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Current Time Series Anomaly Detection
Benchmarks are Flawed and are Creating the
lllusion of Progress

Renjie Wu and Eamonn J. Keogh

Abstract—Time series anomaly detection has been a perennially important topic in data science, with papers dating back to the
1950s. However, in recent years there has been an explosion of interest in this topic, much of it driven by the success of deep
learning in other domains and for other time series tasks. Most of these papers test on one or more of a handful of popular
benchmark datasets, created by Yahoo, Numenta, NASA, etc. In this work we make a surprising claim. The majority of the
individual exemplars in these datasets suffer from one or more of four flaws. Because of these four flaws, we believe that many
published comparisons of anomaly detection algorithms may be unreliable, and more importantly, much of the apparent
progress in recent years may be illusionary. In addition to demonstrating these claims, with this paper we introduce the UCR
Time Series Anomaly Datasets. We believe that this resource will perform a similar role as the UCR Time Series Classification
Archive, by providing the community with a benchmark that allows meaningful comparisons between approaches and a

meaningful gauge of overall progress.

Index Terms—Anomaly detection, benchmark datasets, deep learning, time series analysis

1 INTRODUCTION

IME series anomaly detection has been a perennially

important topic in data science, with papers dating
back to the dawn of computer science [1]. However, in the
last five years there has been an explosion of interest in
this topic, with at least one or two papers on the topic
appearing each year in virtually every database, data
mining and machine learning conference, including
SIGKDD [2], [3], ICDM [4], ICDE, SIGMOD, VLDB, etc.

This increase in interest seems to be largely driven by
researchers anxious to transfer the considerable success of
deep learning in other domains and from other time se-
ries tasks such as classification.

Most of these papers test on one or more of a handful
of popular benchmark datasets, created by Yahoo [5],
Numenta [6], NASA [2] or Pei’'s Lab (OMNI) [3], etc. In
this work we make a surprising claim. The majority of the
individual exemplars in these datasets suffer from one or
more of four flaws. These flaws are triviality, unrealistic
anomaly density, mislabeled ground truth and run-to-failure
bias. Because of these four flaws, we believe that most
published comparisons of anomaly detection algorithms
may be unreliable. More importantly, we believe that
much of the apparent progress in recent years may be
illusionary.

For example, Qiu et al. [7] introduce a “novel anomaly
detector for time-series KPIs based on supervised deep-learning
models with convolution and long short-term memory (LSTM)
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neural networks, and a variational auto-encoder (VAE) over-
sampling model.” This description sounds like it has many
“moving parts”, and indeed, the dozen or so explicitly
listed parameters include: convolution filter, activation,
kernel size, strides, padding, LSTM input size, dense in-
put size, softmax loss function, window size, learning rate
and batch size. All of this is to demonstrate “accuracy ex-
ceeding 0.90 (on a subset of the Yahoo's anomaly detection
benchmark datasets).” However, as we will show, much of
the results of this complex approach can be duplicated
with a single line of code and a few minutes of effort.

This “one-line-of-code” argument is so unusual that it
is worth previewing it before we formally demonstrate it
in Section 2.2 below. Almost daily, the popular press
vaunts a new achievement of deep learning. Picking one
at random, in a recent paper [8], we learn that deep learn-
ing can be used to classify mosquitos’ species. In particu-
lar, the proposed algorithm had an accuracy of 97.8%
when distinguishing Aedes vexans from Culex triaeniorhyn-
chus. Should we be impressed? One of the current authors
(Keogh) has significant computational experience work-
ing with mosquitos, and he is impressed.

Suppose however that someone downloaded the origi-
nal 1,185 images from the study and showed that they
could classify them with 100% accuracy using a single
line of code'. If that happened, there are two things we
can confidently say:

e We would not for one moment imagine that the
one line of code had any particular value as a clas-
sifier. We would assume that this was some kind of
“trick”. Perhaps the Aedes images were in JPEG

1 To be clear, we choose this example because it was the first hit for a
Google search for “novel deep learning applications”. We have no reason
to doubt the claims of this paper, which we only skimmed.
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format and the Culex images were in GIF format.
Or perhaps one species was recorded in color, and
the other in B/W. Something interesting is clearly
happening, but it is surely not the case that a use-
ful entomological image classification algorithm
takes a single line of code.

e We would have lost some confidence in the origi-
nal paper’s results. It is still likely that the paper is
genuinely doing something useful. However, we
would all be a lot happier trusting the paper’s con-
tribution if the authors released a statement to the
effect of “we converted all files to JPEG format, and all
images to 16-bit B/W, and reran the experiments get-
ting similarly good results. Moreover, we are confident
that our new publicly released dataset will now not
yield to a single line of code algorithm” .

This is a perfect analogy of our one-line-of-code argu-
ment. Our ability to produce “one-liners” for most da-
tasets does not mean that the original papers that tested
on these datasets are not making a contribution. Howev-
er, at a minimum it does strongly suggest that the com-
munity needs to regroup, and test on new datasets that
would generally stump trivial one-line solutions.

Before continuing it is important to note that our dis-
cussion of some issues with the benchmark datasets
should in no way be interpreted as criticism of the origi-
nal introducer of these datasets. These groups have spent
tremendous time and effort to make a resource available
to the entire community and should rightly be commend-
ed. It is simply the case that the community must be
aware of the severe limitations of these datasets, and the
limitations of research efforts that rely upon them.

2 A TAXONOMY OF BENCHMARK FLAWS

Before discussing the four major flaws found in many
public archives, we will briefly discuss related work, to
put our observations into context.

2.1 Related Work

The literature on anomaly detection is vast [9], with a par-
ticular increase in works in just the last three to five years
[2], [4], [5), [6], [7], [10], [11], [12], [13], [14]. Almost all
these works test on one or more public datasets created
by a handful of groups, including Yahoo [5], Numenta [6],
NASA [2] or OMNI [3]. Some papers test on these public
datasets in addition to a private dataset. In many cases,
the authors do not even show a plot of any data from the
private datasets. Thus, here we can clearly make no
claims about such private datasets, other than to note that
the use of private datasets thwarts the growing move to
reproducibility. In addition, the use of private datasets
will always be accompanied by the possibility of uncon-
scious cherry-picking that the reader or the reviewer will
never know about.

There is a strong implicit assumption that doing well
on one of the public datasets is a sufficient condition to
declare an anomaly detection algorithm useful (and there-
fore warrant publication or patenting). Indeed, this as-
sumption is stated explicitly in many works, for example
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Huang [15] notes “(The Yahoo) Al1Benchmark is undoubted-
ly a good time-series dataset for testing the general effectiveness
of an anomaly detection method”, and Gao et al. [16] gush
that “Yahoo data set has a good coverage of different varieties of
anomalies in time series, such as seasonality, level change, vari-
ance change and their combinations.” However, we are not
aware of any work that has treated this assumption criti-
cally.

In the following four sections, we will introduce four
issues with the public datasets that we believe throws
doubt on the assumption that they are suitable for com-
paring algorithms or gauging progress in time series
anomaly detection.

2.2 Triviality

A surprisingly large fraction of the problems in the
benchmark datasets are so simple to solve that reporting
success in solving them seems pointless. Of course, trivial
is not a well-defined word, so, to firm up our claim we
will make a practical testable definition:

Definition 1. A time series anomaly detection problem is
trivial if it can be solved with a single line of standard
library MATLAB code. We cannot “cheat” by calling a
high-level built-in function such as kmeans or Classifica-
tionKNN or calling custom written functions. We must
limit ourselves to basic vectorized primitive opera-
tions, such as mean, max, std, diff, etc.

This definition is clearly not perfect. MATLAB allows
nested expressions, and thus we can create a “one-liner”
that might be more elegantly written as two or three lines.
Moreover, we can use unexplained “magic numbers” in
the code, that we would presumably have to learn from
training data. Finally, the point of anomaly detectors is to
produce purely automatic algorithms to solve a problem.
However, the “one-liner” challenge requires some human
creativity (although most of our examples took only a few
seconds and did not tax our ingenuity in the slightest).

Nevertheless, our simple definition gets at the heart of
our point. If we can quickly create a simple expression to
separate out anomalies, it strongly suggests that it was
not necessary to use several thousands of lines of code
and tune up to a dozen parameters to do it.

Perhaps the best way to see this is to imagine that we
give the same challenge to create a “one-liner” for differ-
entiating protein-coding and noncoding RNA [13], or we
had the challenge of separating positive vs negative Yelp
reviews. Both of these are also one-dimensional problems
on which deep learning appears to have made significant
progress in recent years [13]. However, it seems incon-
ceivable that the bioinformatic or text datasets considered
in the literature could be teased apart with a single line of
code, no matter how contrived. These are intrinsically
hard problems, and the communities working on them
are using intrinsically challenging datasets.

To illustrate our point, consider Fig. 1, which shows an
example from the OMNI dataset [3]. The example is a
multiple-dimensional dataset, here we consider only di-
mension 19.
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17 M19 (OmniAnomaly/ServerMachineDataset/test/machine-3-11.txt, Column 19)

: A Ground Truth
L L diff(M19) > 0.1
1 1_M19<0.01

r T T T 1
0 10,000 20,000 30,000

Fig. 1. (top to bottom) Dimension 19 from SDM3-11 dataset. A binary
vector (red) showing the ground truth anomaly labels. Three exam-
ples of “one-liners” that can solve this problem.

There are dozens of simple one-liners that solve this
problem. In the figure we show three representative ex-
amples.

Let us take the time to preempt some possible objec-
tions to this demonstration.

o All the one-liners have a parameter. True, but recall
that most anomaly detection algorithms, especially
ones based on deep learning, have ten or more pa-
rameters. Moreover, the results here are not par-
ticularly sensitive to the parameter we set.

e The choice of dimension was cherry-picked. We delib-
erately chose one of the harder of the 38 dimen-
sions here. Most of the rest are even easier to solve.

e The choice of problem was cherry-picked. Of the twen-
ty-eight example problems in this data archive, at
least half are this easy to solve with one-liners.

o The fact that you can solve this problem in one line,
does not mean that other algorithms that are successful
in this dataset are not useful. True, we have acknowl-
edged that point in multiple places in this work
and are happy to do so again here.

The second most cited benchmark is Numenta [6]. The
Numenta archive is commendably diverse, however most
of the examples, like the one shown in Fig. 2, readily yield
to a single line of code.

AISD: Numenta art_increase_spike_density

LR ELEEEEEEEEREEEEEEEECEL T

| Ground Truth
1 movstd(AISD,5)>10

r T T T T T T T T
0 1000 2000 3000 4000

Fig. 2. (top to bottom) The Numenta Art Increase Spike Density da-
tasets. A binary vector (red) showing the ground truth anomaly la-
bels. A “one-liner” (green) that can solve this problem.

We will not even bother to show any examples from
the NASA dataset (the interested reader can view many
examples on [17]). In about half the cases the anomaly is
manifest in many orders of magnitude difference in the
value of the time series. Such examples are well beyond
trivial.

Other NASA examples consist of a dynamic time series
suddenly becoming exactly constant (see in Fig. 9). For
those examples, we can flag an anomaly if, say, three con-
secutive values are the same, with something such as
diff (diff(TS)) ==

Having said that, perhaps 10% of the examples in the
NASA archive are challenging, although even those ex-
amples do not need to avail of the power of deep learn-
ing, as the yield to decade-old simple ideas [18].

The Yahoo archive [5] is by far the most cited in the lit-

erature. It contains a mixture of real and synthetic da-
tasets. Let us consider the first real dataset, which hap-
pens to be one of the more challenging examples (at least
to the human eye). However, as Fig. 3 shows, it readily
yields to a one-liner.

0.8

Ground Truth M R1: Yahoo Al-Reall
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T
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T
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| R1>0.45
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Fig. 3. Yahoo A1-Real1. A binary vector (red) showing the ground
truth anomaly labels. An example of a “one-liner” (blue) that can
solve this problem. A zoom-in shows how precisely the simple one-
linear can match the ground truth.

Lest the reader think that we cherry-picked here, let us
consider the entire Yahoo Benchmark [5]. There are 367
time series in the Yahoo Benchmark; most of them can be
solved with a universal one-liner (1) or (2):

abs(diff (TS)) > u * movmean (abs(diff (TS)), k)
+ ¢ * movstd(abs(diff (TS)), k)

+ b (1)

diff (TS) > u * movmean (diff (TS), k)
+ ¢ * movstd(diff (TS), k)

+ b (2)

where TS is the time series, u is either 0 or 1 to determine
whether movmean is used, k is the window size to com-
pute k-points mean values and standard deviations, ¢ is
the coefficient applied to movstd and b is the offset to
adjust the center of the right-hand side of (1) or (2).

The only difference between (1) and (2) is to use either
diff (TS) or abs (diff (TS)). From (1) and (2), we can
derive the following simplified one-liners:

abs (diff (TS))
abs (diff (TS))

> b (3)
> movmean (abs (diff (TS)), k)

+ ¢ * movstd(abs(diff (TS)), k)
+ b 4)
diff (TS)
diff (TS)

> b ®)
> movmean (diff (TS), k)

+ ¢ * movstd(diff(TS), k)

+ b (6)

We did a simple bruteforce search to compute individ-
ual k, ¢ and b which solve anomaly detection problems
on all 367 time series. As the results show in Table 1, we
are surprised by the triviality of the Yahoo Benchmark:
316 out of 367 (86.1%) can be easily solved with a one-
liner.



TABLE 1
Bruteforce results on Yahoo Benchmark

Solvable # Time Series # Time Series
Dataset R . Percent
with Solved in Dataset
3) 30 67 44.8%
Al (4) 14 20.9%
Subtotal 44 67 65.7%
4 40.09
3) 0 100 0.0%
A2 4) 57 57.0%
Subtotal 97 100 97.0%
4 4.09
(5) 8 100 84.0%
A3 (6) 14 14.0%
Subtotal 98 100 98.0%
5) 39 100 39.0%
A4 (6) 38 38.0%
Subtotal 77 100 77.0%
Total 316 367 86.1%

Surprisingly, 193 out of 367, that is more than half, time
series in Yahoo Benchmark can be solved with individual
magic numbers b in (3) or (5). Even for those fourteen time
series solvable with (6) in A3 dataset, they share a com-
mon property of k =5 and ¢ = 0, while b varies case by
case.

The overall 86.1% number seems competitive with
most papers that have examined this dataset (it is difficult
to be more precise than that because of the vagaries of
scoring functions). Moreover, as we will show in Section
2.4, because of some labeling errors, this is probably as
close to perfect as can be achieved on this dataset.

In [17] we show a gallery of dozens of additional ex-
amples from Yahoo [5], Numenta [6], NASA [2] and Pei’s
Lab (OMNI) [3] that yield to one line solutions.

2.3 Unrealistic Density
This issue comes in three flavors:

e For some examples, more than half the test data
exemplars consist of a contiguous region marked
as anomalies. For example, NASA datasets D-2, M-
1 and M-2. Another dozen or so have at least 1/3 of
their length consist of a contiguous region marked
as anomalies [2].

e For some examples, there are many regions
marked as anomalies. For example, SDM exemplar
machine-2-5 has 21 separate anomalies marked in
a short region.

e Insome datasets, the annotated anomalies are very
close to each other. For example, consider Fig. 3, it
shows two anomalies sandwiching a single normal
datapoint.

There are many issues with such an unrealistic anoma-
ly density. First, it seems to blur the line between classifica-
tion and anomaly detection. In most real-world settings, the
prior probability of an anomaly is expected to be only
slightly greater than zero. Having half the data consist of
anomalies seems to violate the most fundamental as-
sumption of the task. Moreover, many algorithms are
very sensitive to the priors.

Another issue is that this unrealistic density greatly
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confuses the task of scoring and comparing algorithms.
Suppose we have a dataset with ten anomalies, one at
about midnight for ten days, reflecting an increasingly
weakening pump filling a tank at the start of a batch pro-
cess. We could imagine two rival algorithms, each of
which managed to detect a single anomaly. However, one
algorithm finds the first anomaly, and the other algorithm
finds the last. These outcomes correspond to very differ-
ent practical results when deployed. The former saves ten
bad batches being created, the latter only one. We might
imagine rewarding more for earlier detection, and in fact
the Numenta team [6] (among others) have suggested
that. However, the resulting scoring function is exceed-
ingly difficult to interpret, and almost no one uses this
[19].

We believe that the ideal number of anomalies in a sin-
gle testing time series is exactly one. Moreover, this num-
ber should be communicated with the dataset. This makes
the users task a little easier. Instead of trying to predict if
there is an anomaly in the dataset, the algorithm should
just return the most likely location of the anomaly. How-
ever, for this slight simplification, we gain the fact that the
evaluation is now binary. By testing on multiple datasets,
we can report the aggregate results as simple accuracy,
which is intuitively interpretable.

2.4 Mislabeled Ground Truth

All of the benchmark datasets appear to have mislabeled
data, both false positives and false negatives. Of course, it
seems presumptuous of us to make that claim, as the orig-
inal creators of the datasets may have had access to out-
of-band data they used to produce the labels. Neverthe-
less, we believe that many of the examples we claim are
compelling enough to be unambiguous.

For example, consider the snippet of Yahoo Al-Real32
shown in Fig. 4. Any algorithm that points to location B
will be penalized as having a false positive, but a true
positive region A, is part of the same constant line. Since
literally nothing has changed from A to B, it is hard to see
how this labeling makes sense2.

A B

1 k\l K

0.8
06 AlBenchmark-real32
04 (excerpt)

0.2

I I I I I
1100 1150 1200 1250 1300 1350 1400

Fig. 4. An excerpt from Yahoo A1-Real32. An algorithm that points to
A will be marked as a true positive. An algorithm that points to B will
be marked as a false positive.

In Fig. 5 we see another Yahoo time series. There is a
point anomaly (or “dropout”) marked with C. However,
at location 360 there is an almost identical dropout D that
is not labeled as having an anomaly.

2If the rest of the data had many short constant regions, say of length
12, then you could imagine that a good algorithm might consider the 13th
constant datapoint in a row an anomaly. However, this is the only con-
stant region in this dataset.
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Fig. 5. (top) The Yahoo A1-Real46 dataset with its class labels (red).
(bottom) Overlaying two snippets allows a one-to-one comparison
between the region of C and D. The single point marked C is a true
positive, but surprisingly, the point marked D is not.

In Fig. 6 we see a snippet of Yahoo Al-Real47 with two
labeled anomalies. The one pointed to by E seems like a
dropout, but F is a puzzle. Its rounded bottom visually
looks like a dozen other regions in this example. If we
measure its mean, min, max, variance, autocorrelation,
complexity, Euclidean distance to the nearest neighbor,
etc. and compare these numbers to other rounded bottom
regions (Fig. 6 shows two others, of the about 48), there is
simply nothing remarkable about it.

AlBenchmark-real47
(excerpt)

550 640

Fig. 6. An excerpt from Yahoo A1-Real47. Both E and F are marked
as anomalies, but it is hard to see that F is truly an anomaly.

Beyond these issues, there are other labeling issues in
the Yahoo datasets. For example, two datasets seem to be
essentially duplicates (A1Reall3 and AlReall5). An addi-
tional issue is more subjective, but some of the datasets
seem to have unreasonably precise labels. Consider the
labels shown in Fig. 7 (top).

PN

j Al1Benchmark-real67 (excerpt): Original Labels
A
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A L N | |

j AlBenchmark-real67 (excerpt): Proposed Label A MAN
A

on bt o

log(original units)  log(original units)

1260 1300 1340 1380 1420

Fig. 7. (top) An excerpt from the Yahoo A1-Real67 dataset with its
class labels (red). (bottom) Our proposed label (blue) for this da-
taset.

By analogy, some modern automobiles have anomaly
detection sensors to detect violent crashes. Imagine a fast-
moving car is involved in a crash and goes thumbing end-
over-end down the highway. At some points in the rota-
tion, the car will momentarily have a normal orientation.
However, it would be strange to label those regions as
“normal”. Similarly, in A1-Real67 after about 50 almost
identically repeated cycles, at time 1,384 the system has
clearly dramatically changed, warranting flagging an
anomaly. However, the subsequent rapid toggling be-
tween “anomaly” and “normal” seems unreasonably

precise.

There are several reasons why this matters. Most
anomaly detectors effectively work by computing statis-
tics for each subsequence of some length. However, they
may place their computed label at the beginning, the end
or the middle of the subsequence. If care is not taken, an
algorithm may be penalized because it reports a positive
just to the left (or just to the right) of a labeled region. This
is always a possible concern, but it becomes much more
of an issue with rapid toggling of states.

One of the most referenced datasets is Numenta’s NT
Taxi data, which records the taxi demand in NY City from
2014/07/01 to 2015/01/31 [6]. According to the original
labels, there are five anomalies, corresponding to the
NYC marathon, Thanksgiving, Christmas, New Year’s
Day, and a blizzard. However, as shown in Fig. 8 this
ground truth labeling seems to have issues.

New York Taxi Demand

e

ng®
1 52 o w03
:\enceo Y RE i o ron \(sg v #Oec\ W a\\ﬂ?’(d
) {no* A\ Y\
W Discord score \,abo‘o T " W}\mﬁi wea‘\ PN\

¥ MMMMMMWMMWW mM/LM b
July 1¢t(2014) Jan 315 (2015)

Fig. 8. (top) Numenta’s NT Taxi data. (bottom) The time series dis-
cord score of the dataset [18], [20], with peaks annotated. The red
text denotes the ground truth labels.

One minor issue is the anomaly attributed to the NYC
marathon is really caused by a daylight-saving time ad-
justment that was made the same day.

However, the main problem with the five labels is that
they seem very subjective. After a careful visual analysis,
we believe that there are at least seven more events that
are equally worthy of being labeled anomalies, including
Independence Day, Labor Day and MLK Day. In addition
to these USA holidays, we can easily detect the impromp-
tu protests that followed the grand jury decision not to
indict officers involved in the death of Eric Garner, “Large
groups shouted and carried signs through Times Square... Pro-
testers temporarily blocked traffic in the Lincoln Tunnel and on
the Brooklyn Bridge” [21], and the more formal protest
march that followed ten days later.

It is difficult to overstate the implications of this find-
ing. At least dozens of papers have compared multiple
algorithms on this dataset [6], [10], [11]. However, it is
possible that an algorithm that was reported as perform-
ing very poorly, finding zero true positives and multiple
false positives, actually performed very well, discovering
Grand Jury, BLM march, Comic Con, Labor Day and Cli-
mate March, etc.

Finally, let us consider an example from the NASA ar-
chive [2]. In Fig. 9 we show three snippets from a test set.
One of the snippets is labeled with the only anomaly
acknowledged in this dataset. The anomaly corresponds
to a dynamic behavior, becoming “frozen” for a period of
time. However, the two other snippets also have this
strange neighbor, but are not marked as anomalies. As
always, it is possible that the creators of this archive have
access to some out-of-band information that justifies this
(none of the metadata or reports that accompany the data
discuss this). However, in this case, it is particularly hard



to believe these labels. In any case, suppose we compare
two algorithms on this dataset. Imagine that one finds just
the first true anomaly, and the other finds all three events
highlighted in Fig. 9. Should we really report the former
algorithm as being vastly superior?
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Fig. 9. (top to bottom) Three snippets from Mars Science Laboratory:
G-1. The topmost one has the only labeled anomaly in this dataset.
However, the bottom two snippets have essentially identical behav-
iors as the anomaly, but are not identified as such.

2.5 Run-to-failure Bias

There is an additional issue with at least the Yahoo (and
NASA) datasets. As shown in Fig. 10, many of the anoma-
lies appear towards the end of the test datasets.

30 Location of the rightmost anomaly label for the Yahoo A1
25 datasets, normalized as a percentage of the full length

0% 100%

Fig. 10. The locations of the Yahoo A1 anomalies (rightmost, if there
are more than one) are clearly not randomly distributed.

It is easy to see why this could be true. Many real-
world systems are run-to-failure, so in many cases, there
is no data to the right of the last anomaly. However, it is
also easy to see why this could be a problem, as it drasti-
cally affects the default rate. A naive algorithm that simp-
ly labels the last point as an anomaly has an excellent
chance of being correct.

2.6 Summary of Benchmark Flaws

We believe that we have demonstrated that the classic
time series anomaly detection archives are irretrievably
flawed. For example, if we were told that algorithm A
could achieve an F1 score of 1.0 on one of these datasets,
should we be impressed? Given what we know about the
amount of mislabeling on these datasets, we should not
be impressed, instead we should have to suspect fraud or
(much more plausibly) error.

However, suppose instead that we were told that algo-
rithm B could achieve an F1 score of 0.9 on one of these
datasets. Given what we know about the triviality of
these datasets, this seems like something we could match
or beat with decades-old algorithms. Thus, there is simply
no level of performance that would suggest the utility of a
proposed algorithm.
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Similarly, if we were told that algorithm C was com-
pared to algorithm D on these datasets, and algorithm C
emerged as being an average of 20% better, could we now
assume that algorithm C really is a better algorithm in
general? Again, given what we know about these da-
tasets, even a claimed 20% improvement (larger than the
typically claimed margin of improvement) would not
imbue confidence. Recall just Fig. 8, on that dataset, if
algorithm C scored a perfect score, relative to the claimed
labels, we should regard it as a poor algorithm with low
sensitivity.

3 INTRODUCING THE UCR ANOMALY ARCHIVE

Having observed the faults of many existing anomaly
detection benchmarks, we have used the lessons learned
to create a new benchmark dataset, The UCR Time Series
Anomaly Archive [17]. As we explain below, we have en-
deavored to make our resource free of the issues we have
noted, with one exception. A small fraction of our datasets
may be solvable with a one-liner. There are two reasons
for this. First, we wanted to have a spectrum of problems
ranging from easy to very hard. Second, there are occa-
sionally real-word anomalies that manifest themselves in
a way that is amenable to a one-liner, and their inclusion
will allow researchers to make claims about the generality
of their ideas. For example, AspenTech, an oil and gas
digital historian, encodes missing data as -9999. If the da-
ta is ported to another system and normalized, the exact
value of -9999 may change, but such a rapid decrease in
value should rightly trigger an anomaly. Such dropouts
are generally easy to discover with a one-liner.

To prevent the datasets in the archive reflecting the
current authors’ biases and interests too much, we broad-
casted a call for datasets on social media platforms read
by data scientists, and we wrote to hundreds of research
groups that had published a paper with “anomaly detec-
tion” in the title in the last three years. Alas, this did not
yield any contributions. Nevertheless, the datasets span
many domains, including medicine, sports, entomology,
industry, space science, robotics, etc.

As we discussed in Section 2.3, we believe that the ide-
al number of anomalies in a test dataset is one. The reader
will be curious as to how we ensured this for our datasets.
Clearly, we do not have space to explain this for each da-
taset (although the archive does have detailed provenance
and metadata for each dataset). Below we show two rep-
resentative examples to explain how we created single
anomaly datasets.

3.1 Natural Anomalies Confirmed Out-of-Band

Consider Fig. 11 which shows an example of one of the
datasets in our archive. The first 2,500 datapoints (the
’2500” in the file’s name) are designed to be used as train-
ing data, and the anomaly itself is located between data-
points 5,400 and 5,600 (the ‘5400_5600" in the file’s name)
indicate the location of the anomaly.
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Fig. 11. (top) UCR_Anomaly_BIDMC1_2500_5400_5600, a dataset
from our archive. (bottom) A zoom-in of the region containing the
anomaly. A PVC observed in an ECG that was recorded in parallel
offers out-of-band evidence that this is a true anomaly.

Here the anomaly is a little subtle. How can we be so
confident that is it semantically an anomaly? We can
make this assertion because we examined the electrocar-
diogram that was recorded in parallel. This was the only
region that had an abnormal heartbeat, a PVC. Note that
there is a slight lag in the timing, as an ECG is an electrical
signal, and the pleth signal is mechanical (pressure). How-
ever, the scoring functions typically have a little “play” to
avoid the brittleness of requiring spurious precision.

Note that we did not directly create an ECG bench-
mark here because it is too simple (although we do have a
handful of equally simple examples in the archive). We
used this general technique, of using obvious out-of-band
data to annotate subtle data, to create many of our
benchmark datasets.

3.2 Synthetic, but Highly Plausible Anomalies

We can also create single anomaly datasets in the follow-
ing way. We find a dataset that is free of anomalies, then
insert an anomaly into a random location. However, we
want to do this in a way such that the resulting dataset is
completely plausible and natural. Fig. 12 shows an exam-
ple of how we can achieve this.
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Fig. 12. (top) UCR_Anomaly_park3m_60000_72150_72495, a da-
taset from our Archive. (bottom) This individual had a highly asym-
metric gait, so we created an anomaly by swapping in a single left
foot cycle in a time series that otherwise records the right foot.

Here we started with a two-dimensional time series,
containing the left and right foot telemetry on a force
plate. The data came from an individual with an antalgic
gait, with a near normal right foot cycle (RFC), but a ten-
tative and weak left foot cycle (LFC). Here we replaced a
single, randomly chosen RFC with the corresponding
LFC (shifting it by a half cycle length). The resulting da-
taset looks comply natural, modeling a normal gait,
where for one cycle the individual felt a sudden spasm in
the leg.

This dataset has another source of viability that hap-
pens three or four times. Because the force plate appa-
ratus is of finite length, the gait speed changes as the user
circles around at the end of the device. However, we took
pains to ensure that both the training and test data have
examples of this behavior, so it should not be flagged as
an anomaly.

When creating such datasets, we attempted to thread
the needle between being too easy, and too difficult. Here
we are confident that this example is not impossibly cryp-
tic, as nine out of ten volunteers we asked could identify
this anomaly after careful visual inspection.

4 RECOMMENDATIONS

We conclude with some recommendations for the com-
munity.

4.1 Existing Datasets should be Abandoned

The community should abandon the Yahoo [5], Numenta
[6], NASA [2] and OMNI [3] benchmark datasets. As we
have demonstrated, they are irretrievably flawed. Moreo-
ver, existing papers that evaluate or compare algorithms
primarily or exclusively on these datasets should be dis-
counted (or, ideally reevaluated on new challenging da-
tasets).

4.2 Algorithms should be Explained with Reference
to their Invariances

We would argue that the task of time series classification
has seen more progress in recent years. In that communi-
ty, it is understood that it is often useful to discuss novel
algorithms in terms of the invariances they support [22].
These invariances can include amplitude scaling, offset,
occlusion, noise, linear trend, warping, uniform scaling,
etc. [22]. This can be a very useful lens for a practitioner to
view both domains and algorithms. For example, suppose
we wish to classify mosquitoes sex using a Single-Sided
Amplitude Spectrum of their flight sounds (as was done
in [23]). With a little introspection about entomology and
signal processing, we can see that we want any algorithm
in this domain to be invariant to the amplitude of the sig-
nal. We also want some limited warping invariance to
compensate for the fact that insect’s wingbeat frequency
has a dependence of temperature, but not too much warp-
ing, which might warp a sluggish female (about 400 Hz)
with a much faster male (about 500 Hz). This immediately
suggests using a nearest neighbor classifier, with area-
under-the-curve constrained DTW (cDTW) as the distance
measure. Here, seeing the problem as choosing the right
invariances is a very helpful way to both communicate
the problem and search the literature for the right solu-
tion.

In contrast, one thing that is striking about many re-
cent papers in anomaly detection is that the authors do
not clearly communicate under what circumstances the
proposed algorithms should work for practitioners that
might want to use them. (The work of [24] is a notable
exception.) For example, would the ideas in [3] work if
my data was similar, but had a wandering baseline that
was not relevant to the normal/anomaly distinction?



We suggest that authors could communicate the im-
portant invariances with figures.

Consider Fig. 13 (top) which shows a one-minute long
electrocardiogram that contains a single anomaly (a
premature ventricular contraction). The figure also shows
the anomaly score from two methods, Telemanom [2] and
Discord [18]. Here we are only interested in the relative
values, so we omitted the Y-axis, in both cases, the higher
values are considered more anomalous. In this example
the anomaly is very obvious, and gratifyingly, both meth-
ods peak at the location of the anomaly. Visually, we
might claim that Discords offer more discrimination (in-
formally, the difference between the highest value and the
mean values).
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Fig. 13. (top) One minute of an electrocardiogram with an obvious
anomaly that is correctly identified by two very different methods.
Telemanom uses the first 3,000 datapoints from training, using the
original authors suggested settings. Discord uses no training data.
(bottom) The same electrocardiogram with noise added confuses
one of the algorithms more that than the other.

In Fig. 13 (bottom) we show the same time series, after
we added a significant amount of Gaussian noise. The
Discord approach now provides less discrimination, but
still peaks in the right place. In contrast, Telemanom now
peaks in the wrong location.

This example suggests that one approach might be bet-
ter than the other if we expect to encounter noisy data.
We are not suggesting that such visualizations replace the
reporting of metrics such as precision, recall and F1 score,
etc. However, for the datasets we consider in this work,
those metrics often summarize an algorithm’s predictions
at just two or three locations. In contrast, the plots shown
in Fig. 13 visually summarize the algorithm’s predictions
at 12,000 locations, and give us a much richer intuition as
to the algorithms invariances.

4.3 Visualize the Data and Algorithms Output
The point is partly subsumed by the previous point, but
worth explicitly stating.

It is very surprising to note that many papers that
study time series anomaly detection plot few (as few as
zero) examples of the time series themselves, in spite of
the fact that time series analytics (unlike say protein
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strings) is inherently a visual domain.

This is more than just a presentation issue; it informs
how we should do research. We suspect that some re-
searchers rarely view the time series, they simply pass
objects to a black box and look at the F1 scores, etc. One
reason we believe this is that the four issues we note in
this work are readily visually apparent, they do not need
any tools to discover, other than a way to plot the data.
For example, the issues with Numenta’s NT Taxi dataset
discussed in Section 2.4 simply “jump out” of the screen if
you plot the data, and the entire data can be comfortably
examined on a desktop screen, without even the need for
zoom or pan [6]. Yet to our knowledge, no one has noted
these problems before.

4.4 A Possible Issue with Scoring Functions

In this work we have mostly confined our interest to
problems with the current datasets. Others have consid-
ered problems with current scoring functions [19]. How-
ever, it would be remiss of us not to note a simple poten-
tial issue with scoring functions, especially when compar-
ing rival algorithms. As we noted above, algorithms can
place their computed anomaly score at the beginning, the
end or the middle of the subsequence. Fig. 13 (top) nicely
illustrates this. Both approaches can find the obvious
anomaly, but Telemanom places its peak earlier than Dis-
cords?. It is easy to see that unless we are careful to build
some “slop” into what we accept as a correct answer, we
run the risk of a systemic bias against an algorithm that
simply formats its output differently to its rival. As be-
fore, visualization of the algorithms, together with visuali-
zation of the acceptable answer range (the red bar in Fig.
13) would go a long way to boost a reader’s confidence
that the evaluation is fair.

4.5 The “deep learning is the answer” Assumption
should be Revisited

Many recent papers seem to pose their research question
as: “It is obvious that deep learning is the answer to anomaly
detection, here we research the question of what is the best deep
learning variant.” Of course, it is logically possible that
deep learning is competitive for anomaly detection, either
in general, or in some well-defined circumstances. How-
ever, given our findings above, we are not aware of a sin-
gle paper that presents forceful reproducible evidence that
deep learning outperforms much simpler methods. For
example, Fig. 13 shows that a decades-old method [20] is
at least competitive with a highly cited deep-learning ap-
proach on one problem, and Nakamura et al. [18] provide
similar evidence on several datasets. As always, absence of
evidence is not evidence of absence. Nevertheless, we urge
readers to give full consideration to existing methods,
which may be competitive, and which are almost always
faster, more intuitive, and much simpler compared to
deep leaning methods that are often slow to train, opaque
and heavily parameter laden.

3 This should not be confused with the claim that Telemanom discovers
the anomaly earlier, which may or may not be true. This is only a minor
claim about formatting of a particular implementation’s output.
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5 CONCLUSIONS

We have shown that the most commonly used bench-
marks for anomaly detection have flaws that make them
unsuitable for evaluating or comparing anomaly detec-
tion algorithms. On a more positive note, we have intro-
duced a new set of benchmark datasets that is largely free
of the current benchmark’s flaws. However, we do not
regard this work as the last word on the matter. Ideally, a
committee or a workshop at a conference should gather
many diverse viewpoints on these issues, and draft rec-
ommendations for the creation of a crowdsourced set of
benchmark datasets. We hope this paper will go some
way to prod the community into action.
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