
Accelerating Complex Pattern Recognition Processing
with In-Memory Accelerator Architectures

Elaheh Sadredini
University of Virginia

Department of Computer Science
Ph.D. Dissertation Defense

Advisor: Professor Kevin Skadron
April17th 2019

Problem: Processor / Memory Performance Gap

2

Sorry, didn’t know
that it would be

that serious!

Source: David Patterson, UC Berkeley

Moore’s Law
Processing In-Memory (PIM)

Scalable and High-Performance Techniques Are Needed
for Pattern Processing
§ Incoming packet is checked against every single rule of the database

3

Rule-set

Rule 1
Rule 2
.
.
.
Rule 10000

Network Intrusion
Detection System

Packet

Malicious/Non-
malicious packet

Problem:
• Increase in the number of rules
• Increase in the network line rate

Pattern Recognition Importance

4

Network security

4

Bioinformatics NLPData mining

Patterns are often complex

Finite Automata=

Thousands of patterns need to be processed in parallel

Existing Automata Processing Solution

5

von Neumann Architectures Memory-Centric Architectures

Custom ASIC

Reconfigurable SW/HW Engines

Existing Automata Processing Platforms

6

von Neumann Architectures Memory-Centric Architectures

Custom ASIC

Reconfigurable SW/HW Engines

DFAGE [11]iNFAnt2 [10]

VASim [13]HyperScan [12]PCRE [14]

CPU-Based

GPU-Based

HARE [8]

UAP [9]

Existing Automata Processing Platforms

7

von Neumann Architectures Memory-Centric Architectures

Custom ASIC

Reconfigurable SW/HW Engines

DFAGEiNFAnt2

VASimHyperScanPCRE

CPU-Based

GPU-Based

Problem: von Neumann processors easily become memory bound

• Unpredictable behavior

Branch mispredictions

• Irregular access pattern

Cache-miss

• Many parallel state transitions

Saturate memory bandwidth

Existing Automata Processing Platforms

8

von Neumann Architectures Memory-Centric Architectures

Custom ASIC

Reconfigurable SW/HW Engines

Micron Automata Processor (AP) [15]

Cache Automaton (CA) [16]

REAPR [17]

DFAGE [11]iNFAnt2 [10]

VASim [13]HyperScan [12]PCRE [14]

CPU-Based

GPU-Based

HARE [8]

UAP [9]

9

State Transition

State MatchingA

Problem with existing memory-centric
architectures

• State Matching
• High overhead SRAM or high-latency DRAM

• Interconnect architecture
• Congestion
• Underutilization

• Alphabet size
• Feasibility? Overhead?

• Computation power?

Problem: Patterns can be very complex!

10

Routing
Complexity

Large
Alphabet

Hierarchical
Structure

Amazon inventory

Research Questions

11

We hypothesize that an efficient interconnect
architecture, a more computationally powerful
design, and flexible bitwidth processing can

unleash in-memory processing benefits for more
complex pattern recognition tasks.

Overview of My Dissertation Work

2

• Rule-Based Part-of-Speech Tagging Using Spatial Architectures
1

• Hierarchical Pattern Mining on the Automata Processor

3
• A Scalable In-SRAM Architecture for Pushdown Automata

4
• A Scalable In-Memory Interconnect for Automata Processing

5
• FlexAmata: A Flexible Automata Processing Engine

12

ICS’17, CF’16, IJPP’17,
IISWC’16

KDD’18, IISWC’18

MICRO’19

MICRO’18

CAL’19

MICRO’19

We provide solutions to these problems

13

Routing
Complexity

Large
Alphabet

Hierarchical
Structure

Proposed and Evaluated

Future work

1 • Novel Automata Application in Natural Language Processing

14

1

Accelerating Rule-Based Methods in Natural
Language Processing on

Automata Hardware Accelerators

Main Idea: Re-evaluating Rule-based Methods in NLP

15

NN→ JJ if Word:the@[-1] & Word:car@[0] & Word:seat@[1]Rule
NN→ JJ : /\s+the\/[^\s]+\s+car\/NN\s+seat\/[^\s]+\s+[^\s]+\s+[^\s]+\s/Regex

Shop/VB the/DT car/NN seat/NN in/IN Amazon/NNPInput
Input

Regex

Many of these rules
can be run in parallel

Main insights from this study
§ Learning a larger number of more complex rules increases the accuracy of

rule-based approaches

§ Automata hardware accelerators can run thousands of these patterns in
parallel with minimal overhead

§ Our solution is two orders of magnitude faster than ML-based taggers on
GPU, while achieving competitve accuracy

16

ANMLZoo benchmark suite, IISWC’16 AutomataZoo benchmark suite, IISWC’18KDD’18

2
• Novel Automata Applications in Data Mining

17

Accelerating Subtree Mining on
the Automata Processor

Subtree Mining: challenges and opportunities

18

Bioinformatics
(protein sequences)

Web mining
(sentiment analysis)

Semi-structured data
(NLP, parsers)

Phylogenetic
(crop improvement)

Processing tree-shaped patterns is more complex than sequences

Many of these applications need high-throughput processing

Tree-shaped patterns cannot be represented with finite automata

We propose an approximate solution for tree-shaped pattern processing

Problems with Current Solutions on von Nemumann architectures

19

Pros Cons
BFS Massive pruning, Memory efficient Multi-pass of dataset, slow

DFS Fast Little pruning opportunity, Memory-hungry

*BFS and DFS refer
to candidate
generation approach,
not tree traversal

DFS

BFS

BFS

DFS

Trade-off between speed and accuracy of the AP solution vs the existing FTM implementation

20Dataset: Treebank

Main insights from this study
§Existing CPU/GPU solutions fail to process big datasets

§A scalable approximate solution on the Automata Processor
q Up to 262X speedup over the best running solution
q Up to 7% false positives

§Hybrid approach for exact solution
q 6X speedup over the best running solution

§Structure independent
q CPU/GPU performance à depends on the tree features
q Automata processing performance à independent from structure

21

Automata Application in Data Mining: Additional Contribution

22

Elaheh Sadredini, Reza Rahimi, Ke Wang, Kevin Skadron.
ACM International Conference on Supercomputing (ICS’17)

Ke Wang, Elaheh Sadredini, Kevin Skadron.
“Sequential pattern mining with the Micron Automata Processor”
ACM International Conference on Computing Frontiers (CF’16), won best paper award

Ke Wang, Elaheh Sadredini, Kevin Skadron.
“Hierarchical Pattern Mining with the Micron Automata Processor”
International Journal of Parallel Programming (IJPP’17)

ANMLZoo benchmark suite, IISWC’16

AutomataZoo benchmark suite, IISWC’18

Overview of My Dissertation Work

2

• Rule-Based Part-of-Speech Tagging Using Spatial Architectures
1

• Hierarchical Pattern Mining on the Automata Processor

3
• A Scalable In-SRAM Architecture for Pushdown Automata

4
• A Scalable In-Memory Interconnect for Automata Processing

5
• FlexAmata: A Flexible Automata Processing Engine

23

ICS’17, CF’16, IJPP’17,
IISWC’16

KDD’18, IISWC’18

MICRO’19

MICRO’18

CAL’19

MICRO’19

1 • Novel Architecture Exploration

24

3

A Scalable In-SRAM Architecture for
Pushdown Automata

Routing
Complexity

Large
Alphabet

Hierarchical
Structure

Kevin Angstadt, Arun Subramaniyan
Westley Weimer, Reetuparna Das

University of Michigan

Elaheh Sadredini, Reza Rahimi
Kevin Skadron

University of Virginia

IEEE/ACM International Symposium on Microarchitecture (MICRO’51)
October 2018

Problem: Existing Automata Processing Platforms
Cannot Support Computation for Tree-Structured Data

25

von Neumann Architectures:
• Irregular access patterns
• Branch misprediction

Memory-Centric Architectures:
• Originally designed for NFA processing
• Do not support PDA (pushdown automata)

Main idea:
Proposing a scalable in-memory solution for parallel

pushdown automata processing

Pushdown Automata Refresher

26

Input Symbol

Top of Stack

Stack Actions

27

DPDA are powerful enough to
process tree-shape structures in

data mining and parse most
programming languages

Turing
Machine

NDPA

DPDA

Regular
Languages
(RE, DFA,

NFA)

Solution: Deterministic Pushdown Automata (DPDA)

28

Grammar Parsing Automata

Processor for DPDA Acceleration

Homogeneous DPDA

Map to DPDA Engine

Performance Results: Subtree Inclusion

29

• 67x faster than CPUs
and 6x faster than GPUs
for end-to-end
application

• Performance is
independent from tree
size and complexity

• No epsilon transitions

Tree mining on DPDA accelerator is about 10X faster than tree mining on the
hybrid exact method on the AP+CPU

Overview of My Dissertation Work

2

• Rule-Based Part-of-Speech Tagging Using Spatial Architectures
1

• Hierarchical Pattern Mining on the Automata Processor

3
• A Scalable In-SRAM Architecture for Pushdown Automata

4
• A Scalable In-Memory Interconnect for Automata Processing

5
• FlexAmata: A Flexible Automata Processing Engine

30

ICS’17, CF’16, IJPP’17,
IISWC’16

KDD’18, IISWC’18

MICRO’19

MICRO’18

CAL’19

MICRO’19

1
• Novel Architecture Exploration

31

4

Scalable and Efficient in-Memory Interconnect for
Automata Processing

Routing
Complexity

Large
Alphabet

Hierarchical
Structure

Problem: Routing Inefficiency in Existing In-Memory Automata
Processing Architectures

§Automata Processor [15]
q Routing matrix congestion

• 13% state utilization in Levenshtein

§Cache Automaton [16]
q Full-crossbar is excessive for interconnect

q 0.53% of switches are utilized by ANMLZoo automata benchmark suite

32

Main Idea:
Designing a low-overhead, yet flexible routing architecture for automata

processing and mapping it to a right memory technology

Solution: Minimizing Full-Crossbar

33

SPM Automaton

34

1 2 3 4 5 6 7 8 9 10 11

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

BFS Labeling

1

2

3

4

5

6

7

8

9

10

11

SPM Automaton

So
ur

ce
 S

ta
te

Destination State

Connectivity Matrix

Solution: Minimizing Full-Crossbar

35

BFS Labeling

1

2

3

4

5

6

7

8

9

10

11

SPM Automaton1 2 3 4 5 6 7 8 9 10 11

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

So
ur

ce
 S

ta
te

Destination State

Connectivity Matrix

Solution: Minimizing Full-Crossbar

Union Heatmap of Routing Switches with BFS Labeling

36

§ 17 out of 19 benchmark applications show diagonal property

Levenshtein Brill Dotstar Hamming SPM

Snort Entity resolutionPowerEN Ranges Fermi

Reduced Crossbar Interconnect

37

Full Crossbar Reduced Crossbar

2 1

3
2

4

An OR operation
is needed

! × ! 6 × #

Memory cell as a
switch

Mapping to Memory Technology

38

§Non-destructive read is necessary to implement OR functionality
§ 2T1D cell has lower area overhead than 8T cell

Cache Automaton use
8T SRAM cell We propose to use 2T1D cell

39

Re-purpose eDRAM bank for automata processing

40

Re-purpose eDRAM bank for automata processing

Utilize subarray level parallelism of a memory bank

41

Process an automata with up to 256 states using local interconnect

Re-purpose eDRAM bank for automata processing

Utilize subarray level parallelism of a memory bank

Tile process an automata with non-diagonal shape interconnect

Global switches provide large automata processing

42

43

Design an efficient two stage pipeline

• Improves eAP clock frequency 2X
• Improves Cache Automaton clock frequency 1.5X

APSim (Automata Processing Simulator)
§Parse automata
§Convert to homogenous representation
§Perform optimizations
§Map to hardware resources based on:

q Connected component size
q Interconnect shape

§Calculate activities for energy/power estimations

§Two orders of magnitude faster than AP-compiler

44

Summary of Performance Evaluation

45

• Incorporate both architectural contribution and technology contribution
• eAP_2D1D has 1.7X, 3.3X and 210X better throughput per unit area than
eAP_8T, CA, and the AP

Overview of My Dissertation Work

2

• Rule-Based Part-of-Speech Tagging Using Spatial Architectures
1

• Hierarchical Pattern Mining on the Automata Processor

3
• A Scalable In-SRAM Architecture for Pushdown Automata

4
• A Scalable In-Memory Interconnect for Automata Processing

5
• FlexAmata: A Flexible Automata Processing Engine

46

ICS’17, CF’16, IJPP’17,
IISWC’16

KDD’18, IISWC’18

MICRO’19

MICRO’18

CAL’19

MICRO’19

1 • Novel Architecture Exploration

47

45

FlexAmata:
A Flexible Automata Processing Engine

Routing
Complexity

Large
Alphabet

Hierarchical
Structure

s
Potential problems with fixed 8-bit processing?

48

Problem 1: applications with small alphabets cannot fully
utilize the existing 8-bit hardware accelerators
§Symbols are encoded with one-hot encoding

49

8-bit architectures underutilize
hardware resources!

§ Genomics applications
q 2-bit processing is enough

Problem 2: applications with very large alphabets are not
able to use the existing 8-bit hardware accelerators

50

8-bit architectures are not general for applications with large alphabets!

§What if an application has millions or
billions of symbols?

§Chaining states?

AD is a false positive

§ Increasing memory column size?
Amazon inventory

Problem 3: application dependency to memory subarray size

51

Applications may not be compatible with future memory technologies!

§Cache Automaton [1]

q Re-purposes a portion of L3 cache for
automata processing

q What if the subarray size of underlying
memory technology changes?

[1] Subramaniyan, Arun, et al. "Cache Automaton." MICRO, 2017.

Core 1 Core 2

L2 Cache L2 Cache
L3 Cache

Research Questions
§How to efficiently support applications with very large or very small

alphabets on existing 8-bit architectures?

§How can an application make better use of existing hardware for automata
acceleration?

§What is the best bitwidth-size for automata processing on spatial
platforms?

§How to design next-generation automata accelerators with higher
throughput?

52

Solution: FlexAmata

53

n-bit
automaton

FlexAmata
Engine

m-bit
automaton

§ n, m: arbitrary size
§Fine grain, bit-level optimizations

This enables
q General solution for any application on existing 8-bit architectures
q Design space exploration for various bitwidths on spatial hardware accelerators

FlexAmata: temporal transformation

54

Bit-level optimization

s

Transformation overhead?

55

56

2-bit design1-bit design 3-bit design 4-bit design 7-bit design

16-bit design

Original
8-bit design

8-bit design

Software optimization: negation operation

57

• Both automata detect language a[ˆb]*b

Negation Operation Removal

58

State and Transition Overhead
§ Average on 20 automata applications from ANMLZoo and Regex benchmark suites

59

- Lower processing rate
+ Smaller memory subarrays (reduced delay and power consumption)

+ Higher processing rate
- Larger memory subarrays

64X smaller
subarray 2X higher

throughput

FlexAmata: Hardware Implications

60

n-bit
automaton

FlexAmata
Engine

m-bit
automaton

In-memory hardware
accelerators

(bitwidth: 1, 2, 4, 8)

FPGAs
(bitwidth: 2, 4, 8, 16)

Software: transformation and optimization

Future platforms

In-memory Architecture: Reduced Bitwidth Designs (RDBs)

61

§4-bit design

State matching subarray (16 rows)
16X less than 8-bit design

Hierarchical routing to support larger automaton
(up to 1024 states in a connected component)

To support other sizes, only state matching
subarray size changes

Zero/minimal interconnect overhead

62
8-bit design 4-bit design

§ In-memory full-crossbar interconnect topology
§ 4-bit design increases the interconnect utilization

So
ur

ce
 S

ta
te

Destination State

Connectivity Matrix

Evaluation Metric: Throughput per unit area

§Both designs assume 4MB memory
§Frequency: 2.5GHz

63

One hardware unit
(in-memory 8-bit design)

2048K states128K states

One hardware unit
(in-memory 4-bit design)

Number of rows Number of subarrays Number of States Area (!!")

4-bit processing 16 8,192 128K 7.76

8-bit processing 256 512 2048K 5.06

In-memory automata processing:
4-bit design performs better than 8-bit design

1024K
states

64

128K states

in-memory 8-bit design

2048K states

128K states

128K states 128K states

128K states 128K states

128K states 128K states

in-memory 4-bit design

2048K
states

!"#$%&"'%(
)#*+ = , ×.

, × /.12
!"#$%&"'%(

)#*+ = 3 ×.
4 ×5.52<

2.6X

Workload overview

65

In-memory Design Results

66

On average, 2-bit and 4-bit designs have 1.6X and 2.3X higher throughput per
area than original 8-bit design, respectively.

FPGA Results

§ LUT based implementation

§ 16-bit has 2.5X higher throughput per unit area than 8-bit design

67

16-bit design has 1.8X more LUTs, 11% fewer FFs and 15% lower frequency
but, 2X higher processing rate

Insights for future automata processing

68

FlexAmata: Application Implications (1)

69

2-bit
automaton

FlexAmata
Engine

8-bit
automaton

§FlexAmata enables full resource utilization for small symbol-set

FlexAmata: Application Implications (2)

70

14-bit
automaton

FlexAmata
Engine

8-bit
automaton

§FlexAmata enables feasibility support for large symbol-set

Research Questions

71

We hypothesize that an efficient interconnect
architecture, a more computationally powerful
design, and flexible bitwidth processing can

unleash in-memory processing benefits for more
complex pattern recognition tasks.

Overview of My Dissertation Work

2

• Rule-Based Part-of-Speech Tagging Using Spatial Architectures
1

• Hierarchical Pattern Mining on the Automata Processor

3
• A Scalable In-SRAM Architecture for Pushdown Automata

4
• A Scalable In-Memory Interconnect for Automata Processing

5
• FlexAmata: A Flexible Automata Processing Engine

72

ICS’17, CF’16, IJPP’17,
IISWC’16

KDD’18, IISWC’18

MICRO’19

MICRO’18

CAL’19

MICRO’19

Future Directions

73

Routing
Complexity

Large
Alphabet

Hierarchical
Structure

Proposed and Evaluated

Future work

Future Directions: Encoding with Multi-Row Activation

§Commodity DRAM
q One-row activation

§SRAM or gain-cells memory array
q Multi-row activation

74

§This provides the possibility to
process more than one symbol per
cycle by

q Encoding the automata
q Encoding the input

Future Directions
§Mapping graph processing applications to our in-memory DPDA

architecture
§Reporting architecture
§BRAM-based FPGA for different bitwidths

75

Broader Implications
§Network security

q Increase in network line rate
q Cloud adoption

§System reliability
q Execution behavior is expressed as automata

§Social media
q Rumor debunking
q Online language translation

76

Full List of Publications
1. Elaheh Sadredini, Reza Rahimi, Marzieh Lenjani, Mircea Stan, and Kevin Skadron. "FlexAmata: A Flexible Automata ProcessingEngine."51th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO’51), under review.

2. Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea Stan, and Kevin Skadron. "eAP: A Scalable and Efficient in MemoryAccelerator for Automata Processing.“ 51th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’51), under review.

3. Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea Stan, and Kevin Skadron. “A Scalable and Efficient in-Memory InterconnectArchitecture for Automata Processing.”
IEEE Computer Architecture Letters, 2019. DOI: 10.1109/LCA.2019.2909870.

4. Elaheh Sadredini, Deyaun Gue, Chunkun Bo, Reza Rahimi, Kevin Skadron, and Hongning Wang. " A Scalable Solution for Rule-Based Part-of-Speech Tagging on Novel
Hardware Accelerators.“ ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’18), 2018.

5. Kevin Angstadt, Arun Subramaniyan, Elaheh Sadredini, Reza Rahimi, Kevin Skadron, Westley Weimer, and Reetu Das. "ASPEN: A Scalable In-SRAM Architecture for
Pushdown Automata."51th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’51), 2018.

6. Elaheh Sadredini, Reza Rahimi, ke Wang, Kevin Skadron. “Frequent Subtree Mining on the Automata Processor: Challenges and Opportunities.” In Proceedings of the
International Conference on Supercomputing (ICS), 2017

7. Ke Wang, Elaheh Sadredini, Kevin Skadron. "Sequential pattern mining with the Micron Automata Processor." In Proceedings of the ACM International Conference on
Computing Frontiers (CF). ACM, 2016.

8. Ke Wang, Elaheh Sadredini, Kevin Skadron. "Hierarchical Pattern Mining with the Micron Automata Processor. "International Journal of Parallel Programming (IJPP), Jan.
2017, DOI: 10.1007/s10766-017-0489-y.

9. Jack Wadden, Tommy Tracy II, Elaheh Sadredini, Lingxi Wu, Chunkun Bo, Jesse Du, Yizhou Wei, Matthew Wallace, Jeffrey Udall, Mircea Stan, Kevin Skadron. "AutomataZoo:
A Modern Automata Processing Benchmark Suite. "IEEE International Symposium on Workload Characterization (IISWC), 2018.

10. J. Wadden, V. Dang, N. Brunelle, T. Tracy II, D. Guo, E. Sadredini, K. Wang, C. Bo, G. Robins, M. Stan, K. Skadron. "ANMLZoo: A Benchmark Suite for Exploring Bottlenecks
in Automata Processing Engines and Architectures. "IEEE International Symposium on Workload Characterization (IISWC), October 2016.

11. Chunkun Bo, Vinh Dang, Elaheh Sadredini, kevin Skadron. "Searching for Potential gRNA Off-Target Sites for CRISPR/Cas9 usingAutomata Processing across Different
Platforms." IEEE International Symposium on High-Performance Computer Architecture (HPCA),2018.

12. Ke Wang, Kevin Angstadt, Chunkun Bo, Nathan Brunelle, Elaheh Sadredini, Tommy Tracy II, Jack Wadden, Mircea Stan, Kevin Skadron. "An Overview of Micron’s Automata
Processor. "Proceeding of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, 2016.

77

Patent Applications
1. Elaheh Sadredini, Reza Rahimi, Ke Wang, and Kevin Skadron. "Methods, Circuits, and Articles of Manufacture for Frequent Sub-Tree Mining using Non-

Deterministic Finite State Machines "U.S. Patent Application No. 16/246,641.

2. Elaheh Sadredini, Reza Rahimi, Mircea Stan, and Kevin Skadron. "Methods, Circuits, Systems, and Manufacture for State Machine Interconnect Architecture

Using Embedded DRAM." U.S. Patent Application No. 16/246,742.

3. Ke Wang, Elaheh Sadredini, and Kevin Skadron. ”Sequential Pattern Mining with the Micron Automata Processor.” U.S. Patent Application Serial No.

15/198521.

4. Ke Wang, Elaheh Sadredini, and Kevin Skadron. ”Disjunctive Rule Mining with Finite Automaton Hardware.” U.S. Patent Application, publication number:

20/180285424.

5. Chunkun Bo, Elaheh Sadredini, Vinh Dang, and Kevin Skadron. "Methods, Circuits, Systems, and Articles of Manufacture for Searching a Reference Sequence

for a Target Sequence within a Specified Distance."U.S. Patent Application No. 15/932,287.

78

References

79

1. Yang, Yi-Hua, and Viktor Prasanna. "High-performance and compact architecture for regular expression matching on FPGA." IEEE Transactions on Computers
61.7 (2012): 1013-1025.

2. Tracy II, Tommy, et al. "Nondeterministic Finite Automata in Hardware-the Case of the Levenshtein Automaton.“ In Proceedings of the 2015 Workshop on
Applications and Systems for Big Data (ASBD) in conjunction with ISCA 2015.

3. Roy, Indranil, et al. "Finding Motifs in Biological Sequences Using the Micron Automata Processor," 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, Phoenix, AZ, 2014, pp. 415-424.

4. Wang, Ke, et al. "Association rule mining with the micron automata processor.“ In Proceedings of the IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2015.

5. Zhou, Keira, et al. "Brill tagging using the micron automata processor." (2014).
6. Bo, Chunkun, et al. "Entity Resolution Acceleration using Automata Processor." In Proceedings of the 2015 Workshop on Applications and Systems for Big Data

(ASBD) in conjunction with ISCA. 2015.
7. Tracy II, Tommy, et al. "Towards machine learning on the Automata Processor." International Conference on High Performance Computing. Springer International

Publishing, 2016.
8. Vaibhav Gogte, Aasheesh Kolli, Michael J Cafarella, Loris D’Antoni, and Thomas F Wenisch. Hare: Hardwareaccelerator for regular expressions. In

Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International Symposium on, pages 1–12. IEEE, 2016.
9. uanwei Fang, Tung T Hoang, Michela Becchi, and Andrew A Chien. Fast support for unstructured data process-ing: the unified automata processor.

InMicroarchitecture (MICRO), 2015 48th Annual IEEE/ACM InternationalSymposium on, pages 533–545. IEEE, 2015.
10. https://github.com/vqd8a/iNFAnt2
11. https://github.com/vqd8a/DFAGE
12. https://github.com/intel/hyperscan
13. https://github.com/jackwadden/VASim
14. https://www.pcre.org/
15. Dlugosch, Paul, et al. "An efficient and scalable semiconductor architecture for parallel automata processing." IEEE Transactions on Parallel and Distributed

Systems 25.12 (2014): 3088-3098.
16. Subramaniyan, Arun, et al. "Cache automaton." Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture. ACM, 2017.
17. Xie, Ted, et al. "REAPR: Reconfigurable engine for automata processing." Field Programmable Logic and Applications (FPL), 2017 27th International

Conference on. IEEE, 2017.
18. Stephens, Z. D., et al. "Big Data: Astronomical or Genomical." PLoS Biol 13.7 (2015): e1002195.

https://github.com/vqd8a/iNFAnt2
https://github.com/vqd8a/DFAGE
https://github.com/intel/hyperscan
https://github.com/jackwadden/VASim
https://www.pcre.org/

Questions?

80

Thanks for Listening!

