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Problem: Processor / Memory Performance Gap
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Sorry, didn’t know 
that it would be 

that serious!

Source: David Patterson, UC Berkeley

Moore’s Law
Processing In-Memory (PIM)



Scalable and High-Performance Techniques Are Needed 
for Pattern Processing
§ Incoming packet is checked against every single rule of the database
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Rule-set

Rule 1
Rule 2
.
.
.
Rule 10000

Network Intrusion 
Detection System

Packet

Malicious/Non-
malicious packet

Problem:
• Increase in the number of rules
• Increase in the network line rate 



Pattern Recognition Importance
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Network security

4

Bioinformatics NLPData mining

Patterns are often complex

Finite Automata=

Thousands of patterns need to be processed in parallel



Existing Automata Processing Solution
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von Neumann Architectures Memory-Centric Architectures

Custom ASIC

Reconfigurable SW/HW Engines



Existing Automata Processing Platforms 
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von Neumann Architectures Memory-Centric Architectures

Custom ASIC

Reconfigurable SW/HW Engines

DFAGE [11]iNFAnt2 [10]

VASim [13]HyperScan [12]PCRE [14]

CPU-Based

GPU-Based

HARE [8]

UAP [9]



Existing Automata Processing Platforms 
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von Neumann Architectures Memory-Centric Architectures

Custom ASIC

Reconfigurable SW/HW Engines

DFAGEiNFAnt2

VASimHyperScanPCRE

CPU-Based

GPU-Based

Problem: von Neumann processors easily become memory bound

• Unpredictable behavior 

Branch mispredictions

• Irregular access pattern

Cache-miss 

• Many parallel state transitions

Saturate memory bandwidth



Existing Automata Processing Platforms 
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von Neumann Architectures Memory-Centric Architectures

Custom ASIC

Reconfigurable SW/HW Engines

Micron Automata Processor (AP) [15]

Cache Automaton (CA) [16]

REAPR [17]

DFAGE [11]iNFAnt2 [10]

VASim [13]HyperScan [12]PCRE [14]

CPU-Based

GPU-Based

HARE [8]

UAP [9]
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State Transition

State MatchingA

Problem with existing memory-centric 
architectures

• State Matching
• High overhead SRAM or high-latency DRAM

• Interconnect architecture 
• Congestion
• Underutilization

• Alphabet size 
• Feasibility? Overhead?

• Computation power?



Problem: Patterns can be very complex!
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Routing 
Complexity

Large 
Alphabet

Hierarchical 
Structure

Amazon inventory 



Research Questions 
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We hypothesize that an efficient interconnect 
architecture, a more computationally powerful 
design, and flexible bitwidth processing can 

unleash in-memory processing benefits for more 
complex pattern recognition tasks.



Overview of My Dissertation Work
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• Rule-Based Part-of-Speech Tagging Using Spatial Architectures
1

• Hierarchical Pattern Mining on the Automata Processor

3
• A Scalable In-SRAM Architecture for Pushdown Automata

4
• A Scalable In-Memory Interconnect for Automata Processing

5
• FlexAmata: A Flexible Automata Processing Engine
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ICS’17, CF’16, IJPP’17, 
IISWC’16

KDD’18, IISWC’18

MICRO’19

MICRO’18

CAL’19

MICRO’19



We provide solutions to these problems
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Routing 
Complexity

Large 
Alphabet

Hierarchical 
Structure

Proposed and Evaluated

Future work



1 • Novel Automata Application in Natural Language Processing

14

1

Accelerating Rule-Based Methods in Natural 
Language Processing on 

Automata Hardware Accelerators



Main Idea: Re-evaluating Rule-based Methods in NLP
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NN→ JJ if Word:the@[-1] & Word:car@[0] & Word:seat@[1]Rule
NN→ JJ : /\s+the\/[^\s]+\s+car\/NN\s+seat\/[^\s]+\s+[^\s]+\s+[^\s]+\s/Regex

Shop/VB the/DT car/NN seat/NN in/IN Amazon/NNPInput
Input

Regex

Many of these rules 
can be run in parallel



Main insights from this study
§ Learning a larger number of more complex rules increases the accuracy of 

rule-based approaches  

§ Automata hardware accelerators can run thousands of these patterns in 
parallel with minimal overhead

§ Our solution is two orders of magnitude faster than ML-based taggers on 
GPU, while achieving competitve accuracy
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ANMLZoo benchmark suite, IISWC’16 AutomataZoo benchmark suite, IISWC’18KDD’18



2
• Novel Automata Applications in Data Mining
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Accelerating Subtree Mining on 
the Automata Processor



Subtree Mining: challenges and opportunities
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Bioinformatics
(protein sequences)

Web mining
(sentiment analysis)

Semi-structured data
(NLP, parsers)

Phylogenetic
(crop improvement)

Processing tree-shaped patterns is more complex than sequences

Many of these applications need high-throughput processing

Tree-shaped patterns cannot be represented with finite automata 

We propose an approximate solution for tree-shaped pattern processing



Problems with Current Solutions on von Nemumann architectures
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Pros Cons
BFS Massive pruning, Memory efficient Multi-pass of dataset, slow

DFS Fast Little pruning opportunity, Memory-hungry

*BFS and DFS refer 
to candidate 
generation approach, 
not tree traversal 

DFS

BFS

BFS

DFS



Trade-off between speed and accuracy of the AP solution vs the existing FTM implementation

20Dataset: Treebank



Main insights from this study
§Existing CPU/GPU solutions fail to process big datasets

§A scalable approximate solution on the Automata Processor 
q Up to 262X speedup over the best running solution
q Up to 7% false positives 

§Hybrid approach for exact solution
q 6X speedup over the best running solution

§Structure independent 
q CPU/GPU performance à depends on the tree features
q Automata processing performance  à independent from structure
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Automata Application in Data Mining: Additional Contribution
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Elaheh Sadredini, Reza Rahimi, Ke Wang, Kevin Skadron.
ACM International Conference on Supercomputing (ICS’17)

Ke Wang, Elaheh Sadredini, Kevin Skadron.
“Sequential pattern mining with the Micron Automata Processor”
ACM International Conference on Computing Frontiers (CF’16), won best paper award

Ke Wang, Elaheh Sadredini, Kevin Skadron.
“Hierarchical Pattern Mining with the Micron Automata Processor”
International Journal of Parallel Programming (IJPP’17) 

ANMLZoo benchmark suite, IISWC’16

AutomataZoo benchmark suite, IISWC’18



Overview of My Dissertation Work
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• Rule-Based Part-of-Speech Tagging Using Spatial Architectures
1

• Hierarchical Pattern Mining on the Automata Processor

3
• A Scalable In-SRAM Architecture for Pushdown Automata

4
• A Scalable In-Memory Interconnect for Automata Processing

5
• FlexAmata: A Flexible Automata Processing Engine
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1 • Novel Architecture Exploration

24
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A Scalable In-SRAM Architecture for 
Pushdown Automata

Routing 
Complexity

Large 
Alphabet

Hierarchical 
Structure

Kevin Angstadt, Arun Subramaniyan
Westley Weimer, Reetuparna Das

University of Michigan

Elaheh Sadredini, Reza Rahimi
Kevin Skadron

University of Virginia

IEEE/ACM International Symposium on Microarchitecture (MICRO’51)
October 2018



Problem: Existing Automata Processing Platforms 
Cannot Support Computation for Tree-Structured Data 
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von Neumann Architectures:
• Irregular access patterns
• Branch misprediction

Memory-Centric Architectures:
• Originally designed for NFA processing
• Do not support PDA (pushdown automata)

Main idea:
Proposing a scalable in-memory solution for parallel 

pushdown automata processing



Pushdown Automata Refresher
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Input Symbol

Top of Stack

Stack Actions



27

DPDA are powerful enough to 
process tree-shape structures in 

data mining and parse most 
programming languages   

Turing 
Machine

NDPA

DPDA 

Regular 
Languages
(RE, DFA, 

NFA)

Solution: Deterministic Pushdown Automata (DPDA)



28

Grammar Parsing Automata

Processor for DPDA Acceleration

Homogeneous DPDA

Map to DPDA Engine



Performance Results: Subtree Inclusion
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• 67x faster than CPUs
and 6x faster than GPUs
for end-to-end 
application

• Performance is 
independent from tree 
size and complexity

• No epsilon transitions

Tree mining on DPDA accelerator is about 10X faster than tree mining on the 
hybrid exact method on the AP+CPU



Overview of My Dissertation Work
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• Rule-Based Part-of-Speech Tagging Using Spatial Architectures
1

• Hierarchical Pattern Mining on the Automata Processor

3
• A Scalable In-SRAM Architecture for Pushdown Automata

4
• A Scalable In-Memory Interconnect for Automata Processing

5
• FlexAmata: A Flexible Automata Processing Engine
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1
• Novel Architecture Exploration

31

4

Scalable and Efficient in-Memory Interconnect for 
Automata Processing

Routing 
Complexity

Large 
Alphabet

Hierarchical 
Structure



Problem: Routing Inefficiency in Existing In-Memory Automata 
Processing Architectures 

§Automata Processor [15]
q Routing matrix congestion 

• 13% state utilization in Levenshtein

§Cache Automaton [16]
q Full-crossbar is excessive for interconnect

q 0.53% of switches are utilized by ANMLZoo automata benchmark suite

32

Main Idea:
Designing a low-overhead, yet flexible routing architecture for automata 

processing and mapping it to a right memory technology



Solution: Minimizing Full-Crossbar
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SPM Automaton
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Solution: Minimizing Full-Crossbar
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Union Heatmap of Routing Switches with BFS Labeling
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§ 17 out of 19 benchmark applications show diagonal property

Levenshtein Brill Dotstar Hamming SPM

Snort Entity resolutionPowerEN Ranges Fermi



Reduced Crossbar Interconnect
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Full Crossbar Reduced Crossbar

2 1

3
2

4

An OR operation 
is needed

! × ! 6 × #

Memory cell as a 
switch



Mapping to Memory Technology
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§Non-destructive read is necessary to implement OR functionality
§ 2T1D cell has lower area overhead than 8T cell 

Cache Automaton use 
8T SRAM cell We propose to use 2T1D cell
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Re-purpose eDRAM bank for automata processing
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Re-purpose eDRAM bank for automata processing

Utilize subarray level parallelism of a memory bank
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Process an automata with up to 256 states using local interconnect 

Re-purpose eDRAM bank for automata processing

Utilize subarray level parallelism of a memory bank

Tile process an automata with non-diagonal shape interconnect 

Global switches provide large automata processing 
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Design an efficient two stage pipeline 

• Improves eAP clock frequency 2X
• Improves Cache Automaton clock frequency 1.5X



APSim (Automata Processing Simulator)
§Parse automata 
§Convert to homogenous representation
§Perform optimizations 
§Map to hardware resources based on:

q Connected component size 
q Interconnect shape 

§Calculate activities for energy/power estimations

§Two orders of magnitude faster than AP-compiler

44



Summary of Performance Evaluation
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• Incorporate both architectural contribution and technology contribution
• eAP_2D1D  has 1.7X, 3.3X and 210X better throughput per unit area than 
eAP_8T, CA, and the AP



Overview of My Dissertation Work
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1 • Novel Architecture Exploration
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45

FlexAmata:
A Flexible Automata Processing Engine

Routing 
Complexity

Large 
Alphabet

Hierarchical 
Structure



s
Potential problems with fixed 8-bit processing? 
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Problem 1: applications with small alphabets cannot fully 
utilize the existing 8-bit hardware accelerators
§Symbols are encoded with one-hot encoding

49

8-bit architectures underutilize 
hardware resources!

§ Genomics applications
q 2-bit processing is enough



Problem 2: applications with very large alphabets are not 
able to use the existing 8-bit hardware accelerators

50

8-bit architectures are not general for applications with large alphabets!

§What if an application has millions or 
billions of symbols?

§Chaining states?

AD is a false positive

§ Increasing memory column size?
Amazon inventory 



Problem 3: application dependency to memory subarray size

51

Applications may not be compatible with future memory technologies!

§Cache Automaton [1]

q Re-purposes a portion of L3 cache for 
automata processing

q What if the subarray size of underlying 
memory technology changes? 

[1] Subramaniyan, Arun, et al. "Cache Automaton." MICRO, 2017.

Core 1 Core 2

L2 Cache L2 Cache
L3 Cache



Research Questions
§How to efficiently support applications with very large or very small

alphabets on existing 8-bit architectures?

§How can an application make better use of existing hardware for automata
acceleration?

§What is the best bitwidth-size for automata processing on spatial
platforms?

§How to design next-generation automata accelerators with higher
throughput?
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Solution: FlexAmata
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n-bit 
automaton

FlexAmata
Engine

m-bit 
automaton

§ n, m: arbitrary size
§Fine grain, bit-level optimizations 

This enables
q General solution for any application on existing 8-bit architectures
q Design space exploration for various bitwidths on spatial hardware accelerators 



FlexAmata: temporal transformation
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Bit-level optimization



s

Transformation overhead?

55
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2-bit design1-bit design 3-bit design 4-bit design 7-bit design

16-bit design

Original
8-bit design

8-bit design



Software optimization: negation operation
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• Both automata detect language a[ˆb]*b



Negation Operation Removal
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State and Transition Overhead
§ Average on 20 automata applications from ANMLZoo and Regex benchmark suites 
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- Lower processing rate
+ Smaller memory subarrays (reduced delay and power consumption)

+ Higher processing rate
- Larger memory subarrays

64X smaller 
subarray 2X higher 

throughput



FlexAmata: Hardware Implications
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n-bit 
automaton

FlexAmata
Engine

m-bit 
automaton

In-memory hardware 
accelerators

(bitwidth: 1, 2, 4, 8)

FPGAs
(bitwidth: 2, 4, 8, 16)

Software: transformation and optimization

Future platforms 



In-memory Architecture: Reduced Bitwidth Designs (RDBs)
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§4-bit design

State matching subarray (16 rows)
16X less than 8-bit design

Hierarchical routing to support larger automaton 
(up to 1024 states in a connected component)

To support other sizes, only state matching 
subarray size changes



Zero/minimal interconnect overhead
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8-bit design 4-bit design 

§ In-memory full-crossbar interconnect topology
§ 4-bit design increases the interconnect utilization 

So
ur

ce
 S

ta
te

Destination State

Connectivity Matrix



Evaluation Metric: Throughput per unit area

§Both designs assume 4MB memory
§Frequency: 2.5GHz

63

One hardware unit
(in-memory 8-bit design) 

2048K states128K states

One hardware unit 
(in-memory 4-bit design) 

Number of rows Number of subarrays Number of States Area (!!")

4-bit processing 16 8,192 128K 7.76

8-bit processing 256 512 2048K 5.06



In-memory automata processing:
4-bit design performs better than 8-bit design

1024K 
states

64

128K states

in-memory 8-bit design 

2048K states

128K states

128K states 128K states

128K states 128K states

128K states 128K states

in-memory 4-bit design 

2048K 
states

!"#$%&"'%(
)#*+ = , ×.

, × /.12
!"#$%&"'%(

)#*+ = 3 ×.
4 ×5.52<

2.6X



Workload overview
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In-memory Design Results
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On average, 2-bit and 4-bit designs have 1.6X and 2.3X higher throughput per 
area than original 8-bit design, respectively. 



FPGA  Results 

§ LUT based implementation

§ 16-bit has 2.5X higher throughput per unit area than 8-bit design

67

16-bit design has 1.8X more LUTs, 11% fewer FFs and 15% lower frequency
but, 2X higher processing rate



Insights for future automata processing
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FlexAmata: Application Implications (1)
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2-bit 
automaton

FlexAmata
Engine

8-bit 
automaton

§FlexAmata enables full resource utilization for small symbol-set



FlexAmata: Application Implications (2)
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14-bit 
automaton

FlexAmata
Engine

8-bit 
automaton

§FlexAmata enables feasibility support for large symbol-set



Research Questions 
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We hypothesize that an efficient interconnect 
architecture, a more computationally powerful 
design, and flexible bitwidth processing can 

unleash in-memory processing benefits for more 
complex pattern recognition tasks.
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Future Directions
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Routing 
Complexity

Large 
Alphabet

Hierarchical 
Structure

Proposed and Evaluated

Future work



Future Directions: Encoding with Multi-Row Activation

§Commodity DRAM 
q One-row activation

§SRAM or gain-cells memory array
q Multi-row activation

74

§This provides the possibility to 
process more than one symbol per 
cycle by

q Encoding the automata 
q Encoding the input



Future Directions 
§Mapping graph processing applications to our in-memory DPDA 

architecture
§Reporting architecture
§BRAM-based FPGA for different bitwidths
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Broader Implications
§Network security

q Increase in network line rate 
q Cloud adoption 

§System reliability
q Execution behavior is expressed as automata

§Social media
q Rumor debunking 
q Online language translation
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Questions?
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Thanks for Listening!


