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Abstract—Time series anomaly detection has been a perennially important topic in data science, with papers dating back to the 

1950s. However, in recent years there has been an explosion of interest in this topic, much of it driven by the success of deep 

learning in other domains and for other time series tasks. Most of these papers test on one or more of a handful of popular 

benchmark datasets, created by Yahoo, Numenta, NASA, etc. In this work we make a surprising claim. The majority of the 

individual exemplars in these datasets suffer from one or more of four flaws. Because of these four flaws, we believe that many 

published comparisons of anomaly detection algorithms may be unreliable, and more importantly, much of the apparent 

progress in recent years may be illusionary. In addition to demonstrating these claims, with this paper we introduce the UCR 

Time Series Anomaly Datasets. We believe that this resource will perform a similar role as the UCR Time Series Classification 

Archive, by providing the community with a benchmark that allows meaningful comparisons between approaches and a 

meaningful gauge of overall progress. 
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1 INTRODUCTION

IME series anomaly detection has been a perennially 
important topic in data science, with papers dating 

back to the dawn of computer science [1]. However, in the 
last five years there has been an explosion of interest in 
this topic, with at least one or two papers on the topic 
appearing each year in virtually every database, data 
mining and machine learning conference, including 
SIGKDD [2], [3], ICDM [4], ICDE, SIGMOD, VLDB, etc. 

This increase in interest seems to be largely driven by 
researchers anxious to transfer the considerable success of 
deep learning in other domains and from other time se-
ries tasks such as classification. 

Most of these papers test on one or more of a handful 
of popular benchmark datasets, created by Yahoo [5], 
Numenta [6], NASA [2] or Pei’s Lab (OMNI) [3], etc. In 
this work we make a surprising claim. The majority of the 
individual exemplars in these datasets suffer from one or 
more of four flaws. These flaws are triviality, unrealistic 
anomaly density, mislabeled ground truth and run-to-failure 
bias. Because of these four flaws, we believe that most 
published comparisons of anomaly detection algorithms 
may be unreliable. More importantly, we believe that 
much of the apparent progress in recent years may be 
illusionary. 

For example, Qiu et al. [7] introduce a “novel anomaly 
detector for time-series KPIs based on supervised deep-learning 
models with convolution and long short-term memory (LSTM) 

neural networks, and a variational auto-encoder (VAE) over-
sampling model.” This description sounds like it has many 
“moving parts”, and indeed, the dozen or so explicitly 
listed parameters include: convolution filter, activation, 
kernel size, strides, padding, LSTM input size, dense in-
put size, softmax loss function, window size, learning rate 
and batch size. All of this is to demonstrate “accuracy ex-
ceeding 0.90 (on a subset of the Yahoo’s anomaly detection 
benchmark datasets).” However, as we will show, much of 
the results of this complex approach can be duplicated 
with a single line of code and a few minutes of effort. 

This “one-line-of-code” argument is so unusual that it 
is worth previewing it before we formally demonstrate it 
in Section 2.2 below. Almost daily, the popular press 
vaunts a new achievement of deep learning. Picking one 
at random, in a recent paper [8], we learn that deep learn-
ing can be used to classify mosquitos’ species. In particu-
lar, the proposed algorithm had an accuracy of 97.8% 
when distinguishing Aedes vexans from Culex triaeniorhyn-
chus. Should we be impressed? One of the current authors 
(Keogh) has significant computational experience work-
ing with mosquitos, and he is impressed. 

Suppose however that someone downloaded the origi-
nal 1,185 images from the study and showed that they 
could classify them with 100% accuracy using a single 
line of code1. If that happened, there are two things we 
can confidently say: 

• We would not for one moment imagine that the 
one line of code had any particular value as a clas-
sifier. We would assume that this was some kind of 
“trick”. Perhaps the Aedes images were in JPEG 

 

1 To be clear, we choose this example because it was the first hit for a 
Google search for “novel deep learning applications”. We have no reason 
to doubt the claims of this paper, which we only skimmed. 
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format and the Culex images were in GIF format. 
Or perhaps one species was recorded in color, and 
the other in B/W. Something interesting is clearly 
happening, but it is surely not the case that a use-
ful entomological image classification algorithm 
takes a single line of code. 

• We would have lost some confidence in the origi-
nal paper’s results. It is still likely that the paper is 
genuinely doing something useful. However, we 
would all be a lot happier trusting the paper ’s con-
tribution if the authors released a statement to the 
effect of “we converted all files to JPEG format, and all 
images to 16-bit B/W, and reran the experiments get-
ting similarly good results. Moreover, we are confident 
that our new publicly released dataset will now not 
yield to a single line of code algorithm”. 

This is a perfect analogy of our one-line-of-code argu-
ment. Our ability to produce “one-liners” for most da-
tasets does not mean that the original papers that tested 
on these datasets are not making a contribution. Howev-
er, at a minimum it does strongly suggest that the com-
munity needs to regroup, and test on new datasets that 
would generally stump trivial one-line solutions. 

Before continuing it is important to note that our dis-
cussion of some issues with the benchmark datasets 
should in no way be interpreted as criticism of the origi-
nal introducer of these datasets. These groups have spent 
tremendous time and effort to make a resource available 
to the entire community and should rightly be commend-
ed. It is simply the case that the community must be 
aware of the severe limitations of these datasets, and the 
limitations of research efforts that rely upon them. 

2 A TAXONOMY OF BENCHMARK FLAWS 

Before discussing the four major flaws found in many 
public archives, we will briefly discuss related work, to 
put our observations into context. 

2.1 Related Work 

The literature on anomaly detection is vast [9], with a par-
ticular increase in works in just the last three to five years 
[2], [4], [5], [6], [7], [10], [11], [12], [13], [14]. Almost all 
these works test on one or more public datasets created 
by a handful of groups, including Yahoo [5], Numenta [6], 
NASA [2] or OMNI [3]. Some papers test on these public 
datasets in addition to a private dataset. In many cases, 
the authors do not even show a plot of any data from the 
private datasets. Thus, here we can clearly make no 
claims about such private datasets, other than to note that 
the use of private datasets thwarts the growing move to 
reproducibility. In addition, the use of private datasets 
will always be accompanied by the possibility of uncon-
scious cherry-picking that the reader or the reviewer will 
never know about.  

There is a strong implicit assumption that doing well 
on one of the public datasets is a sufficient condition to 
declare an anomaly detection algorithm useful (and there-
fore warrant publication or patenting). Indeed, this as-
sumption is stated explicitly in many works, for example 

Huang [15] notes “(The Yahoo) A1Benchmark is undoubted-
ly a good time-series dataset for testing the general effectiveness 
of an anomaly detection method”, and Gao et al. [16] gush 
that “Yahoo data set has a good coverage of different varieties of 
anomalies in time series, such as seasonality, level change, vari-
ance change and their combinations.” However, we are not 
aware of any work that has treated this assumption criti-
cally. 

In the following four sections, we will introduce four 
issues with the public datasets that we believe throws 
doubt on the assumption that they are suitable for com-
paring algorithms or gauging progress in time series 
anomaly detection.  

2.2 Triviality 

A surprisingly large fraction of the problems in the 
benchmark datasets are so simple to solve that reporting 
success in solving them seems pointless. Of course, trivial 
is not a well-defined word, so, to firm up our claim we 
will make a practical testable definition: 

Definition 1. A time series anomaly detection problem is 
trivial if it can be solved with a single line of standard 
library MATLAB code. We cannot “cheat” by calling a 
high-level built-in function such as kmeans or Classifica-
tionKNN or calling custom written functions. We must 
limit ourselves to basic vectorized primitive opera-
tions, such as mean, max, std, diff, etc. 

This definition is clearly not perfect. MATLAB allows 
nested expressions, and thus we can create a “one-liner” 
that might be more elegantly written as two or three lines. 
Moreover, we can use unexplained “magic numbers” in 
the code, that we would presumably have to learn from 
training data. Finally, the point of anomaly detectors is to 
produce purely automatic algorithms to solve a problem. 
However, the “one-liner” challenge requires some human 
creativity (although most of our examples took only a few 
seconds and did not tax our ingenuity in the slightest). 

Nevertheless, our simple definition gets at the heart of 
our point. If we can quickly create a simple expression to 
separate out anomalies, it strongly suggests that it was 
not necessary to use several thousands of lines of code 
and tune up to a dozen parameters to do it. 

Perhaps the best way to see this is to imagine that we 
give the same challenge to create a “one-liner” for differ-
entiating protein-coding and noncoding RNA [13], or we 
had the challenge of separating positive vs negative Yelp 
reviews. Both of these are also one-dimensional problems 
on which deep learning appears to have made significant 
progress in recent years [13]. However, it seems incon-
ceivable that the bioinformatic or text datasets considered 
in the literature could be teased apart with a single line of 
code, no matter how contrived. These are intrinsically 
hard problems, and the communities working on them 
are using intrinsically challenging datasets. 

To illustrate our point, consider Fig. 1, which shows an 
example from the OMNI dataset [3]. The example is a 
multiple-dimensional dataset, here we consider only di-
mension 19. 
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Fig. 1. (top to bottom) Dimension 19 from SDM3-11 dataset. A binary 
vector (red) showing the ground truth anomaly labels. Three exam-
ples of “one-liners” that can solve this problem. 

There are dozens of simple one-liners that solve this 
problem. In the figure we show three representative ex-
amples. 

Let us take the time to preempt some possible objec-
tions to this demonstration. 

• All the one-liners have a parameter. True, but recall 
that most anomaly detection algorithms, especially 
ones based on deep learning, have ten or more pa-
rameters. Moreover, the results here are not par-
ticularly sensitive to the parameter we set. 

• The choice of dimension was cherry-picked. We delib-
erately chose one of the harder of the 38 dimen-
sions here. Most of the rest are even easier to solve. 

• The choice of problem was cherry-picked. Of the twen-
ty-eight example problems in this data archive, at 
least half are this easy to solve with one-liners. 

• The fact that you can solve this problem in one line, 
does not mean that other algorithms that are successful 
in this dataset are not useful. True, we have acknowl-
edged that point in multiple places in this work 
and are happy to do so again here. 

The second most cited benchmark is Numenta [6]. The 
Numenta archive is commendably diverse, however most 
of the examples, like the one shown in Fig. 2, readily yield 
to a single line of code. 

 

Fig. 2. (top to bottom) The Numenta Art Increase Spike Density da-
tasets. A binary vector (red) showing the ground truth anomaly la-
bels. A “one-liner” (green) that can solve this problem. 

We will not even bother to show any examples from 
the NASA dataset (the interested reader can view many 
examples on [17]). In about half the cases the anomaly is 
manifest in many orders of magnitude difference in the 
value of the time series. Such examples are well beyond 
trivial. 

Other NASA examples consist of a dynamic time series 
suddenly becoming exactly constant (see in Fig. 9). For 
those examples, we can flag an anomaly if, say, three con-
secutive values are the same, with something such as 
diff(diff(TS)) == 0.  

Having said that, perhaps 10% of the examples in the 
NASA archive are challenging, although even those ex-
amples do not need to avail of the power of deep learn-
ing, as the yield to decade-old simple ideas [18]. 

The Yahoo archive [5] is by far the most cited in the lit-

erature. It contains a mixture of real and synthetic da-
tasets. Let us consider the first real dataset, which hap-
pens to be one of the more challenging examples (at least 
to the human eye). However, as Fig. 3 shows, it readily 
yields to a one-liner. 

 

Fig. 3. Yahoo A1-Real1. A binary vector (red) showing the ground 
truth anomaly labels. An example of a “one-liner” (blue) that can 
solve this problem. A zoom-in shows how precisely the simple one-
linear can match the ground truth. 

Lest the reader think that we cherry-picked here, let us 
consider the entire Yahoo Benchmark [5]. There are 367 
time series in the Yahoo Benchmark; most of them can be 
solved with a universal one-liner (1) or (2): 

abs(diff(TS)) > u * movmean(abs(diff(TS)), k) 

+ c * movstd(abs(diff(TS)), k)  

+ b  (1) 

diff(TS) > u * movmean(diff(TS), k) 

+ c * movstd(diff(TS), k)  

+ b  (2) 

where TS is the time series, u is either 0 or 1 to determine 
whether movmean is used, k is the window size to com-
pute k-points mean values and standard deviations, c is 
the coefficient applied to movstd and b is the offset to 
adjust the center of the right-hand side of (1) or (2). 

The only difference between (1) and (2) is to use either 
diff(TS) or abs(diff(TS)). From (1) and (2), we can 
derive the following simplified one-liners: 

abs(diff(TS)) > b  (3) 

abs(diff(TS)) > movmean(abs(diff(TS)), k)  

+ c * movstd(abs(diff(TS)), k) 

+ b  (4) 

diff(TS) > b  (5) 

diff(TS) > movmean(diff(TS), k)  

+ c * movstd(diff(TS), k)  

+ b  (6) 

We did a simple bruteforce search to compute individ-
ual k, c and b which solve anomaly detection problems 
on all 367 time series. As the results show in Table 1, we 
are surprised by the triviality of the Yahoo Benchmark: 
316 out of 367 (86.1%) can be easily solved with a one-
liner. 
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TABLE 1 
Bruteforce results on Yahoo Benchmark 

Dataset 
Solvable  

with 

# Time Series 

Solved 

# Time Series  

in Dataset 
Percent 

A1 

(3) 30 
67 

44.8% 

(4) 14 20.9% 

Subtotal 44 67 65.7% 

A2 

(3) 40 
100 

40.0% 

(4) 57 57.0% 

Subtotal 97 100 97.0% 

A3 

(5) 84 
100 

84.0% 

(6) 14 14.0% 

Subtotal 98 100 98.0% 

A4 

(5) 39 
100 

39.0% 

(6) 38 38.0% 

Subtotal 77 100 77.0% 

 Total 316 367 86.1% 

Surprisingly, 193 out of 367, that is more than half, time 
series in Yahoo Benchmark can be solved with individual 
magic numbers b in (3) or (5). Even for those fourteen time 
series solvable with (6) in A3 dataset, they share a com-
mon property of k = 5 and c = 0, while b varies case by 
case. 

The overall 86.1% number seems competitive with 
most papers that have examined this dataset (it is difficult 
to be more precise than that because of the vagaries of 
scoring functions). Moreover, as we will show in Section 
2.4, because of some labeling errors, this is probably as 
close to perfect as can be achieved on this dataset. 

In [17] we show a gallery of dozens of additional ex-
amples from Yahoo [5], Numenta [6], NASA [2] and Pei’s 
Lab (OMNI) [3] that yield to one line solutions. 

2.3 Unrealistic Density 

This issue comes in three flavors: 
• For some examples, more than half the test data 

exemplars consist of a contiguous region marked 
as anomalies. For example, NASA datasets D-2, M-
1 and M-2. Another dozen or so have at least 1/3 of 
their length consist of a contiguous region marked 
as anomalies [2]. 

• For some examples, there are many regions 
marked as anomalies. For example, SDM exemplar 
machine-2-5 has 21 separate anomalies marked in 
a short region. 

• In some datasets, the annotated anomalies are very 
close to each other. For example, consider Fig. 3, it 
shows two anomalies sandwiching a single normal 
datapoint. 

There are many issues with such an unrealistic anoma-
ly density. First, it seems to blur the line between classifica-
tion and anomaly detection. In most real-world settings, the 
prior probability of an anomaly is expected to be only 
slightly greater than zero. Having half the data consist of 
anomalies seems to violate the most fundamental as-
sumption of the task. Moreover, many algorithms are 
very sensitive to the priors. 

Another issue is that this unrealistic density greatly 

confuses the task of scoring and comparing algorithms. 
Suppose we have a dataset with ten anomalies, one at 
about midnight for ten days, reflecting an increasingly 
weakening pump filling a tank at the start of a batch pro-
cess. We could imagine two rival algorithms, each of 
which managed to detect a single anomaly. However, one 
algorithm finds the first anomaly, and the other algorithm 
finds the last. These outcomes correspond to very differ-
ent practical results when deployed. The former saves ten 
bad batches being created, the latter only one. We might 
imagine rewarding more for earlier detection, and in fact 
the Numenta team [6] (among others) have suggested 
that. However, the resulting scoring function is exceed-
ingly difficult to interpret, and almost no one uses this 
[19]. 

We believe that the ideal number of anomalies in a sin-
gle testing time series is exactly one. Moreover, this num-
ber should be communicated with the dataset. This makes 
the users task a little easier. Instead of trying to predict if 
there is an anomaly in the dataset, the algorithm should 
just return the most likely location of the anomaly. How-
ever, for this slight simplification, we gain the fact that the 
evaluation is now binary. By testing on multiple datasets, 
we can report the aggregate results as simple accuracy, 
which is intuitively interpretable. 

2.4 Mislabeled Ground Truth 

All of the benchmark datasets appear to have mislabeled 
data, both false positives and false negatives. Of course, it 
seems presumptuous of us to make that claim, as the orig-
inal creators of the datasets may have had access to out-
of-band data they used to produce the labels. Neverthe-
less, we believe that many of the examples we claim are 
compelling enough to be unambiguous. 

For example, consider the snippet of Yahoo A1-Real32 
shown in Fig. 4. Any algorithm that points to location B 
will be penalized as having a false positive, but a true 
positive region A, is part of the same constant line. Since 
literally nothing has changed from A to B, it is hard to see 
how this labeling makes sense2. 

 

Fig. 4. An excerpt from Yahoo A1-Real32. An algorithm that points to 
A will be marked as a true positive. An algorithm that points to B will 
be marked as a false positive. 

In Fig. 5 we see another Yahoo time series. There is a 
point anomaly (or “dropout”) marked with C. However, 
at location 360 there is an almost identical dropout D that 
is not labeled as having an anomaly. 

 

2 If the rest of the data had many short constant regions, say of length 
12, then you could imagine that a good algorithm might consider the 13th 
constant datapoint in a row an anomaly. However, this is the only con-
stant region in this dataset. 
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Fig. 5. (top) The Yahoo A1-Real46 dataset with its class labels (red). 
(bottom) Overlaying two snippets allows a one-to-one comparison 
between the region of C and D. The single point marked C is a true 
positive, but surprisingly, the point marked D is not. 

In Fig. 6 we see a snippet of Yahoo A1-Real47 with two 
labeled anomalies. The one pointed to by E seems like a 
dropout, but F is a puzzle. Its rounded bottom visually 
looks like a dozen other regions in this example. If we 
measure its mean, min, max, variance, autocorrelation, 
complexity, Euclidean distance to the nearest neighbor, 
etc. and compare these numbers to other rounded bottom 
regions (Fig. 6 shows two others, of the about 48), there is 
simply nothing remarkable about it. 

 

Fig. 6. An excerpt from Yahoo A1-Real47. Both E and F are marked 
as anomalies, but it is hard to see that F is truly an anomaly. 

Beyond these issues, there are other labeling issues in 
the Yahoo datasets. For example, two datasets seem to be 
essentially duplicates (A1Real13 and A1Real15). An addi-
tional issue is more subjective, but some of the datasets 
seem to have unreasonably precise labels. Consider the 
labels shown in Fig. 7 (top). 

 

Fig. 7. (top) An excerpt from the Yahoo A1-Real67 dataset with its 
class labels (red). (bottom) Our proposed label (blue) for this da-
taset. 

By analogy, some modern automobiles have anomaly 
detection sensors to detect violent crashes. Imagine a fast-
moving car is involved in a crash and goes thumbing end-
over-end down the highway. At some points in the rota-
tion, the car will momentarily have a normal orientation. 
However, it would be strange to label those regions as 
“normal”. Similarly, in A1-Real67 after about 50 almost 
identically repeated cycles, at time 1,384 the system has 
clearly dramatically changed, warranting flagging an 
anomaly. However, the subsequent rapid toggling be-
tween “anomaly” and “normal” seems unreasonably 

precise. 
There are several reasons why this matters. Most 

anomaly detectors effectively work by computing statis-
tics for each subsequence of some length. However, they 
may place their computed label at the beginning, the end 
or the middle of the subsequence. If care is not taken, an 
algorithm may be penalized because it reports a positive 
just to the left (or just to the right) of a labeled region. This 
is always a possible concern, but it becomes much more 
of an issue with rapid toggling of states. 

One of the most referenced datasets is Numenta’s NT 
Taxi data, which records the taxi demand in NY City from 
2014/07/01 to 2015/01/31 [6]. According to the original 
labels, there are five anomalies, corresponding to the 
NYC marathon, Thanksgiving, Christmas, New Year’s 
Day, and a blizzard. However, as shown in Fig. 8 this 
ground truth labeling seems to have issues.  

 

Fig. 8. (top) Numenta’s NT Taxi data. (bottom) The time series dis-
cord score of the dataset [18], [20], with peaks annotated. The red 
text denotes the ground truth labels. 

One minor issue is the anomaly attributed to the NYC 
marathon is really caused by a daylight-saving time ad-
justment that was made the same day.  

However, the main problem with the five labels is that 
they seem very subjective. After a careful visual analysis, 
we believe that there are at least seven more events that 
are equally worthy of being labeled anomalies, including 
Independence Day, Labor Day and MLK Day. In addition 
to these USA holidays, we can easily detect the impromp-
tu protests that followed the grand jury decision not to 
indict officers involved in the death of Eric Garner, “Large 
groups shouted and carried signs through Times Square… Pro-
testers temporarily blocked traffic in the Lincoln Tunnel and on 
the Brooklyn Bridge” [21], and the more formal protest 
march that followed ten days later. 

It is difficult to overstate the implications of this find-
ing. At least dozens of papers have compared multiple 
algorithms on this dataset [6], [10], [11]. However, it is 
possible that an algorithm that was reported as perform-
ing very poorly, finding zero true positives and multiple 
false positives, actually performed very well, discovering 
Grand Jury, BLM march, Comic Con, Labor Day and Cli-
mate March, etc. 

Finally, let us consider an example from the NASA ar-
chive [2]. In Fig. 9 we show three snippets from a test set. 
One of the snippets is labeled with the only anomaly 
acknowledged in this dataset. The anomaly corresponds 
to a dynamic behavior, becoming “frozen” for a period of 
time. However, the two other snippets also have this 
strange neighbor, but are not marked as anomalies. As 
always, it is possible that the creators of this archive have 
access to some out-of-band information that justifies this 
(none of the metadata or reports that accompany the data 
discuss this). However, in this case, it is particularly hard 
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to believe these labels. In any case, suppose we compare 
two algorithms on this dataset. Imagine that one finds just 
the first true anomaly, and the other finds all three events 
highlighted in Fig. 9. Should we really report the former 
algorithm as being vastly superior? 

 

Fig. 9. (top to bottom) Three snippets from Mars Science Laboratory: 
G-1. The topmost one has the only labeled anomaly in this dataset. 
However, the bottom two snippets have essentially identical behav-
iors as the anomaly, but are not identified as such. 

2.5 Run-to-failure Bias 

There is an additional issue with at least the Yahoo (and 
NASA) datasets. As shown in Fig. 10, many of the anoma-
lies appear towards the end of the test datasets. 

 

Fig. 10. The locations of the Yahoo A1 anomalies (rightmost, if there 
are more than one) are clearly not randomly distributed. 

It is easy to see why this could be true. Many real-
world systems are run-to-failure, so in many cases, there 
is no data to the right of the last anomaly. However, it is 
also easy to see why this could be a problem, as it drasti-
cally affects the default rate. A naïve algorithm that simp-
ly labels the last point as an anomaly has an excellent 
chance of being correct.  

2.6 Summary of Benchmark Flaws 

We believe that we have demonstrated that the classic 
time series anomaly detection archives are irretrievably 
flawed. For example, if we were told that algorithm A 
could achieve an F1 score of 1.0 on one of these datasets, 
should we be impressed? Given what we know about the 
amount of mislabeling on these datasets, we should not 
be impressed, instead we should have to suspect fraud or 
(much more plausibly) error.  

However, suppose instead that we were told that algo-
rithm B could achieve an F1 score of 0.9 on one of these 
datasets. Given what we know about the triviality of 
these datasets, this seems like something we could match 
or beat with decades-old algorithms. Thus, there is simply 
no level of performance that would suggest the utility of a 
proposed algorithm.  

Similarly, if we were told that algorithm C was com-
pared to algorithm D on these datasets, and algorithm C 
emerged as being an average of 20% better, could we now 
assume that algorithm C really is a better algorithm in 
general? Again, given what we know about these da-
tasets, even a claimed 20% improvement (larger than the 
typically claimed margin of improvement) would not 
imbue confidence. Recall just Fig. 8, on that dataset, if 
algorithm C scored a perfect score, relative to the claimed 
labels, we should regard it as a poor algorithm with low 
sensitivity. 

3 INTRODUCING THE UCR ANOMALY ARCHIVE 

Having observed the faults of many existing anomaly 
detection benchmarks, we have used the lessons learned 
to create a new benchmark dataset, The UCR Time Series 
Anomaly Archive [17]. As we explain below, we have en-
deavored to make our resource free of the issues we have 
noted, with one exception. A small fraction of our datasets 
may be solvable with a one-liner. There are two reasons 
for this. First, we wanted to have a spectrum of problems 
ranging from easy to very hard. Second, there are occa-
sionally real-word anomalies that manifest themselves in 
a way that is amenable to a one-liner, and their inclusion 
will allow researchers to make claims about the generality 
of their ideas. For example, AspenTech, an oil and gas 
digital historian, encodes missing data as -9999. If the da-
ta is ported to another system and normalized, the exact 
value of -9999 may change, but such a rapid decrease in 
value should rightly trigger an anomaly. Such dropouts 
are generally easy to discover with a one-liner. 

To prevent the datasets in the archive reflecting the 
current authors’ biases and interests too much, we broad-
casted a call for datasets on social media platforms read 
by data scientists, and we wrote to hundreds of research 
groups that had published a paper with “anomaly detec-
tion” in the title in the last three years. Alas, this did not 
yield any contributions. Nevertheless, the datasets span 
many domains, including medicine, sports, entomology, 
industry, space science, robotics, etc. 

As we discussed in Section 2.3, we believe that the ide-
al number of anomalies in a test dataset is one. The reader 
will be curious as to how we ensured this for our datasets. 
Clearly, we do not have space to explain this for each da-
taset (although the archive does have detailed provenance 
and metadata for each dataset). Below we show two rep-
resentative examples to explain how we created single 
anomaly datasets. 

3.1 Natural Anomalies Confirmed Out-of-Band 

Consider Fig. 11 which shows an example of one of the 
datasets in our archive. The first 2,500 datapoints (the 
‘2500’ in the file’s name) are designed to be used as train-
ing data, and the anomaly itself is located between data-
points 5,400 and 5,600 (the ‘5400_5600’ in the file’s name) 
indicate the location of the anomaly. 

0 100 200 300

Mars Science Laboratory: G-1

Snippet 

beginning at 

6700

Snippet 

beginning at 

5100

Snippet 

beginning at 

4600

Labeled Anomaly

Not an 

anomaly?

Not an 

anomaly?

0% 100%
0

5

10

15

20

25

30

35

Location of the rightmost anomaly label for the Yahoo A1 

datasets, normalized as a percentage of the full length 



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7 

 

 

Fig. 11. (top) UCR_Anomaly_BIDMC1_2500_5400_5600, a dataset 
from our archive. (bottom) A zoom-in of the region containing the 
anomaly. A PVC observed in an ECG that was recorded in parallel 
offers out-of-band evidence that this is a true anomaly. 

Here the anomaly is a little subtle. How can we be so 
confident that is it semantically an anomaly? We can 
make this assertion because we examined the electrocar-
diogram that was recorded in parallel. This was the only 
region that had an abnormal heartbeat, a PVC. Note that 
there is a slight lag in the timing, as an ECG is an electrical 
signal, and the pleth signal is mechanical (pressure). How-
ever, the scoring functions typically have a little “play” to 
avoid the brittleness of requiring spurious precision. 

Note that we did not directly create an ECG bench-
mark here because it is too simple (although we do have a 
handful of equally simple examples in the archive). We 
used this general technique, of using obvious out-of-band 
data to annotate subtle data, to create many of our 
benchmark datasets. 

3.2 Synthetic, but Highly Plausible Anomalies 

We can also create single anomaly datasets in the follow-
ing way. We find a dataset that is free of anomalies, then 
insert an anomaly into a random location. However, we 
want to do this in a way such that the resulting dataset is 
completely plausible and natural. Fig. 12 shows an exam-
ple of how we can achieve this. 

 

Fig. 12. (top) UCR_Anomaly_park3m_60000_72150_72495, a da-
taset from our Archive. (bottom) This individual had a highly asym-
metric gait, so we created an anomaly by swapping in a single left 
foot cycle in a time series that otherwise records the right foot. 

Here we started with a two-dimensional time series, 
containing the left and right foot telemetry on a force 
plate. The data came from an individual with an antalgic 
gait, with a near normal right foot cycle (RFC), but a ten-
tative and weak left foot cycle (LFC). Here we replaced a 
single, randomly chosen RFC with the corresponding 
LFC (shifting it by a half cycle length). The resulting da-
taset looks comply natural, modeling a normal gait, 
where for one cycle the individual felt a sudden spasm in 
the leg. 

This dataset has another source of viability that hap-
pens three or four times. Because the force plate appa-
ratus is of finite length, the gait speed changes as the user 
circles around at the end of the device. However, we took 
pains to ensure that both the training and test data have 
examples of this behavior, so it should not be flagged as 
an anomaly. 

When creating such datasets, we attempted to thread 
the needle between being too easy, and too difficult. Here 
we are confident that this example is not impossibly cryp-
tic, as nine out of ten volunteers we asked could identify 
this anomaly after careful visual inspection. 

4 RECOMMENDATIONS 

We conclude with some recommendations for the com-
munity. 

4.1 Existing Datasets should be Abandoned 

The community should abandon the Yahoo [5], Numenta 
[6], NASA [2] and OMNI [3] benchmark datasets. As we 
have demonstrated, they are irretrievably flawed. Moreo-
ver, existing papers that evaluate or compare algorithms 
primarily or exclusively on these datasets should be dis-
counted (or, ideally reevaluated on new challenging da-
tasets). 

4.2 Algorithms should be Explained with Reference 
to their Invariances 

We would argue that the task of time series classification 
has seen more progress in recent years. In that communi-
ty, it is understood that it is often useful to discuss novel 
algorithms in terms of the invariances they support [22]. 
These invariances can include amplitude scaling, offset, 
occlusion, noise, linear trend, warping, uniform scaling, 
etc. [22]. This can be a very useful lens for a practitioner to 
view both domains and algorithms. For example, suppose 
we wish to classify mosquitoes sex using a Single-Sided 
Amplitude Spectrum of their flight sounds (as was done 
in [23]). With a little introspection about entomology and 
signal processing, we can see that we want any algorithm 
in this domain to be invariant to the amplitude of the sig-
nal. We also want some limited warping invariance to 
compensate for the fact that insect’s wingbeat frequency 
has a dependence of temperature, but not too much warp-
ing, which might warp a sluggish female (about 400 Hz) 
with a much faster male (about 500 Hz). This immediately 
suggests using a nearest neighbor classifier, with area-
under-the-curve constrained DTW (cDTW) as the distance 
measure. Here, seeing the problem as choosing the right 
invariances is a very helpful way to both communicate 
the problem and search the literature for the right solu-
tion. 

In contrast, one thing that is striking about many re-
cent papers in anomaly detection is that the authors do 
not clearly communicate under what circumstances the 
proposed algorithms should work for practitioners that 
might want to use them. (The work of [24] is a notable 
exception.) For example, would the ideas in [3] work if 
my data was similar, but had a wandering baseline that 
was not relevant to the normal/anomaly distinction?  
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We suggest that authors could communicate the im-
portant invariances with figures. 

Consider Fig. 13 (top) which shows a one-minute long 
electrocardiogram that contains a single anomaly (a 
premature ventricular contraction). The figure also shows 
the anomaly score from two methods, Telemanom [2] and 
Discord [18]. Here we are only interested in the relative 
values, so we omitted the Y-axis, in both cases, the higher 
values are considered more anomalous. In this example 
the anomaly is very obvious, and gratifyingly, both meth-
ods peak at the location of the anomaly. Visually, we 
might claim that Discords offer more discrimination (in-
formally, the difference between the highest value and the 
mean values). 

 

Fig. 13. (top) One minute of an electrocardiogram with an obvious 
anomaly that is correctly identified by two very different methods. 
Telemanom uses the first 3,000 datapoints from training, using the 
original authors suggested settings. Discord uses no training data. 
(bottom) The same electrocardiogram with noise added confuses 
one of the algorithms more that than the other. 

In Fig. 13 (bottom) we show the same time series, after 
we added a significant amount of Gaussian noise. The 
Discord approach now provides less discrimination, but 
still peaks in the right place. In contrast, Telemanom now 
peaks in the wrong location.  

This example suggests that one approach might be bet-
ter than the other if we expect to encounter noisy data. 
We are not suggesting that such visualizations replace the 
reporting of metrics such as precision, recall and F1 score, 
etc. However, for the datasets we consider in this work, 
those metrics often summarize an algorithm’s predictions 
at just two or three locations. In contrast, the plots shown 
in Fig. 13 visually summarize the algorithm’s predictions 
at 12,000 locations, and give us a much richer intuition as 
to the algorithms invariances. 

4.3 Visualize the Data and Algorithms Output 

The point is partly subsumed by the previous point, but 
worth explicitly stating. 

It is very surprising to note that many papers that 
study time series anomaly detection plot few (as few as 
zero) examples of the time series themselves, in spite of 
the fact that time series analytics (unlike say protein 

strings) is inherently a visual domain. 
This is more than just a presentation issue; it informs 

how we should do research. We suspect that some re-
searchers rarely view the time series, they simply pass 
objects to a black box and look at the F1 scores, etc. One 
reason we believe this is that the four issues we note in 
this work are readily visually apparent, they do not need 
any tools to discover, other than a way to plot the data. 
For example, the issues with Numenta’s NT Taxi dataset 
discussed in Section 2.4 simply “jump out” of the screen if 
you plot the data, and the entire data can be comfortably 
examined on a desktop screen, without even the need for 
zoom or pan [6]. Yet to our knowledge, no one has noted 
these problems before. 

4.4 A Possible Issue with Scoring Functions 

In this work we have mostly confined our interest to 
problems with the current datasets. Others have consid-
ered problems with current scoring functions [19]. How-
ever, it would be remiss of us not to note a simple poten-
tial issue with scoring functions, especially when compar-
ing rival algorithms. As we noted above, algorithms can 
place their computed anomaly score at the beginning, the 
end or the middle of the subsequence. Fig. 13 (top) nicely 
illustrates this. Both approaches can find the obvious 
anomaly, but Telemanom places its peak earlier than Dis-
cords3. It is easy to see that unless we are careful to build 
some “slop” into what we accept as a correct answer, we 
run the risk of a systemic bias against an algorithm that 
simply formats its output differently to its rival. As be-
fore, visualization of the algorithms, together with visuali-
zation of the acceptable answer range (the red bar in Fig. 
13) would go a long way to boost a reader’s confidence 
that the evaluation is fair. 

4.5 The “deep learning is the answer” Assumption 
should be Revisited 

Many recent papers seem to pose their research question 
as: “It is obvious that deep learning is the answer to anomaly 
detection, here we research the question of what is the best deep 
learning variant.” Of course, it is logically possible that 
deep learning is competitive for anomaly detection, either 
in general, or in some well-defined circumstances. How-
ever, given our findings above, we are not aware of a sin-
gle paper that presents forceful reproducible evidence that 
deep learning outperforms much simpler methods. For 
example, Fig. 13 shows that a decades-old method [20] is 
at least competitive with a highly cited deep-learning ap-
proach on one problem, and Nakamura et al. [18] provide 
similar evidence on several datasets. As always, absence of 
evidence is not evidence of absence. Nevertheless, we urge 
readers to give full consideration to existing methods, 
which may be competitive, and which are almost always 
faster, more intuitive, and much simpler compared to 
deep leaning methods that are often slow to train, opaque 
and heavily parameter laden.  

 

3 This should not be confused with the claim that Telemanom discovers 
the anomaly earlier, which may or may not be true. This is only a minor 
claim about formatting of a particular implementation’s output. 
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5 CONCLUSIONS 

We have shown that the most commonly used bench-
marks for anomaly detection have flaws that make them 
unsuitable for evaluating or comparing anomaly detec-
tion algorithms. On a more positive note, we have intro-
duced a new set of benchmark datasets that is largely free 
of the current benchmark’s flaws. However, we do not 
regard this work as the last word on the matter. Ideally, a 
committee or a workshop at a conference should gather 
many diverse viewpoints on these issues, and draft rec-
ommendations for the creation of a crowdsourced set of 
benchmark datasets. We hope this paper will go some 
way to prod the community into action. 
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