Example. Express the Boolean function $F=x+y z$ as a sum of minterms.
Solution:

$$
\begin{array}{rlrl}
\boldsymbol{F} & =x+y z=x+(y z) & \quad \text { AND (multiply) has a higher precedence than OR (add) } \\
& =x\left(y+y^{\prime}\right)\left(z+z^{\prime}\right)+\left(x+x^{\prime}\right) y z & \text { expand } 1^{\text {st }} \text { term by ANDing it with }\left(y+y^{\prime}\right)\left(z+z^{\prime}\right), \text { and } 2^{\text {nd }} \text { term with }\left(x+x^{\prime}\right) \\
& =x y z+x y z^{\prime}+x y^{\prime} z+x y^{\prime} z^{\prime}+x y^{\prime} z+x^{\prime} y z \\
& =m_{7}+m_{6}+m_{5}+m_{4}+m_{3} \\
& =\Sigma(3,4,5,6,7) & \\
& \text { sum of 1-minterms }
\end{array}
$$

Example. Express the Boolean function $F=x+y z$ as a product of maxterms.
Solution: First, we need to convert the function into the product-of-OR terms by using the distributive law as follows:

$$
\begin{array}{rlrl}
\boldsymbol{F} & =x+y z=x+(y z) & & \text { AND (multiply) has a higher precedence than OR (add) } \\
& =(x+y)(x+z) & & \text { use distributive law to change to product of OR terms } \\
& =\left(x+y+z z^{\prime}\right)\left(x+y y^{\prime}+z\right) & & \text { expand } 1^{\text {st }} \text { term by ORing it with } z z^{\prime}, \text { and } 2^{\text {nd }} \text { term with } y y^{\prime} \\
& =(x+y+z)\left(x+y+z^{\prime}\right)(x+y+z) & \left(x+y^{\prime}+z\right) \\
& =M_{0} \bullet M_{1} \bullet M_{2} & & \\
& =\Pi(0,1,2) & & \text { product of 0-maxterms }
\end{array}
$$

Example. Express $F^{\prime}=(x+y z)^{\prime}$ as a sum of minterms.
Solution:

$$
\begin{aligned}
\boldsymbol{F}^{\prime} & =(x+y z)^{\prime}=(x+(y z))^{\prime} & & \text { AND (multiply) has a higher precedence than OR (add) } \\
& =x^{\prime}\left(y^{\prime}+z^{\prime}\right) & & \text { use dual or De Morgan's Law } \\
& =\left(x^{\prime} y^{\prime}\right)+\left(x^{\prime} z^{\prime}\right) & & \text { use distributive law to change to sum of AND terms } \\
& =x^{\prime} y^{\prime}\left(z+z^{\prime}\right)+x^{\prime}\left(y+y^{\prime}\right) z^{\prime} & & \text { expand } 1^{\text {st }} \text { term by ANDing it with }\left(z+z^{\prime}\right) \text {, and } 2^{\text {nd }} \text { term with }\left(y+y^{\prime}\right) \\
& =x^{\prime} y^{\prime} z+x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}+x^{\prime} y^{\prime} z^{\prime} & & \\
& =m_{1}+m_{0}+m_{2} & & \\
& =\Sigma(0,1,2) & & \text { sum of 0-minterms }
\end{aligned}
$$

Example. Express $F^{\prime}=(x+y z)^{\prime}$ as a product of maxterms.
Solution:

$$
\begin{array}{rlrl}
\boldsymbol{F}^{\prime} & =(x+y z)^{\prime}=(x+(y z))^{\prime} & & \text { AND (multiply) has a higher precedence than OR (add) } \\
& =x^{\prime}\left(y^{\prime}+z^{\prime}\right) & & \text { use dual or De Morgan’s Law } \\
& =\left(x^{\prime}+y y^{\prime}+z z^{\prime}\right)\left(x x^{\prime}+y^{\prime}+z^{\prime}\right) & \text { expand } 1^{\text {st }} \text { term by ORing it with } y y^{\prime} \text { and } z z^{\prime} \text {, and } 2^{\text {nd }} \text { ter } \\
& =\left(x^{\prime}+y+z\right)\left(x^{\prime}+y+z^{\prime}\right)\left(x^{\prime}+y^{\prime}+z\right)\left(x^{\prime}+y^{\prime}+z^{\prime}\right)\left(x+y^{\prime}+z^{\prime}\right)\left(x^{\prime}+y^{\prime}+z^{\prime}\right) \\
& =M_{4} \bullet M_{6} \bullet M_{5} \bullet M_{7} \bullet M_{3} & \\
& =\Pi(3,4,5,6,7) & & \\
& & \text { product of 1-maxterms }
\end{array}
$$

F and F^{\prime} are shown in the following truth table:

x	y	z	Minterms	Maxterms	F	F^{\prime}
0	0	0	$m_{0}=x^{\prime} y^{\prime} z^{\prime}$	$M_{0}=x+y+z$	0	1
0	0	1	$m_{1}=x^{\prime} y^{\prime} z$	$M_{1}=x+y+z^{\prime}$	0	1
0	1	0	$m_{2}=x^{\prime} y z^{\prime}$	$M_{2}=x+y^{\prime}+z$	0	1
0	1	1	$m_{3}=x^{\prime} y z$	$M_{3}=x+y^{\prime}+z^{\prime}$	1	0
1	0	0	$m_{4}=x y^{\prime} z^{\prime}$	$M_{4}=x^{\prime}+y+z$	1	0
1	0	1	$m_{5}=x y^{\prime} z$	$M_{5}=x^{\prime}+y+z^{\prime}$	1	0
1	1	0	$m_{6}=x y z^{\prime}$	$M_{6}=x^{\prime}+y^{\prime}+z$	1	0
1	1	1	$m_{7}=x y z$	$M_{7}=x^{\prime}+y^{\prime}+z^{\prime}$	1	0

