
processing) using our architectural findings.
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A Artifact Appendix
A.1 Abstract
Our artifact contains all the source code for FlexAmata.
FlexAmata is an automata transformation tool, which trans-
forms an n-bit processing automaton to an m-bit processing
automaton. This transformation provides compatibility be-
tween automata application alphabet-size and target hard-
ware accelerator constraints. FlexAmata is a part of a larger
simulator, APSim (Automata Processing Simulator), devel-
oped by the authors of this paper. We provide the source
code for APSim, the benchmarks we used, and scripts to
regenerate Table 2, Table 4, Figure 10, and Figure 11.

A.2 Artifact check-list (meta-information)
• Algorithm: Finite automata bitwidth transformation and
minimization.

• Program: python 2.7, Xilinx Vivado, swig
• Compilation: g++
• Transformations: Finite automata transformations
• Data set: ANMLZoo benchmark, which is publicly available.
• Run-time environment: Ubuntu > 12.04 with necessary
python packages installed

• Hardware: x86/64 CPU for the transformation part. Partial
hardware evaluation was done on Xilinx Virtex UltraScale+
XCVU9P.

• Execution: python scripts
• Metrics: Number of states and transitions in an automaton,
and hardware frequency and resource usage in FPGA

• Output: transformation statistics and auto generated HDL
code to be synthesized for FPGA.

• Experiments: Three main experiment scripts and one demo
are provided in the "Examples" folder of the repository

• How much disk space required (approximately)?: less
than 1GB for the automaton transformation part. For FPGA,
the generated code can grow up significantly based on the
dataset size (e.g., 50GB).

• How much time is needed to prepare workflow (ap-
proximately)?: 15 minutes.

• How much time is needed to complete experiments
(approximately)?: A few hours for a small portion of the
dataset. It increases significantly for full dataset. In the scripts,
you can reduce the number of automata (or connected com-
ponents) to decrease the processing time.

• Publicly available?: Yes
• Archived (provide DOI)?: Yes.

https://doi.org/10.5281/zenodo.3612777

A.3 Description
A.3.1 How delivered. The source code, benchmarks, and
scripts are available on Github:
https://github.com/gr-rahimi/APSim/tree/ASPLOS_AE

A.3.2 Hardware dependencies. Xilinx Virtex UltraScale+
XCVU9P

A.3.3 Software dependencies. Pyhton, swig, g++

A.3.4 Data sets. All datasets are either publicly available
in ANMLZoo benchmark suite, or taken from [3]. For con-
venience, we have included all the benchmarks in a github
repository (https://github.com/gr-rahimi/ANMLZoo.git) and
the setup instructions are in the README file.

A.4 Installation
Installation procedures has been explained in the README
of the repository.

A.5 Experiment workflow
Three main scripts are provided to replicate the experiments
in the paper.

A.6 Evaluation and expected result
"Table2.py" script should replicate the results in Table-2 in
the paper. "Table4.py" script should generate HDL codes to
be synthesized by Xilinx Vivado. Frequency and look-up
table usage should proportionally be compatible with the
results in Table-4 based on the dataset size. For the interest
of synthesis time, the first 200 connected component (CC)
of benchmarks (if the benchmark has more than 200 CC) are
considered. For these benchmarks, the final LUT/FF usages
are scaled (with respect to the original CC count) to esti-
mate the original benchmark resource usage. "Fig10-11.py"
generates the number of states and transitions in different
bitwidths (1-bit, 2-bit, 4-bit, 8-bit, and 16-bit) for the selected
benchmark (the current script is set for ExactMatch). Fig-
ures 10 and 11 show the number of states and transitions
in different bitwidths normalized to the number of states
and transitions in the original 8-bit design. The script output
shows these normalized numbers for the selected benchmark,
which can evaluate Figure 10 and Figure 11.

A.7 Experiment Customization
Running experiments for the whole dataset is very time-
consuming. It is possible to change the size of the dataset in
the scripts (comments in the scripts can guide the user to
change the dataset size).

A.8 Notes
To know more about APSim, send feedback, or file issues,
please visit our github page:
https://github.com/gr-rahimi/APSim/tree/ASPLOS_AE
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