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Abstract— The burgeoning age of IoT has increased the need for robust time series 

anomaly detection. While there are at least a thousand anomaly detection methods in 

the literature, one definition, time series discords, has emerged as a competitive and 

popular choice for practitioners. Time series discords are subsequences of a time series 

that are maximally far away from their nearest neighbors. Perhaps the most attractive 

feature of discords is their simplicity. Unlike many parameter laden methods, discords 

require only a single parameter to be set by the user: the subsequence length. In this 

work we argue that the utility of discords is reduced by sensitivity to this single user 

choice.  The obvious solution to this problem, computing discords of all lengths then 

selecting the best anomalies (under some measure), appears at first glance to be 

computationally untenable. However, in this work we introduce MERLIN, an algorithm 

that can efficiently and exactly find discords of all lengths in massive time series 

archives. By exploiting computational redundancies MERLIN is two orders of 

magnitude faster than comparable algorithms. We demonstrate the utility of our ideas 

on a large and diverse set of experiments and show that MERLIN can discover subtle 

anomalies that defy existing algorithms or even careful human inspection.   

Keywords: Time Series, Anomaly detection, Multi-Scale 

1 INTRODUCTION 

Humans measure things, and with rare exceptions, things change of time, producing 

time series. Time series data is ubiquitous in industrial, medical, and scientific settings. 

One of the most basic time series analytical tasks is to simply spot anomalous regions. 

In some cases this may be the end goal of the analytics, in order cases it may be simply 



a preprocessing step for a downstream task. There are at least many hundreds of 

algorithms for finding anomalies, but which should we use? 

Since their introduction, Time Series Discords have emerged as a competitive approach 

for discovering anomalies (Lin et al. 2005). For example, a team led by Vipin Kumar 

conducted an extensive empirical comparison concluding that “on 19 different publicly 

available data sets, comparing 9 different techniques (time series discords) is the best 

overall” (Chandola et. al 2009). We attribute much of this success to the simplicity of 

the definition. Time series discords are intuitively defined as the subsequences of a time 

series that are maximally far away from their nearest neighbors. This definition only 

requires a single user specified parameter, the subsequence length. With only a single 

parameter to set1, it is harder to overfit the anomaly definition, and overfitting seems to 

be a major source of false positives for this task (Chandola et. al 2009; Hundman et al. 

2018). 

To help the reader appreciate the importance of the subsequence length in anomaly 

discovery, let us consider an excerpt of the Gasoil Plant Heating Loop Data Set (Filonov 

et. al 2016). This data set had a simulated cyber-attack introduced at the time indicated 

by the red dashed line shown in Fig. 1.top. 

 

Fig. 1 top) An excerpt from Filonov’s Gasoil dataset, a reading from RT_temp.T (Filonov et. al 

2016).  bottom) The discord scores for three lengths, 1,000, 2,000 and 4,000. The higher the score, 

the more anomalous the corresponding subsequence is. 

We computed the anomaly scores for every subsequence for three different lengths. For 

the shortest length of 1,000, it is unsurprising that we get many spurious anomalies. 

This system transitions between discrete temperature states, giving it a “staircase” 

 

1 Note that some algorithms that discover discords may have other parameters, the discord representation itself 

requires just a single parameter. 
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effect. If the subsequence length is less than the length of a step, the z-normalization 

“blows up” the subsequence and produces unstable results. At the longer length of 4,000 

the curse of dimensionality is beginning to dominate. As noted by Beyer et. al. “as 

dimensionality increases, the distance to the nearest data point approaches the distance 

to the farthest data point” in (Beyer, et al. 1999). 

However, consider the plot for subsequences of length 2,000 shown in Fig. 1. There is 

a clear peak at the correct location. Moreover, it is significantly larger than the mean 

value of the scores, giving a clear visual signal that this is a true anomaly. This example 

shows that there is a “sweet spot” (or rather, sweet range) for subsequence length when 

performing anomaly discovery. In some cases, the analyst may have a first-principles-

model or experience to suggest a good value, but recall that anomaly/novelty discovery 

is often exploratory by nature. 

Before continuing, we will take the time to reiterate the utility of discord discovery in 

the vast space of anomaly detection techniques (Chandola et al. 2009; Filonov et al 

2016; Laptev and Amizadeh 2015; Vasheghani-Farahani et al. 2019;  Däubener et al. 

2019; Barz et al. 2017; Doan et al. 2015; Hundman et al. 2018; Ahmad et al. 2017; 

Keogh et al. 2005; Bu et al. 2009). In essence, we want to answer the following 

question: “why make an effort to address the noted weakness of discords, rather than 

invent or use a different method?” Fig. 2 shows the discord scores computed for a 

benchmark dataset that has been considered in several dozens of research efforts 

(Ahmad et al. 2017). 

 

Fig. 2 top) Six months of taxi demand in New York City. bottom) The discord scores for 

subsequence length of one day.  Most of the discords discovered have an intuitive meaning. 

Note that the discords discovered have different causes. Some are predictable holidays, 

some are caused by ad-hoc events, like the hastily organized BLM march, and some are 

severe weather events. One anomaly is simply a bookkeeping error; setting the clock 
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back by one hour for daylight saving time (DST) made it appear as if the taxi demand 

doubled just after midnight2. 

(Vasheghani-Farahani et al. 2019) also considers this dataset. While they find some true 

positives, they also find many false positives. More importantly, however, they tell us 

that “the parameters for this experiment are w = 30, k = 6, q = 5, h1 = −3.57, and h2 

= −4.28.” Thus to find these anomalies, they had to set five parameters, two of them to 

three significant digits. Similarly, there are many research efforts on deep learning 

anomaly detection. One recent paper using an LSTM model also considers this taxi 

dataset (Zhang 2019). It does find Xmas, New Year, and the blizzard but fails to find 

Thanksgiving, the BLM march, or the (obvious even to the human eye) daylight-

savings-time anomaly. 

These two comparisons highlight the attractiveness of discords for practitioners. It is 

hard to imagine that most practitioners would be able and willing to carefully set the 

five parameters of Markov Chain approach (Vasheghani-Farahani et al. 2019), or the 

dozen or so parameters/choices for a LSTM model (Hundman et al. 2018). Moreover, 

even if they did so, with so many parameters to fit on a small dataset, avoiding 

overfitting would be very challenging. 

Because the effectiveness of discords is central to our work, we will take the time to 

consider just one more motivating example. A recent paper conducted a “bake-off” with 

eight diverse representatives of the state-of-the-art anomaly detection algorithms (as 

opposed to simply minor variants of a single approach) (Däubener et al. 2019). Fig. 3 

contrasts the results on one benchmark (Yahoo) dataset with time series discords. 

The authors of this study noted, “None of the algorithms tested can correctly identify 

the first five anomalies, ... AdVec generates seven false positives...” In contrast to these 

eight approaches, the discord approach performs perfectly on this task, assuming only 

that its one parameter is a reasonable value. The goal of this research effort is to remove 

 

2 Note that this DST anomaly is misidentified in the original work that introduced this dataset as the NY-Marathon 

anomaly (Ahmad et al. 2017). This misidentification has since been repeated in dozens of papers. We are confident 

that our labeling is correct. If we correctly process the data with the standard DST algorithm count(1am to 

2am) = ½ apparent count(1am to 2am), then the apparent anomaly disappears.  



the need to set even that sole parameter. We call our proposed algorithm MERLIN3. 

MERLIN can efficiently and exactly discover discords of every possible length and 

then either report all of them or just the top-K-discords under an arbitrary user defined 

scoring metric. 

 

 

Fig. 3 top) A screen capture from (Däubener et al. 2019) showing the performance of eight state-of-

the-art anomaly detectors on one of the Yahoo benchmarks (Laptev and Amizadeh, 2015). bottom) 

Time series discords (here, of length 8) have a perfect score on this problem, with only the mildest 

of assumptions. 

The rest of this paper is organized as follows. In Section 2, we introduce background 

material and related work. Section 3 introduces our proposed algorithm before we offer 

an extensive empirical evaluation in Section 4. We conclude with a discussion of our 

findings in Section 5. 

2 BACKGROUND AND RELATED WORK 

In this section, we introduce all the necessary definitions and notations, including a 

review of an existing algorithm for discord discovery that we will use as a starting point 

for our research.  We will also consider related work to put our ideas in context (Yankov 

et al. 2008). 

2.1 Time Series Notation 

 

3 This name is a play on the fact that the first paper on time series discords was titled “Approximations to Magic” 

(Lin et al. 2005).  Merlin was the magician of the Arthurian legend. In addition, Mitsubishi Electric Corporation’s 

subsidiary in the USA is called MERL (Mitsubishi Electric Research Laboratory, Boston). 
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We begin by defining the data type of interest Time Series: 

Definition 1: A Time Series T = t1, t2, …, tn is a sequence of n real values.  

Our distance measures quantify the distance between two time series based on local 

subsections called subsequences: 

Definition 2: A subsequence 𝐓𝑖,𝐿  is a contiguous subset of values with length L 

starting from position i in time series T; the subsequence 𝐓𝑖,𝐿 is in form 𝐓𝑖,𝐿 = ti, ti+1, 

…, ti+L-1 where (1 ≤  𝑖 ≤  𝑛 –  𝐿 +  1)  and L is a user-defined subsequence length with 

value in range of 3 ≤ 𝐿 ≤ |𝐓|. 

Here we allow L to be as short as three, although that value is pathologically short for 

almost any domains. 

Many time series analytical algorithms need to compare subsequences using some 

distance measure Dist; here we use the z-normalized Euclidean distance. As pointed 

out by the original authors of the discord definition, we must be careful to exclude 

certain trivial matches from any meaningful definitions of subsequence similarity by 

defining non-self matches. 

Definition 3: Non-Self Match: Given a time series T containing a subsequence C of 

length L beginning at position p and a matching subsequence M beginning at q, we 

say that M is a non-self match to C at distance of Dist(M,C) if |p – q| ≥ L. 

We can now use this definition of non-self matches to define time series discords: 

Definition 4: Time Series Discord: Given a time series T, the subsequence D of length 

L beginning at position i is said to be the discord of T if D has the largest distance to 

its nearest non-self match. That is, ∀ subsequences C of T, non-self match MD of D, 

and non-self match MC of C, min(Dist(D, MD)) > min(Dist(C, MC)). 

The starting location of the discord is recorded in index and its distance to its nearest 

neighbor is recorded in distance. All previous efforts to find discords considered 

only a single length. However we plan to consider all lengths in a given range; thus 

producing an array of discords indexed by the length i, discordi = [indexi, 

distancei]. 



For simplicity, we define only the top-1 discord, the generalization to top-K is trivial 

(Yankov et al. 2008). Having defined discords, we will next review an algorithm to 

discover them. 

2.2 A Review of the SOTA Discord Discovery Algorithm 

Our proposed algorithm makes repeated use of the discord discovery algorithm 

introduced in (Yankov et al. 2008). The algorithm was unnamed in that work, so for 

clarity we will call it DRAG, which is both a truncated version of the inventor’s name 

and a backronym that stands for Discord Range-Aware Gathering. 

For any user-given length, the algorithm requires a single input parameter r. This value 

should ideally be set such that it a little less than the discord distance; that is, the 

distance between the discord and its nearest neighbor. Of course, that distance is 

unknown at this point, so the user must provide an estimate. If this estimate is accurate, 

just a little less than the eventually discovered true discord value, then DRAG has a 

time and space complexity of just O(nL). If the estimate is much too small, the 

algorithm will give the correct result but have a time and space complexity of O(n2). In 

either case, we call any invocation of DRAG that used an r value less than the 

eventually returned discord distance a success. 

In contrast, if the estimate for r is too large, the algorithm will return null, a situation 

we denote as a failure. Of course, the situation can be remedied but requires the user to 

reduce the r value and try again. This sensitivity to r parameter was largely glossed over 

in the original paper (Yankov et al. 2008), but as we will show in Section 3 it is a 

significant limitation of DRAG. However, as we will later explain, we have solved this 

issue for MERLIN. 

We refer the reader to (Yankov et al. 2008) for a detailed explanation of the DRAG 

algorithm, but for completeness, we will give a brief overview. The DRAG algorithm 

is a two-phase algorithm, with each phase being a pass across the time series. 

• Phase I: As shown in Table 1 the algorithm initializes a set C, of candidate 

discords by placing the first subsequence in C. The algorithm then “slides” 

along the time series examining each subsequence. If the subsequence currently 

under consideration is greater than r from any item in the set, then it may be the 

discord, so it is added to the set. However, if any items in the set C are less than 



r from the subsequence under consideration, we know that they could not be 

discords; thus they are admissibly pruned from the set. At the end of Phase I, 

the set C is guaranteed to contain the true discord, possibly with some additional 

false positives. 

 

Table 1. Phase I, Candidate Selection Algorithm. 

  Procedure: CandidateSelection(T,L,r) 

  Input: Time series T, Subsequence length L, Range of discords r 

  Output: Candidate set of discords C 

1 C = {}                                                         // Start with empty set 

2 for i = 1 to |T| - L + 1                                  // Scan all subsequences 

3     iscandidate = true 

4     for j in C 

5         if i and j are not trivial matches 

6             if dist(Ti,L, Tj,L) < r 

7                 C = C \ j 

8                 iscandidate = false                      // We can prune this 

9     if iscandidate 

10         C = C ∪ {i}                                       // Add to candidate set 

11 if not isemptyset() 

12        return C                                              // Implicitly return success 

13 else 

14        return failure                                      // Explicitly return failure 

 

Note that the algorithm can end in failure (line 14). Or, we can regard this 

situation as successfully finding no discord greater than the threshold of r. If the 

user wants to find the discord regardless of its eventual distance, she must run 

the algorithm again with a smaller value for r. We will have more to say about 

this issue in Section 3.1. 

After Phase I has built a set of candidate discords, we are now ready to run Phase 

II to refine them. 

• Phase II: As shown in Table 2, we again slide along the time series, this time 

refining the candidates to remove the false positives. We simply consider each 

subsequence’s distance to every member of our set, doing a best-so-far search 

for each candidate’s nearest neighbor. The algorithm returns a sorted list of all 

discords with a distance greater than r (there is guaranteed to be at least one). 

The largest such score is our top-1 discord. 



Given this (brief) review of the algorithm, it is easy to see why its performance depends 

so critically on the user’s choice of r. A pessimistically small value for r will mean that 

in Phase I most subsequences will be added to the candidate set, exploding the time and 

space complexity to the O(n2) case. However, if r is chosen well, the size of this set 

remains very small relative to n. For example, in (Yankov et al. 2008) they show that 

even with a million subsequences, for a good value of r, the size of C does not exceed 

50 candidates, making the algorithm effectively O(nL). 

Table 2. Phase II, Discords Refinement Algorithm. 

  Procedure: DiscordRefinement(C,T,L,r) 

  Input: Time series T, Subsequence length L, Range of discords r 

  Output: Set of discords (index, distance) D 

1 D = {}                                                      // Start with empty set 

2 for i = 1 to |T| - L + 1                               // Scan all subsequences 

3     isdiscord = true 

4     for j in C                                              // Scan all candidates 

5         if i and j are not trivial matches 

6             d = dist(Ti,L, Tj,L)  

7             if d < r 

7                 C = C \ j 

8             else 

9                 dj = min(dj, d) 

10                 isdiscord = false                      // Eliminate candidate 

11     if isdiscord 

12         D = D ∪ {(j, L, dj)}                        // Add to the set of true 

13 return D                                                 // Return discord 

 

2.3 Related Work 

In the previous section we claimed DRAG is the state-of-the-art in discord discovery 

(we are not (yet) claiming it is state-of-the-art in anomaly detection). The reader may 

be surprised to find that we did not list the more recent Matrix Profile (MP) algorithms 

as state-of-the-art (Yeh et al. 2016). The MP algorithms (STOMP/SCRIMP etc.) surely 

are state-of-the-art for motif discovery, and as a side-effect of motif discovery, they 

happen to also compute discords. However, the MP algorithms are all O(n2). It is 

impressive that their time complexity is independent of L, as almost all algorithms in 

this space scale poorly with L, the classic curse of dimensionality. Nevertheless, for our 

purposes these algorithms compute much more information than is needed and are thus 

much slower than what we can achieve for the limited task-at-hand.  



There are also algorithms that discover discords by discretizing the time series, typically 

using SAX, and hashing the symbolic words that correspond to subsequences (Lin et 

al. 2005; Keogh et al. 2005). The basic idea being that a lack of collision for a word is 

evidence that the word might be unique hence corresponding to a discord. After the 

candidates have been identified this way, an algorithm similar to Phase II in Table 2 

can be used to refine them. These algorithms can be competitive with DRAG but only 

if three parameters for SAX are very carefully set (Keogh et al. 2005). Moreover, such 

algorithms based on discretizing the space are always approximate relatively to the 

original data. 

The more general area of anomaly detection is increasingly difficult to review. In 

particular there has been a recent explosion of papers on deep learning for anomaly 

detection (Filonov et. al 2016; Vasheghani-Farahani et al. 2019; Zhang 2019; Däubener 

et al. 2019; Hundman et al. 2018; Ahmad et al. 2017; Bu et al. 2009). This is a diverse 

group of research efforts; the one thing that they have in common from our point of 

view is that they all require many critical parameters to be set. For example, 

(Vasheghani-Farahani et al. 2019) explicitly lists five parameters (and perhaps has a 

few more in the background), the LSTM network in (Hundman et al. 2018) requires 

eight parameters. Clearly deep learning has had an enormous impact in image 

processing, NLP etc. However, as we hinted at in Fig. 2, Fig. 3, and Fig. 10 as we will 

later empirically show, it is not obvious that deep learning outperforms simpler and 

more direct shape-based methods for anomaly detection. 

A recent work surveyed the literature and concluded “The state-of-the-art solutions for 

subsequence anomaly detection (are) discords” (Boniol et al. 2021). While acclaiming 

the basic distance-based approach of discords, this work then goes on to suggest that 

discords have two weaknesses: “(i) the number of anomalies present in a dataset is 

usually more than one and is not known in advance; and (ii) often times anomalous 

subsequences repeat themselves (approximately the same) in the same dataset.”  

However, in Fig. 11, Fig. 12, Fig. 13, Fig. 14, Fig. 15, Fig. 16 and Fig. 17, we show 

that MERLIN is capable of finding multiple anomalies in a single dataset. Moreover, 

recall that Fig. 3.bottom offers strong evidence that even if we confine our attention to 

single-length discords, the top-K discords can discover K different anomalies. 



As to the second point raised by (Boniol et al. 2021), this problem has been noted 

before, and called the “twin freaks” problem (Wei et al 2006). To be clear, the issue is 

that a single occurrence of a strange shape would be a high scoring discord, but if it 

happened again, the two occurrences would be mutual nearest neighbors and, thus, have 

a low discord score.  

However, recall the famous quote from Anna Karenina, “All happy families are alike; 

each unhappy family is unhappy in its own way”. A time series version of this might 

be: all normal behavior is alike, each anomaly is anomalous in its own way. For 

example, there might be only one or very few ways to have a normal bipedal gait of 

walking. However there are essentially an infinite number of ways to stumble, slip, 

topple, trip, tumble, flounder, lurch, reel, stagger, sway, teeter or fall. As such, we 

claim that repeated shape conversed anomalies are rare. It is telling that a paper that 

wanted to introduce an anomaly detection method that was invariant to “twin freaks” 

had to resort to copying and pasting data to contrive the situation (Bu et al. 2009), but 

they could not find a single real example. In any case, this issue seems to be essentially 

moot, as it can be solved by changing the first nearest neighbor (Definition 4) to the kth 

nearest neighbor. However, given that in practice this rarely seems to be an issue, in 

this work we use only the simple first nearest neighbor. 

2.4 Why Distance Based Anomaly Detection?  

An extraordinary number of approaches have been applied to the problem of anomaly 

detection in time series, including: Isolation Forests, One-Class Support Vector 

Machines, Convolutional Neural Networks, Residual Neural Networks, Long Short 

Term Memory networks, Gated Recurrent Units, Autoencoders, Multi-Layer 

Perceptrons, ARIMA models, Markov models, Minimal Description Length, Bayesian 

techniques, Rule-Based Systems etc. Indeed, it is difficult to think of a single machine 

learning or signal processing tool that has not been advocated as at least part of a time 

series anomaly detection solution. Given the plethora of possible approaches, why do 

we so strongly advocate a distance-based approach?  

Part of the answer is simply that distance-based methods offer highly competitive 

performance, as we shall demonstrate in Section 4. Another reason is the dearth of 

parameters that need to be set, as few as one or none. However, there is another 



important and practical reason. In the last twenty years, distance-based methods have 

been highly competitive for time series classification. Because of this, the community 

knows a lot about time series distance measures, and this knowledge can be directly 

exploited here. For example: 

• Suppose that we have years of experience with pedestrian traffic anomaly 

detection with a data source that happens to be sampled twice an hour (see Fig. 13 

and Fig. 14). Further suppose that we have managed to learn a threshold T for 

sounding an alert, any discord score that is greater than 15.2 is a significant 

anomaly that warrants attention.  Now imagine that we learn that in the new year 

an upgraded sensor will produce the data at a four times finer sampling rate of 

eight times an hour. We know from published results that we can find the new 

threshold as Tnew = 15.2  √4  (Linardi et la 2020). For all the other methods 

mentioned above, it is not clear how we should adjust a threshold or if that is even 

possible.  

• Suppose once more that we are tasked with monitoring pedestrian traffic anomaly 

detection. This time the traffic engineer tells us “It only makes sense to compare 

midnight to midnight, and anything that happens between 3am and 5am is twice 

as important as anything that happens at any other time”. We can trivially support 

this domain information with distance-based measures. Indeed, if using the MASS 

to compute the distance we only have to change two lines of code (Mueen 2015). 

As before, it is not clear how we “tell” most other approaches the relative 

importance of various time periods. 

To summarize, in the last two decades the community has gathered a vast store of 

knowledge about time series distance measures. We understand how to deal with time 

series data that has wandering baselines, missing values, uncertain values, non-constant 

noise levels, uniform scaling, etc. by either adjusting the distance measure or by 

preprocessing the data before calling the distance measure (often, these are logically 

equivalent). In contrast, for most other approaches it is not clear how we can exploit 

our understanding of the domain. For this reason alone, distance-based measures are 

very attractive to practitioners.  

3 THE MERLIN ALGORITHM 



We begin by illustrating some novel observations about the sensitivity of DRAG to the 

r parameter. 

3.1 Exploitable Observations about DRAG 

Consider the small synthetic dataset shown in Fig. 4: it is simply a slightly noisy sine 

wave with an obvious “anomaly” embedded in it starting at location 1,000.  

 

Fig. 4 A slightly noisy sine wave with an anomaly embedded at location 1,000. 

What would be an appropriate value of r here given that we wish to discover discords 

of length 512? Even with significant experience with the DRAG algorithm, it is not 

immediately obvious to us. To gain some intuition, in Fig. 5, we considered every 

possible value of r from 1 to 40 in increments of 0.25, measuring both how long DRAG 

takes and whether it ended in success or failure. 

 

Fig. 5 The time taken for DRAG given values for r that range from 1.0 to 40.0. For any value greater 

than 10.27 the algorithm reports failure and must be restarted with a lower value.   

 

After the fact, we know that the true discord value is 10.27. The reader will appreciate 

that this value, or rather, this value minus a tiny epsilon, is the optimal setting of r 

(Yankov et al. 2008). 

Suppose that we had guessed r = 10.25, then DRAG would have taken 1.48 seconds to 

find the discord. However, had we guessed a value that was just 2.5% less, DRAG 
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would have taken 9.7 times longer. Had we guessed r = 1.0 (a perfectly reasonable 

value on visually similar data), DRAG would have taken 98.9 times longer. 

In the other direction, had we guessed any greater than 1% more, DRAG would have 

failed. The time it takes to complete a failed run is about 1/6 the time of our successful 

run when r = was set to the 10.25 guess. So, while failure is cheaper, it is not free. This 

eliminates certain obvious algorithms to find a good value for r. For example, we could 

have tried every integer from 40 downwards until success, but that would have cost 29 

time-for-failures plus one time-for-success with r = 10, which is about 39.2 seconds or 

about 26 times worse than our “lucky” guess of r =10.25. 

Note that a failure lets us know that our guess for r was too high, but otherwise does 

not appear to contain exploitable information as to a better value for r. 

One might imagine that there is some simple heuristic for setting r. If there is, it has 

eluded us (and, to the best of our knowledge, the rest of the community that uses this 

algorithm (Chandola et. al 2009)). Even on datasets that are superficially similar to each 

other, say two examples of ten minutes of healthy teenage female electrocardiograms, 

the best value for r can differ by at least two orders of magnitude. 

In summary, choosing a good value for r is critical for DRAG to be efficient, but it is a 

very difficult parameter to set. However, for our task-at-hand, there is a ray of hope. 

The best value for r, for discords of length L, is likely to be very similar to the best 

value for r, for discords of length L -1. To see this, we measured the correlation between 

the optimal r for discords with lengths differing by one, for all L from 16 to 512 for the 

example shown in Fig. 4. The correlation was 0.998. 

It is important to ward off a possible misunderstanding, suggested by this very high 

correlation; these differences are typically very small, but they are not necessarily all 

positive. Because we are working with z-normalized Euclidean distance, when we make 

the discord length longer, the discord score can increase, decrease or stay the same. The 

blue line shown in Fig. 6 illustrates this fact.   



 

Fig. 6  (blue line) The discord score, which is also the optimal setting for r, for the dataset shown in 

Fig. 4. The inset shows a zoom-in of the region from 64 to 100. Here we can more clearly see the 

blue line is accompanied by a red line, which attempts to predict it, using only the five previous 

values. 

As Fig. 6 makes clear, the obvious idea of using the last discordi distance to set the 

value for r when attempting to discover discordi+1 is a bad idea. In this example, it would 

result in 45.4% of the runs ending in failure. Thus, we want the value of r to be a “little 

less” than discord distance. The meaning of “little less” here depends on the data and 

on the lengths currently considered, so we propose to learn it by looking at the variance 

of the last few (say five) discord values. 

Thus, we have an informal algorithm to set the value of r. 

Compute the discords working from the minimum to the maximum length. At each 

stage, compute the mean µ, and standard deviation , of the last five discord distances, 

and for the next invocation of DRAG, use r = µ – 2. If DRAG reports failure, 

repeatedly subtract another  from the current value of r until it reports success. 

Using this simple prediction algorithm on the dataset shown in Fig. 4, we would have 

zero failures. Moreover, on average, the value predicted would be 99.03% of the 

optimal value for r.  

This idea leaves just one thing unspecified. How do we set r for the first five discord 

lengths? We do have an upper bound as to the largest possible discord distance for time 

series of length L, it is simply the largest possible distance between any pair of 
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subsequences of length L, which is 2√𝐿. So, for the first length of discord we attempt 

to discover, we can set r = 2√𝐿 and keep halving it until we get a success. In general, 

2√𝐿 is a very weak bound and likely to produce many failures. So, we do not want to 

do this for the next four items. Here instead, we can use the previous discord distance, 

minus an epsilon, say 1%. In the very unlikely event that this was too conservative and 

resulted in a failure, we can keep subtracting an additional 1% until we get a success. 

Table 3 formalizes this algorithm. 

Table 3. The MERLIN Algorithm. 

  Procedure: MERLIN (T,minL,maxL) 

  Input: Time series T, Subsequence length L, Range of discords r 

  Output: Set of discords (index, length, distance) D 

1 r = 2 × sqrt (MinL)                                          // Set r to its largest possible value 

2 distanceminL = -inf                                             // Allow entry into loop 

3 while distanceminL < 0                                       // Find first discord 

4   [indexminL, distanceminL] = DRAG (T, MinL, r) 

5    r = r × ½                                                        // if loop repeats, make r smaller    

6 for i = MinL + 1 to MinL + 4                           // Find next 4 discords 

7   distancei = -inf                                               // Allow entry into loop 

8   while distancei < 0                                        // Decrease r till success 

9      r = 0.99 × distancei -1 

10      [indexi, distancei] = DRAG (T,i,r) 

11      r = r × 0.99                                                 // if loop repeats, make r a little smaller    

12 for i = MinL + 5 to MaxL                                // Find all remaining discords 

13   M = mean (distancei -1 to i-5)                      // Use local info about.. 

14   S = STD (distancei -1 to i-5)                         // ..the mean and STD.. 

15   r = M – (2×S)                                                // ..to predict good value for r  

16   [indexi, distancei] = DRAG (T,i,r) 

17   while distancei < 0                                       // looks like our r was too high..   

18      [indexi, distancei] = DRAG (T,i,r)            //..so lets reduce.. 

19      r = r – S                                                     // until success 

 

The algorithm has an apparently arbitrary choice. Why work from the minimum to the 

maximum length rather than the other way around? Recall that is it only for the first 

invocation of DRAG that we are completely uncertain about a good value for r, and we 

may have multiple failure runs and/or invoke DRAG with too small of a value for r, 

making it run slow. It is much faster to do this single unoptimized run on the shorter 

subsequence lengths. 

3.2 Defeating MERLIN 

There are two circumstances where MERLIN can dramatically fail. Fortunately, there 

are trivial fixes. 



 If there is a constant region longer than MinL, then our attempt to z-normalize before 

computing the Euclidean distance will divide by zero. However, it is trivial to monitor 

for and report or ignore such regions. Depending on user choice, such regions may 

warrant flagging as an anomaly or not. For example, in hospital settings the data is 

replete with constant regions, due to disconnection artifacts during bed transfers etc. In 

contrast, a constant region in an insertable cardiac monitor (pacemaker) is almost 

certainly battery failure or heart-failure, in either case warranting an alarm. 

As noted in our discussion of related work, another way MERLIN could fail is if the 

anomaly happens twice, and essentially looks the same both times. This has been called 

the “twin freak” problem. This can be solved by changing the first nearest neighbor 

(Definition 4) to the kth nearest neighbor. However, empirically this rarely seems to be 

an issue. For example, a paper that wanted to show an anomaly detection method that 

was invariant to “twin freaks” had to resort to copying and pasting data to contrive the 

situation (Bu et al. 2009), but they were unable to find a natural example. Note that 

Electrocardiograms (ECG) are often used to test anomaly detection algorithms (Boniol 

et al. 2021), and it is possible that an arrhythmia can be both intermittent and conserved 

in shape when it occurs. Thus, this is at least one dataset where twin freaks may be an 

issue. However, if we are monitoring an ECG in real time, the first occurrence of an 

arrhythmia will be unique, and therefore flagged. If we are examining an archival ECG, 

we can simply emulate real time monitoring by only allowing each candidate 

subsequence to be compared with subsequences to its left (i.e., those observed earlier 

in time).   

4 EMPIRICAL EVALUATION 

We begin by stating our experimental philosophy. We have designed all experiments 

such that they are easily reproducible. To this end, we have built a webpage that 

contains all datasets, code and random number seeds used in this work, together with 

spreadsheets which contain the raw numbers (Nakamura, 2020). This philosophy 

extends to all the examples in the previous section.  

4.1 Metrics of Success and the Unsuitability of Benchmarks 

There are now a handful of benchmark datasets in the literature. We have already 

considered (a subset) of them in Fig. 1, Fig. 2, Fig. 3 and Fig. 10, and we will consider 



more below. However, we believe that the reader should be somewhat skeptical of 

research efforts that report only summary statistics on these datasets. There are at least 

two reasons for such skepticism.  

• Consider the NYC Taxi example which is part of the NAB benchmark (Ahmad 

et al. 2017). This dataset is labeled as having five anomalies, but as Fig. 2 shows, 

this dataset has at least twice that number of anomalies. For example, the 

benchmark does not list the daylight-saving time anomaly, which is arguably 

the most visually jarring anomaly in the dataset. Any algorithm that does find 

this anomaly will be penalized as having produced a false positive. In 

(Nakamura 2020) we show more examples of mislabeled benchmark data. 

• A large fraction of the benchmark datasets contain anomalies that are so obvious 

that they are trivial to detect. For example, consider Fig. 7, which show 

examples from the Mars Science Laboratory (Hundman et al. 2018), NAB 

(Ahmad et al. 2017) and Yahoo benchmarks. It is hard to imagine any 

reasonable algorithm failing to find such anomalies. Even if the benchmark data 

also includes some challenging anomalies, counting success on these trivial 

problems can artificially inflate metrics of success such as ROI curves, giving 

the illusion of progress.  See Appendix A for more information and examples. 

For the reasons above, we think that a direct visual summary of the output of a proposed 

anomaly detection algorithm on diverse datasets can offer the reader the most forceful 

summary of the algorithm’s strengths and weaknesses (although we must be careful to 

avoid attempting “proof-by-anecdote”). For that reason, we have chosen to show twenty 

diverse examples below.  

It is important to note that our discussion of some issues with the benchmark datasets 

should in no way be interpreted as criticism. These groups have spent tremendous time 

and effort to make a resource available to the entire community and should rightly be 

commended. It is simply that we must be aware of the limitations of metrics reported 

on them without visual context. 



 

Fig. 7 Examples from the three main anomaly benchmark datasets that we regard as too simple to be 

informative for algorithm comparison. top) From the NASA benchmark (Hundman et al. 2018). 

center) From the NAB benchmark (Ahmad et al. 2017). bottom) From the Yahoo Benchmark. 

As such, we have endeavored to have many such examples in this work. In particular, 

before performing conventional experiments to compare MERLIN to the state-of-the-

art, we begin with some case studies that give the reader an appreciation of the kind of 

subtle anomalies that MERLIN can discover.  

4.2 Discovery of Ultra Subtle Anomalies 

Virtually all anomaly detection benchmarks in the literature contain anomalies that also 

yield to casual visual inspection. Of course, this does not mean that algorithms that can 

detect such anomalies are of no utility. Human inspection, especially at scale, is 

expensive. Nevertheless, it is interesting to ask if we can detect very subtle anomalies, 

that would defy human inspection. However, this seems to beg the question, how can 

we know if a time series contains such ultra-subtle anomalies? 

We propose the following experiment to allow us to obtain ground-truth subtle 

anomalies. Consider Fig. 8, which shows the electrocardiogram (ECG) of a 51-year old 

male, with an obvious anomaly at about the half-way point. The anomaly is so obvious 

that surely any algorithm could discover it. 

 

Fig. 8 An ECG signal with an obvious anomaly (a PVC). 
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However, suppose we consider only the Central Venous Pressure (CVP) data, which 

was recorded in parallel. The ECG is an electrical signal, whereas the CVP is a 

mechanical signal, the blood pressure in the venae cavae. Moreover, because the CVP 

reflects the amount of blood returning to the heart, the elasticity of the blood vessels 

tends to dampen out any irregularities in the heartbeat. As Fig. 9 shows, the PVC 

anomaly is not visually apparent in the CVP, yet MERLIN clearly indicates at the 

correct location. 

 

Fig. 9 A CVP signal recorded in parallel with the ECG shown in Fig. 8 does not show visual evidence 

of an obvious anomaly caused by the PVC, yet MERLIN clearly indicates its presence. 

Note that our inability to see the anomaly in Fig. 9 shows should not be attributed to 

the small size of the figure (the reader is invited to see a larger reproduction here 

(Nakamura 2020)) or our lack of medical experience. Dr. Greg Mason, with almost 

forty years of experience viewing such data, could not detect this anomaly. 

To see that this was not pure luck, let us consider a dataset from a totally different 

domain with a similarly subtle anomaly. In Fig. 10 we show a snippet of data from the 

Mars Science Laboratory (MSL) rover, Curiosity (Hundman et al. 2018). 

 

Fig. 10 A signal from the Mars Curiosity rover was annotated as having an anomaly from 2550 to 

2585 (pink bar) (Hundman et al. 2018). While the cause of the anomaly is unclear, MERLIN has no 

difficulty finding it. 

In the paper that introduced this dataset, the authors introduced a LSTM network that 

could also find this anomaly (Hundman et al. 2018). However, to do so, they required 

training data and the careful setting of eight parameters. In contrast, MERLIN finds this 

subtle anomaly with no training data and only the weakest of hints as to the anomaly 

lengths (MinL and MaxL) to consider. 
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4.3 Anomalies at Different Scales 

In this section we anecdotally demonstrate the utility of being able to discover 

multiscale anomalies. We simply wish to show that anomalies that differ by at least an 

order of magnitude can exist even in quotidian datasets. We begin by revisiting the 

NYC Taxi demand dataset shown in Fig. 2. In Fig. 11 we show a subset of the data with 

just the top-1 motif of every length from 5 hours to four days. 

 

Fig. 11 A subset of the Taxi demand dataset shown in Fig. 2, shown with all discords the range of 5 

to 96 hours. 

While the daylight-saving anomaly directly affects only two hours, the shape of these 

two hours is only usual in the context of the few hours that surround them. Similarly, 

while Thanksgiving is somewhat unusual in its lower passenger volume and lack of a 

rush hour peak of people leaving the city after work, a somewhat similar pattern to this 

also happens on the weekends. However, in the context of being surrounded by normal 

days, Thanksgiving is unusual. The discords of up to four days long discovered by 

MERLIN in Fig. 11 reflect this. 

We also considered a similar but much longer dataset of passenger volume at the Taipei 

Xinjian District Office metro station. We searched from ten hours to ten days. Over this 

enormous range of scales, only seven distinct anomalies are discovered, Fig. 12.bottom 

shows four of them. Note that some of the anomalies have natural causes (weather 

events), and some are cultural artifacts such as Chinese New Year. 

 

Fig. 12 top) Passenger volume at a Taipei metro station. Four of the anomalies discovered are shown 

in context.    
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It is easy to find other datasets that reflect daily patterns of activity.  As hinted at in Fig. 

13.top, the city of Melbourne has released almost a decade’s worth of pedestrian traffic 

volume from various sites in the city. 

While there is good spatial coverage, the temporal resolution is very low at just one 

datapoint per hour. Because of this, like most of the many research groups that explored 

this data resource, we originally only searched for anomalies of length days or weeks 

(Doan et al. 2015). However, as Fig. 13, hints at, using MERLIN to free ourselves from 

assumptions about possible anomaly duration allowed us to find unexpectedly short 

anomalies.  

 

Fig. 13 bottom) A month of pedestrian traffic volume on Bourke Street Mall in Melbourne. top) the 

shortest anomaly discovered is semantically meaningful, it corresponds to a flash-mob dance 

performance (video at (McRae 2013)) that restricted traffic for about ten minutes. 

Given this ability to find motifs at all scales, we begin to find unexpected anomalies 

everywhere. Three years after the flash-mob happened, we discovered another short 

and subtle anomaly on the same street. With a little investigation we realized it 

corresponded to a car attack in which an individual deliberately drove at pedestrians, 

killing six and injuring twenty-seven.  

 

Fig. 14 Two months of pedestrian traffic volume on Bourke Street Mall in Melbourne. The anomaly 

for Xmas is to be expected, but what caused the short anomaly on Jan-20-2017? 

 

The ability to find anomalies without specifying the length in advance can occasionally 

produce surprises. We tested MERLIN on a dataset that we are very familiar with, 

having considered it for other tasks (Imamura, et al. 2020). The dataset, shown in Fig. 
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15 is the Arterial Blood Pressure (ABP) of a healthy twenty-eight-year-old man 

undergoing a tilt table test (Heldt et. al 2003). Because we know exactly when the table 

was tilted, we decided to use this as a test to see how well MERLIN works in the face 

of wandering baseline and periodicity drift. 

 

Fig. 15 top) The ABP of a healthy twenty-eight year old man undergoing a tilt table test, annotated by 

the two events discovered by MERLIN. bottom) A zoom-in of the region corresponding to Event B. 

We tested L in the range 64 to 512. As  Fig. 15.bottom shows, the tilt event does indeed 

show up as event A. However, in the range of 64 to 145, a different anomaly, event B 

is evident.  A zoom-in shows that event B is unusual in that it has a second “bump” in 

the diastolic region. The first bump, the dicrotic notch, is the only increase normally 

expected in this phase. Dr. Greg Mason, a Clinical Professor of Medicine at UCLA was 

kind enough to explain this finding: “Baroreceptors are sensors in the heart that sense 

pressure changes by responding to change in the tension of the arterial wall.  When a 

person has a sudden drop in blood pressure, for example standing (or being tilted) up, 

the decreased blood pressure is sensed by baroreceptors as a decrease in tension 

therefore will decrease in the firing of impulses. This can take a few seconds, what 

Event B shows is the baroreceptor response suddenly “kicking in” to decreasing 

parasympathetic (vagal) outflow.” 

To summarize this section, the ability to find motifs without specifying the scale is 

useful not only because it removes a parameter, but because we have less opportunity 
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to project our assumptions on the task-at-hand, we can often find completely 

unexpected anomalies and novel behavior in the data. 

 

4.4 Scalability   

To demonstrate the scalability of our algorithm, we compare it to the Matrix Profile 

algorithm SCRIMP (Yeh et al. 2016). In a sense, this is unfair to SCRIMP, which 

discovers not only the discords, but also motifs. Nevertheless, it is a very scalable 

algorithm because it is implemented in a way that makes it constant in the length of the 

subsequences. We used the latest version of the code available from the author’s 

website (Yeh et al. 2016), disabling the GUI interface, which required significant time 

overhead.  

We also wish to test the effectiveness of our method to set the value of r for MERLIN 

by sharing information across different values of L. To do this, we implemented the 

method for setting r suggested in (Yankov et al. 2008), which we rerun for every value 

of L. This algorithm is denoted as DRAG-multilength, or DRAGML. Note that DRAGML 

differs from MERLIN only in how r is set. 

The time needed for SCRIMP is independent of the data. However, the time needed for 

the two other algorithms depends on the data. The best case would be a dataset like the 

one shown in Fig. 7.top, a mostly repetitive time series with a dramatic discord that is 

very far from its nearest neighbor. To avoid such bias, we will use the worst-case dataset 

from MERLIN, random walk. For such data, the top-1 discord is only slightly further 

away from its nearest neighbor than any randomly chosen subsequence, meaning that 

the candidate set built in Table 1 grows relatively large even if given a good value for 

r. 

Note that STOMPs performance is independent of the structure of the data, but the other 

algorithm’s performance does (weakly) depend on it, we averaged over ten runs. Fig. 

16 shows the results of datasets ranging for 212 to 216. 



 

Fig. 16 The scalability of MERLIN, DRAG and STOMP in the face of increasingly large datasets. 

For short time series, all algorithms perform similarly, but as the time series grows 

longer, SCRIMP’s quadratically complexity begins to show. While MERLINs first run 

(for L = MinL) is no faster that DRAG, its subsequent runs are greatly accelerated by 

the predicted value of r, and the amortized cost is about 21 times faster by the time we 

consider time series of length 216. To put these numbers in context, 216, datapoints is 

about 18 minutes of data recorded at 60 Hz. Suppose we suspected that there were 

anomalies of length 1 second in our data, but we wanted to bracket our search with 

every value for 30 to 90 datapoints. This would take MERLIN just 7.1 minutes, faster 

than “real-time”.   

4.5 First look at the Yahoo! Webscope Benchmarks 

In recent years, the Yahoo Webscope anomaly datasets have emerged as the de-facto 

benchmark for anomaly and changepoint detection. This diverse archive consists of 367 

time series, of various lengths in four different classes A1/A2/A3/A4 with class counts 

67/100/100/100. While class A1 has real data from computational services, classes A2, 

A3, and A4 contain synthetic anomaly data with increasing complexity. We previously 

showed examples from this benchmark in Fig. 3 and Fig. 7.bottom.  

Before presenting summary statistics on the entire archive, we will take the time to 

consider one example in detail. Because most of these datasets have multiple anomalies, 

this is an ideal opportunity to show the output of the top-K discords. In Fig. 17.top we 

show an example with seven anomalies. 
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Fig. 17 top) An example of one the synthetic datasets from the Yahoo archive with seven anomalies, 

whose location is marked by the red binary vector. center) The result of running MERLIN to discover 

the top-7 anomalies. bottom) The result of running MERLIN to discover just the top-1 anomalies. 

We know that examples in this subset have point anomalies, so a smaller value of MaxL 

would be appropriate. However, we “stress test” our algorithm by considering 

unreasonably long discords up to length 100. Fig. 17.center shows that had we 

considered only 5 to 64, we would have obtained perfect results. It is only when we 

consider MaxL for an unrealistic value of greater than 65, that we obtain a single false 

positive, and then only for the 7th discord. Another way to consider how effective 

MERLIN is here is to see how many of the seven anomalies we can detect if we only 

consider the single top-1 discord. As Fig. 17.bottom shows we would still detect six out 

of seven true positives and have no false negatives. 

4.6 Large Scale Results on the Yahoo! Webscope Benchmarks 

In this section we evaluate the entire collection of Yahoo S5 datasets (Laptev and 

Amizadeh, 2015). We do so with some reluctance, even though, as we shall see, we 

achieve state-of-the-art results on this dataset.  In a recent paper (currently under 

review), a subset of the current authors have forcefully argued that this dataset has 

multiple flaws that render any claims made using it somewhat suspect (Wu and Keogh 

2020). These flaws, hinted at in Fig. 3 and in Appendix A, include the fact that almost 

all of the 367 datasets can be solved with very simple methods that can be implemented 

in a single line of code. Of course, the fact that a human intelligence can visually 

examine each dataset, and in a few seconds suggest a single line of code (something 

like “YahooA1R1 > 0.45” or “diff(YahooA1R32 == 0”) does not necessarily 

mean that it will be trivial for algorithmic intelligence. However, it would be 

disingenuous of us to bask in our strong showing here.   
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To evaluate all Yahoo 367 datasets (Laptev and Amizadeh, 2015), we need to define 

some criteria for correct anomaly detection. Below we explain our reasoning behind 

our choice for metric of success. 

Note that a complete anomaly detection system must have two parts, (I) A prediction 

of the most likely location(s) to contain anomalie(s), and (II) an evaluation mechanism 

(often simply thresholding) to determine if those locations warrant being flagged as 

anomalies. In this work, we have mostly avoided a discussion of the second part, as it 

is moot unless we can robustly point to candidate anomalies. Also note that in many 

real-world applications, the second part is not needed. For example, an analyst might 

query: “Show me the top-five most unusual events in the oil plant in 2018”. Likewise, 

thresholds can often be learned with simple human-in-the-loop algorithms. In brief, the 

user can simply examine a sorted list of all candidate anomalies. The discord distance 

of the first one she rejects as “not an anomaly” can be used as the threshold for future 

datasets from the same domain. Thus, we argue that the first task is the most critical 

and most worthy of evaluation.  

Some of the Yahoo datasets have an issue that confounds evaluation. In the example 

shown in Fig. 17, the anomalies are all well-spaced apart. However in the example 

shown in Fig. 3 the anomalies are just two datapoints apart. It is hard to imagine 

critiquing an algorithm that called these two events a single anomaly. More generally, 

we must also consider the precision of the algorithm’s prediction of location. If an 

anomaly is located at say location 600, we should surely reward an algorithm that 

predicts 599 or 602. Thus, for simplicity, we reward any prediction that is no further 

off than ±1% of T from the stated location. This does not significantly increase the 

default rate while allowing us to bypass the issues above.  

Given these considerations, we proposed the following metric of successes, which we 

believe to be fair, transparent and reproducible. Each algorithm is tasked with locating 

the one location it thinks most likely to be anomalous (We removed the handful of 

examples that have no claimed anomaly). If that location is within ±1% of T from a 

ground truth anomaly, we count that prediction as a success. 

We compare to the LSTM method introduced in (Hundman et al. 2018), which is one 

of the most highly cited deep learning for anomaly detection papers in recent years. We 



used the authors own implementation, carefully tuning it as advised in (Hundman et al. 

2018). We allow the LSTM to “cheat” by training on a subset of the test data. 

For MERLIN, we set MinL = 3 (this is the minimum possible value) and the MaxL = 

20 and recorded the median location of the 18 predictions as the algorithm’s single 

prediction. This is a sub-optimal policy for us if there are two or more anomalies of 

around that length but makes the evaluation simple. 

Under this metric MERLIN had a recall of 80.0% and the LSTM had a recall of 58.3%. 

While this result is strongly in our favor, because of the data quality issues discussed 

above, we do not weigh it as heavily as the visual evidence presented in the many visual 

examples shown in this work. 

4.7 Results on the NASA Benchmarks 

The NASA dataset (Hundman et al. 2018) has garnered significant attention in recent 

years, but as Fig. 7.top hints at, some of the tasks are trivial. In fact, that understates the 

case. Many of the anomalies consist of changes of variance/range by up to three orders 

of magnitude (examples A1, B1, D12, E7, P4, T3, etc.), and can trivially be detected 

by algorithms dating back to the 1950s (Page 1957) (see Appendix A for a concrete 

example of this).   

In addition, for some of the examples, the labeled anomaly region comprises up to half 

the data (examples A7, D2, M1, M2 etc.), meaning that a random choice would have a 

better than even chance of being a true positive. To bypass this issue, we scanned all 

the datasets for examples that were not obviously solvable by the human eye in under 

five seconds.  Excluding near redundant examples, only three datasets passed that test, 

the results of running MERLIN on them is shown in Fig. 18. Apart from a small region 

of a presumptive false positive in Fig. 18.center, we achieve perfect results. (We say 

“presumptive” because this dataset also has a handful of labeling omission errors, and 

we point them out at (Nakamura 2020)). Note that the bottom examples both had two 

anomalies, which we found with just the single top-1 discord of various lengths. 



 

Fig. 18 The results of running MERLIN on three diverse and most difficult examples from the NASA 

benchmark (Hundman et al. 2018). top) The single anomaly in A-4 is easily discovered. center) The 

two anomalies in C-2 are discovered, but there may be a short region where we report a false positive. 

bottom) The two correctly detected anomalies are so subtle that we show annotated zoom-ins to 

explain them. 

4.8 Results on the Gasoil Benchmarks 

Like the NASA dataset, we regard the Gasoil benchmark (Filonov et. al 2016) as being 

too easy to be interesting. Note that we are only making this claim with regard to 

anomaly detection, it may be useful for causality detection etc. In Fig. 19 we show the 

results of running MERLIN on two of the more challenging examples.  

 

Fig. 19 The results of running MERLIN on two diverse difficult examples from the Gasoil benchmark 

(Hundman et al. 2018). top) The single anomaly in TempT is easily discovered, but there may be a 

small region where we report a false positive. bottom) The single anomaly in RT_level is easily 

discovered. 
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We have shown that time series discords, a simple, decades-old anomaly detection 

definition is surprisingly viable in many domains. In particular, it is at least competitive 

with the more complex deep learning methods, which require both significant amounts 

of training data and a plethora of parameters to be tuned. 

Ahmed and Mahmood created an influential taxonomy of anomalies into point 

anomalies, contextual anomalies and collective anomalies (Ahmed and Mahmood, 

2014).  While we refer the reader to the original paper for the exact definitions, a review 

of this work shows that MERLIN was able to discover examples of each type.  For 

example, Fig. 17 shows point anomalies that Yahoo embedded into a dataset. The 

Queen’s Birthday example in Fig. 13 is a classic example of a contextual anomaly. The 

shape of the day is smooth, missing the shaper features caused by typical weekday rush-

hour commuting. Such days are not intrinsically rare, they happen on most weekends, 

but one only sees three such days in a row in the context of a three-day weekend. 

Finally, the anomalies shown in the Gasoil dataset in Fig. 19, are classic collective 

anomalies. This observation is suggestive of the generality of MERLIN.  

Some researchers in the community had noted the utility of discords, but waived off 

from using them, noting, “discords are limited (because) a fixed length must be 

specified in advance, making it a clearly suboptimal approach for applications dealing 

with climate data events of varying length” (Barz et al. 2017). Our introduction of 

MERLIN removes this last barrier to adoption. 

Finally, we would like to end with a note of caution for the anomaly detection research 

community. In recent years there has been an explosion of deep learning work on 

anomaly detection, including works that introduced or evaluated the four benchmarks 

we consider in this work (Däubener et al. 2019; Hundman et al. 2018; Ahmad et al. 

2017). However, there appears to be little evidence presented that the complexity of 

these approaches is warranted. Recall that for the most part we can reproduce or 

improve upon these results without even looking at the training data and using a method 

that is, by any reasonable standard, an order of magnitude simpler4.  Please note that we 

do not doubt the utility of deep learning in general, or the ingenuity of these papers. 

However, we believe that the community needs to: 

 

4 An order of magnitude simpler in terms of number of parameters to set, of the number of lines of code written etc. 



• Expand the list of strawmen it compares to. Perhaps half the benchmark 

problems can be solved by algorithms created in the 1950s (Page 1957, Wu 

2021). See Appendix A for some examples. Simple ideas should be compared 

to, if the community is to justify complexity of deep learning approaches. 

• Consider more challenging benchmarks. With this paper we have added a 

handful of more challenging benchmarks to the community’s pool of 

benchmarks. Of course, these datasets may reflect our biases, if only our bias 

towards datasets that we know how to obtain. The community would greatly 

benefit from a distributed community-wide effort to produce anomaly detection 

benchmarks.  

• Directly visualize algorithm predictions on many examples, to give the reader a 

better appreciation of strengths and weaknesses of the proposed approach. 

Internally, we did this for over a dozen methods (not shown due to space 

limitations) and found it incredibly useful to understand when methods work, 

and when they fail. It is somewhat remarkable to note that there are over a dozen 

papers on time series anomaly detection that do not show a single plot of any 

time series, this, for what is one of the most visually intuitive data types.  

There are several directions for future work, the most pressing of which are generalizing 

MERLIN to handle multi-dimensional data. For example, it is not clear if the best multi-

dimensional anomaly detector is the sum of or the max of, the individual dimensions.  

In addition, recall that all the results shown in this work complexity ignored the training 

data. In the future we plan to exploit such data if only to learn reasonable values for 

MinL and MaxL.  

Finally, we note that we have made all datasets used in this paper, and an easy-to-use 

version of MERLIN, available in perpetuity at (Nakamura, 2021). This will allow the 

community to easily confirm (or refute) our findings and further build on our work.  
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APPENDIX A: Some Benchmark Datasets are Trivial. 

In the main text we noted that some fraction of the benchmark data yield to simple 

algorithms from the 1950s (Page 1957). Here we demonstrate that claim. This is 

important because it confounds any comparison of algorithms. For example, suppose 

we find that Olympic powerlifter Long Qingquan can lift 1, 2, 3 and 300 kg, and that 

the current author can lift 1, 2 and 3 kg. It would be foolish to conclude that because 

they agree on ¾ of the lifting tasks, that they are almost equally strong. 

A further simplified version of the sixty-three-year-old algorithm in (Page 1957) is: 

flag = zeros(size(T));        %% Code can be run in Matlab 

for i = 4 : length(T)-4 

 if std(T(i+1:i+4)) - std(T(i-3:i)) > 1,  flag(i) = 1;, end;     

end; 

In Fig. 20 we show the results of running this code on two benchmark datasets that 

yield to such simple algorithms. 

 

Fig. 20 Two (of many) examples of benchmark datasets that yield to the trivial hard-coded algorithm 

shown above. top) From NASA (Hundman et al. 2018). bottom) From Yahoo (Laptev and Amizadeh, 

2015). 
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