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ABSTRACT 

The discovery of conserved (repeated) patterns in time series is 

arguably the most important primitive in time series data mining. 

Called time series motifs, these primitive patterns are useful in their 

own right, and are also used as inputs into classification, clustering, 

segmentation, visualization, and anomaly detection algorithms. 

Recently the Matrix Profile has emerged as a promising 

representation to allow the efficient exact computation of the top-k 

motifs in a time series. The state-of-the-art algorithms for computing 

the Matrix Profile are STAMP and STOMP which are fast enough 

for many tasks. However, in a handful of domains, including 

astronomy and seismology, there is an insatiable appetite to consider 

ever larger datasets. In this work we show that with several novel 

insights we can push the motif discovery envelope using a novel 

scalable framework in conjunction with a deployment to commercial 

GPU clusters in the cloud. We demonstrate the utility of our ideas 

with detailed case studies in seismology, demonstrating that the 

efficiency of our algorithm allows us to exhaustively consider 

datasets that are currently only approximately searchable, allowing 

us to find subtle precursor earthquakes that had previously escaped 

attention, and other novel seismic regularities. 

1. INTRODUCTION 
Time series motifs are approximately repeated subsequences of a 

longer time series. As Figure 1 (and Figure 4) suggest, motifs can 

often reveal unexpected regularities in large datasets. In the last 

decade, time series motif discovery has become an increasingly 

important primitive for time series analytics, and is used in domains 

as diverse as seismology [4], astronomy, geology, ethology [44], 

neuroscience [22], medicine [13], consumer behavior [45], music 

[38] and sports analytics. In recent years, algorithmic advances 

(coupled with hardware improvements) have greatly expanded the 

purview of motif discovery. It has recently been shown that motif 

discovery is trivial given a data structure called the Matrix Profile 

(MP), and that the current state-of-the-art MP batch construction 

algorithm STOMP, can discover motifs efficiently enough for many 

users [44].  

Moreover, an informal survey of the literature suggests that many 

medical, scientific and industrial labs, analysts rarely have to deal 

will datasets with more than a few million data points [24]. For such 

datasets, STAMP which is an anytime algorithm, can produce a high 

quality approximate MP in minutes, which approaches “interactive” 

time for most purposes [43]. Note that “minutes” may not seem 

impressively fast, until you recall that many of datasets in question 

take days or weeks to collect. As a concrete example, in Figure 1 the 

approximate motif discovery for this full-day chicken behavior 

dataset takes well under an hour. The biologist using this tool reports 

that “this is fast enough for what I need.” [24].  

Nevertheless, we argue that there is an insatiable need for further 

scalability. Some domains, including seismology, astronomy and 

neuroscience have a near inexhaustible appetite to consider ever 

larger datasets. For example, a recent paper reports that by simply 

performing (approximate) motif search on larger datasets “directly 

enabled the discovery of 597 new earthquakes near the Diablo 

Canyon nuclear power plant in California” [22]. Undoubtedly, 

exact search of the same dataset (or a larger superset thereof) would 

yield even further subtle instances of unexpected regularities.  

 

Figure 1: top) Twenty-four hours of time series from an 

accelerometer worn by a chicken (Gallus domesticus). bottom-

left) A zoom-in shows that the data is apparently void of 

structure. However, the top-1 motif (bottom.right) suggests that 

some behaviors are highly conserved. Inspection of video 

recorded in parallel suggests this a dustbathing behavior [22].  

Given this demand from domain experts, we have created a 

framework called SCAMP (SCAlable Matrix Profile) that greatly 

expands the purview of exact motif discovery. We summarize our 

major contributions below: 

1. We provide a general distributed framework for the ultra-

scalable computation of the Matrix Profile [43]. Both the 

performance and numerical stability are greatly improved via 

our method when dealing with long time series.  

2. Our framework allows us to work with time series data which 

do not fit wholly into GPU memory, allowing Matrix Profiles to 

be computed which are larger than previously considered. 

3. We introduce novel numerical methods to increase performance 

and improve stability of the Matrix Profile computation; this 

allows the use of single-precision floating-point calculations for 

many datasets, which in turn allows our methods to be applied 

to larger datasets at a cheaper amortized cost.   

4. We have created a novel fault-tolerant framework that is 

compatible with the use of “spot” instances [47], which major 

cloud providers (Amazon, Google, and Microsoft) offer at a 

substantial discount, making motif discovery more affordable. 

5. We provide a freely available open-source implementation of 

our framework which runs on Amazon Web Services in a cluster 

of instances equipped with Nvidia Tesla V100 GPUs, as well as 

optimized CPU code at [50]. 
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The rest of this paper is organized as follows. In Section 2, we state 

our assumptions, introduce necessary definitions, and summarize 

related work. Section 3 has a description of our novel scalable 

framework and the improvements we made that allow us to further 

push the boundary of Matrix Profile calculations. In Section 4, we 

illustrate a few of the use cases for very large Matrix Profiles through 

several case studies on challenging datasets. In Section 5, we 

provide a detailed empirical analysis of our ideas, before offering 

conclusions and directions for related work in Section 6. 

2. DEFINITIONS AND ASSUMPTIONS 
We begin by stating our key assumption; it has been developed at 

length elsewhere [43][44], but we repeat it here for concreteness.  

Key Assumption: Motif discovery under any reasonable 

definition is trivial if given the Matrix Profile data structure. 

That is to say, there are a handful of definitions of time series motifs, 

top-k motifs, range motifs, biased motifs [9], contextual motifs [13] 

etc. No matter which definition is required, the Matrix Profile alone 

is all that is needed to extract the motif in linear time and space 

[40][43]. Given this observation, in this paper we focus on solely on 

computing the Matrix Profile as efficiently as possible; the reader 

can appreciate that this implicitly solves the task at hand. Our key 

assumption actually understates the case. Having the Matrix Profile 

computed is sufficient to solve many additional time series data 

mining tasks, including, discord discovery, chain discovery, snippet 

discovery, segmentation etc. [40][43].  For simplicity we ignore 

these additional uses of the Matrix Profile here. 

We can now formally define the data type of interest, time series: 

Definition 1: A time series T is a sequence of real-valued numbers 

ti: T = t1, t2, ..., tn where n is the length of T. 

We are typically interested not in global, but local properties of a 

time series. A local region of time series is called a subsequence: 

Definition 2: A subsequence Ti,m of a time series T is a continuous 

subset of the values from T of length m starting from position i. 

Formally, Ti,m = ti, ti+1,…, ti+m-1, where 1 ≤  i ≤  n-m+1. 

Given a query subsequence Ti,m and a time series T, we can compute 

the distance between Ti,m and all the subsequences in T. We call this 

a distance profile: 

Definition 3: A distance profile Di corresponding to query Ti,m  

and time series T is a vector of the Euclidean distances between a 

given query subsequence Ti,m and each subsequence in time series 

T. Formally, Di = [di,1, di,2,…, di,n-m+1], where di,j (1 ≤  j ≤ n-m+1) 

is the distance between Ti,m and Tj,m. 

We assume that the distance is measured by Euclidean distance 

between z-normalized subsequences [43][44]. Once we obtain Di, 

we can extract the nearest neighbor of Ti,m in T. Note that if the query 

Ti,m is a subsequence of  T, the ith location of distance profile Di is 

zero (i.e., di,i = 0) and close to zero just to the left and right of i. This 

is called a trivial match in the literature. We avoid such matches by 

ignoring an “exclusion” zone of length m/k before and after i, the 

location of the query, where 1 < k < m-1. 

What should the value of k be set to? In more than a dozen works 

considering hundreds of diverse datasets it has been shown to be 

inconsequential [9][43][44]. There is one possible case that would 

require more careful introspection. It is best explained by an analogy 

to text motifs in the presence of anadiplosis. Consider this line of 

wordplay from a Monty Python sketch “.. the very meaning of life 
itselfish bastard…”. Here the string “self’ belongs to both ‘itself’ 
and to ‘selfish’. Something similar can happen with time series data. 

For example, in a motion captured ASL performance, the end of one 

signed word can overlap the beginning of the next word. In such a 

case the user needs to decide if he is willing to allow such 

overlapping by setting k to a smaller value. 

However, given the relative unimportance of k, we simply set di,j (i-

m/4 ≤  j ≤ i+m/4) to ∞, and the nearest neighbor of Ti,m can thus be 

found by evaluating min(Di). 

We wish to find the nearest neighbor of every subsequence in T. The 

nearest neighbor information is stored in two meta time series, the 

Matrix Profile and the Matrix Profile index. 

Definition 4: A Matrix Profile P of time series T is a vector of the 

Euclidean distances between every subsequence of T and its 

nearest neighbor in T. Formally, P = [min(D1), min(D2),…, 

min(Dn-m+1)], where Di (1 ≤ i ≤  n-m+1) is the distance profile Di 

corresponding to query Ti,m and time series T. 

The ith element in the Matrix Profile P tells us the Euclidean distance 

from subsequence Ti,m to its nearest neighbor in time series T. 

However, it does not tell us the location of that nearest neighbor; 

this information is stored in the companion Matrix Profile index: 

Definition 5: A Matrix Profile index I of time series T is a vector 

of integers: I=[I1, I2, … In-m+1], where Ii=j if di,j = min(Di). 

Figure 2 illustrates the relationship between distance matrix, 

distance profile (Definition 3) and Matrix Profile (Definition 4). 

Each element of the distance matrix di,j is the distance between Ti,m 

and Tj,m (1 ≤ i, j ≤ n-m+1) of time series T. 

 
Figure 2: The relationship between the distance matrix, distance 

profile and Matrix Profile. A distance profile is a column (also a 

row) of the distance matrix. The Matrix Profile stores the 

minimum (off diagonal) value of each column of the distance 

matrix; the location of the minimum value within each column 

is stored in the companion Matrix Profile index. 

Figure 3 shows a visual example of a distance profile and a Matrix 

Profile created from the same time series T. 

 
Figure 3: top) A distance profile Di created from Ti,m shows the 

distance between Ti,m and all the subsequences in T. The values 

in the dark zone are ignored to avoid trivial matches. bottom) 

The Matrix Profile P is the element-wise minimum of all the 

distance profiles (Di is one of them). Note that the two lowest 

values in P are at the location of the 1st motif in T). 

Note that as we presented it, the Matrix Profile is a self-join: for 

every subsequence in a time series T, it records information about its 

(non-trivial-match) nearest neighbor in the same time series T. 
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However, we can trivially generalize it to be an AB-join; for every 

subsequence in a time series A, record information about its nearest 

neighbor in time series B [44][45]. Note that A and B can be of 

different lengths, and that in general, AB-join ≠ BA-join.  

2.1 Observations on Precision  
It has noted by several independent research groups that at least for 

some time series retrieval tasks, 64-bit precision is unnecessarily 

precise [3][40]. In recent years, and in various disciplines, 

researchers have shown that reduced precision computation can be 

exploited to have significant performance benefits with little to no 

observable difference in quality of results [40][15]. This observation 

has been heavily exploited in deep learning [15][48]; however, it is 

rarely exploited for time series, except for to allow the use of 

Minimal Description Length to score and rank models [3], which is 

orthogonal to scalability considerations.  In Figure 4 we show a 

Matrix Profile computed on some insect electrical penetration graph 

(EPG) using 64-bit precision.   

 

Figure 4: top-row) A snippet of whitefly insect EPG data. second-

row) The Matrix Profile computed with 64-bit precision. third-

row) Because the 64-bit and 32-bit Matrix Profiles are visually 

identical at this scale, we subtract them, and multiplied the 

difference by 5,000.   bottom-row) The whitefly is a tiny insect, 

yet is produces extraordinary well conserved motifs. 

This plot is very suggestive; There is a difference between the 

Matrix Profiles computed at 64 and 32-bit precision, but it is so small 

it does not affect the motifs discovered, and indeed is not even 

visible unless we multiple the difference by a huge constant. 

However, there are two caveats to consider.  

• The time series shown in Figure 4 is relatively short. As we 

address ever longer time series, there is more potential for 

accumulated floating-point error making a significant difference 

[18]. Indeed, even in this example we can see that the difference 

vector gets larger as we scan left to right (Figure 4.third-row). We 

address this issue in Section 4.2 

• The time series shown in Figure 4 also has the property that the 

information within it is contained within small range. This is true 

for some types of data, ECGs, accelerometer and gyroscope 

readings etc. However, there are handful of application domains 

for which this is not true, and seismology is one of them. A “great” 

earthquake has a magnitude of 8 or greater, but humans can feel 

earthquakes with a magnitude of just 2.5, a difference of more than 

five orders of magnitude. Processing raw data that spans such a 

range requires careful thought and very careful implementation, 

we address this in Sections 3.2, 3.3, and 4.2 

Before moving on, we note that this illustration offers another 

example of the utility of motif discovery. The data in Figure 4 

represents a tiny fraction of the entomologist’s data archive [23]. 

The pattern represented by the 2nd motif is common and immediately 

recognizable by the entomologists as ingestion of xylem sap 

behavior [35]. However, the 1st motif was unexpected, there is a 

“missed beat” during the xylem sap ingestion cycle. If we had 

observed a single example of this, we might have attributed it to 

chance or noise. However, motif discovery shows us that there are 

at least two strongly conserved examples (in fact, there are several 

other examples). This suggests that there is some semantic meaning 

to this motif, which the entomologists are currently exploring [23].  

In order to support the massive computations required to find 

unexpected regularities in these huge archives, we turn to the 

compute potential of GPUs and introduce our GPU framework for 

computing massive Matrix Profiles. 

3. The SCAMP Framework 
To compute large Matrix Profiles, we introduce a framework that 

can be used by a combination of a host and one or more workers. A 

host could be a local machine, or a master server in a compute 

cluster. Workers follow the host’s direction and can be other CPU-

based systems in a cluster, or an accelerator such as a GPU. We use 

the term cluster to refer to a host and all of its associated workers. 

While a cluster can refer to the typical group of co-located nodes in 

a cloud, it can also refer to a single node with accelerators attached 

(e.g. a server equipped with several GPUs).  

3.1 A Brief Overview of GPU-STOMPOPT 
GPU-STOMPOPT [45] is the current state of the art for computing 

Matrix Profiles on the GPU. The SCAMP algorithm can best be 

described in terms of a set of modifications and extensions to GPU-

STOMPOPT. Thus, for completeness, we include a brief description 

of the GPU-STOMPOPT algorithm below. The reader familiar with 

this material can skip to Section 3.2. 

An illustration of the GPU-STOMPOPT algorithm is shown in Figure 

5 (left). In GPU-STOMPOPT, each thread computes a diagonal of the 

distance matrix shown in Figure 2 by updating the dot product, QT, 

at each point along the diagonal using Equation 1 and then 

computing the distance, di,j, via Equation 2. 

𝑄𝑇𝑖,𝑗 = 𝑄𝑇𝑖−1,𝑗−1 − 𝑡𝑖−1𝑡𝑗−1 + 𝑡𝑖+𝑚−1𝑡𝑗+𝑚−1 (1) 

𝑑𝑖,𝑗 = √2𝑚 (1 −
𝑄𝑇𝑖,𝑗 − 𝑚𝜇𝑖𝜇𝑗

𝑚𝜎𝑖𝜎𝑗
) (2) 

Each GPU thread block computes the distances in parallelogram-

shaped tiles along a ‘meta’-diagonal. For each tile, the values needed 

to compute the distances are loaded into GPU shared memory. By 

loading the intermediate values into shared memory we achieve 

spatial and temporal reuse of local data. We keep a best-so-far cache 

of the Matrix Profile in shared memory as well; when a new distance 

is computed we update this cached value if its value is lower than 

the smallest distance computed thus far. After every tile’s distances 

are computed, we check if any values in our thread-block-local copy 

of the Matrix Profile need to be pushed to the global Matrix Profile, 

and update via atomic access if necessary.  

In SCAMP, we improve several aspects of GPU-STOMPOPT, which 

leads to a several-fold improvement in the performance of the 

algorithm and allows us to exploit newer GPU hardware more 

efficiently. We explain these improvements in great detail in the 

following sections. For additional details on STOMP, GPU-STOMP 

and GPU-STOMPOPT please refer to [40][41][45]. 
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Figure 5: left) The GPU-STOMPOPT GPU execution pattern. 

This execution pattern is shared with the SCAMP_tile 

algorithm. right) The SCAMP tiling scheme using 4 GPUs. The 

illustration of the tiling scheme is for self-joins only. Note that 

while we only illustrate an upper triangular tile, the lower 

triangular tile is computed with the same implementation, but 

with the inputs transposed. For AB-joins we also need to 

compute the lower-triangular portion of the distance matrix. 

3.2 Tiling Scheme 
Instead of computing the entire distance matrix in one operation we 

can split the distance matrix into tiles, where each tile computes an 

AB-join between two segments of the input time series. Each tile is 

computed independently, which allows us to scale the computation 

to very large input sizes and distribute the work to many independent 

machines. Figure 5 (right) illustrates the intuition of our tiling 

scheme 

The host machine maintains information about its workers their 

available hardware, such as the type of GPUs are available on the 

system, the memory capacity, and the CPU speed to determine a tile 

width that can saturate its workers and to delegate jobs among them. 

In the general case, this delegation can be complex and challenging 

to do effectively. For simplicity, in this paper we assume that all of 

the workers are the same and that the most effective tile size is one 

that fully saturates the worker during execution. This is currently 

discovered empirically, but once it is discovered for a given system 

it can be hardcoded. While our framework is compatible with 

heterogeneous infrastructure, for simplicity of presentation we 

assume a homogeneous compute cluster. We leave a detailed 

exploration of tile size and heterogeneous compute clusters to future 

work. For our use case, V100 GPUs become saturated around a tile 

width of one million, which is used as the default tile size for 

SCAMP and is the tile size used throughout the rest of this paper, 

unless otherwise noted. The host splits the distance matrix into 

square tiles whenever possible using the desired tile width and 

assigns each one to a worker; the following subsections describe the 

algorithms run on the host and the workers. 

3.2.1 SCAMP_host 
The host executes the SCAMP_host algorithm, shown in Table 1. 

SCAMP_host employs asynchronous streams, which allow the host 

to issue tasks to workers without blocking and without needing to 

explicitly manage the ordering of each operation and completion. 

The stream manages the dependencies of each event issued on it and 

enforces that the events within a stream execute sequentially.  

Lines 1 and 2 determine the appropriate tile size for the problem 

instance and determines the tile ordering. For this work, the reader 

can assume that tiles are issued in order along the diagonal as shown 

in Figure 5, this allows us to use the host as a ‘cache’ for the current 

best-so-far Matrix Profile values. As additional tiles are computed, 

they can use the current information as their initial value, instead of 

having to start from scratch. This results in fewer memory 

reads/writes during computation.  

Table 1: The SCAMP_host Algorithm 

Procedure SCAMP_host() 

Input: User provided time series T, window length w, workers 

Output: Matrix profile P and Matrix Profile index I, of time series T 

using window length w 

1 

2 
3 

4 

5 
6 

 

7 
8 

9 

10 
 

 

 
11 

12 

13 
14 

15 

 
 

 

16 
17 

18 

19 
20 

21 

n ← Length(T) 

TileSize ← GetTileSize(), TileOrder ← GetTileOrder() 
for each worker do: 

       mem[worker] = AllocateStorage(T, TileSize) 

       streams[worker] = AllocateAsynchronousStream(worker)  
       tile ← PopTile(TileOrder) 

       // Start the first tile on each stream 

       SCAMP_tile(mem[worker], tile, stream[worker]) 
done 

while TileOrder not empty do: 

    for each worker do: 
        // Add operations to each stream 

        // streams wait for previous ops before starting the next 

        // Retrieve the data, then start the next tile if it exists 
        RetrieveDataAsync(mem[worker], tile, streams[worker]) 

        if TileOrder not empty: 

              next_tile ←PopTile(TileOrder) 
              SCAMP_tile(mem[worker], tile, streams[worker]) 

    done 

    // Gather the data from each worker, then start then next tile on 
    // the worker while the host merges the results from the  

    // previous tile in parallel. 

    for each stream in streams: 
        mp, mpi  = SynchronizeAndRetrieveData(stream) 

        MergeResult(P, I, mp, mpi) 

   done 

done 

return P, I 

For each worker: line 4 allocates memory for all temporary arrays 

required to produce the result (the array length depends on the tile 

size); line 5 allocates an asynchronous stream for each worker; line 

6 chooses the next tile to execute; and line 7 asynchronously issues 

a tile to each worker. 

Lines 10-15 issue events to retrieve the result from each worker as 

it finishes its current tile, and issues the next tile to the worker when 

the data transfer finishes; this ensures that the steady state always 

has an in-flight tile executing on each worker. Once the data transfer 

is complete and the worker starts processing the next tile lines 16-19 

merge the partial results into the Matrix Profile.  

Note that there are some minor optimizations that can be performed 

to further improve tile ordering and reduce the overhead of tiling in 

certain cases. To improve the flow of this work, this optimizations 

are relegated to the supporting documentation at [50]. 

3.2.2 SCAMP_tile 
Each worker executes the SCAMP_tile algorithm, shown in Table 

2, to compute the intermediate result for that particular tile. The 

implementation of the SCAMP_tile algorithm depends on the 

worker’s architecture. The host, which is aware of each worker’s 

respective architecture, distributes the work accordingly.  

Line 1 initializes the current Matrix Profile value to the best-so-far 

value computed for other tiles. Line 2 computes the initial dot 

product values associated with the upper triangular tile. Line 3 

executes an architecture-optimized kernel to compute the Matrix 

Profile and Index for that tile. Line 4 computes the initial dot product 

values associated with the lower triangular tile and line 5 computes 

the result associated with that tile.  



Prior work established that the self-join problem exhibits symmetry 

in the distance matrix [41][42]; however, it was less obvious that the 

memory access pattern and the order in which distances are 

computed in SCAMP and GPU-STOMPOPT also exhibit symmetry. 

In particular, the inputs can be transposed and our framework can 

generate the lower-triangular portion of the matrix as if it were the 

upper-triangular portion using the same implementation. We exploit 

this property to implement AB-joins in the SCAMP framework.  

Table 2: SCAMP Tile Computation 

Procedure SCAMP_tile() 

Input: Tile data d, time series A, time series section B 

Output: Matrix Profile mp and index mpi between section A and B 

1 
 

2 

 
 

3 

 
4 

 

5 
6 

mp ← d.best_so_far_mp, mpi ← d.best_so_far_index 
// Generate the initial dot products for the upper-right tile 

QT ← SlidingDotProducts(A,B) 

// Compute the Matrix Profile for the upper-right tile 
// DoTriangularTile is implemented similarly to GPU-STOMPopt 

mp, mpi ← DoTriangularTile(A, B, d, QT, mp, mpi) 

// Generate the initial dot products for the lower-left tile 
QT ← SlidingDotProducts (B,A) 

// Update the Matrix Profile using results from the lower-left tile 

mp, mpi ← DoTriangularTile (B,A, d, QT, mp, mpi) 
return mp, mpi 

This approach has several distinct advantages GPU-STOMPOPT: 

• Numerical Stability: Every new tile introduces a ‘reset’ point 

for SCAMP’s extrapolation. Each time a tile is started we directly 

compute the value of the initial dot products at that row and 

column of the distance matrix in high precision. This reduces the 

chance that we have large rounding errors and that when there is 

a rounding error, we do not propagate it as far. This contrasts with 

GPU-STOMPOPT where we extrapolate the diagonals of the 

distance matrix from a single initial value. 

• Preemptability: Each tile is independently issued and completed. 

The SCAMP_tile algorithm is therefore preemptable, increasing 

the fault-tolerance of our framework. If a worker executing a tile 

“dies” or otherwise fails to complete its work, the host can just 

issue that work again without having to recompute work 

performed by machines other than the worker that failed. This 

benefit is extremely useful: as mentioned in Section 1, many 

commercial cloud providers allow for users to purchase spot 

instances at significantly reduced prices. These spot instances are 

only useful to fault-tolerant applications, as the cloud provider 

can kill the instance at any point. Using the fault-tolerance of 

SCAMP, we are able to use cloud resources at much cheaper rates 

than other applications which are not fault-tolerant. Enabling 

immense scalability requires significant compute resources, by 

reducing the cost of these compute resources we can afford more 

compute resources, thereby increasing the size of the datasets we 

can consider given a limited financial budget.  

• Extensibility: Since each tile is independently computed, we can 

provide different options for each tile’s computation. This allows 

for the potential of utilizing a heterogeneous infrastructure, with 

varying amounts of memory and compute power. Additionally a 

user could provide a separate, optimized implementation of the 

SCAMP_tile algorithm for each individual type of worker. 

Allowing for high performance even in a highly heterogeneous 

environment. There are other benefits to this extensibility, 

perhaps the user knows that a particular segment of the time 

series is important and wants to ‘promote’ motif discovery in that 

region. The user could customize the distance calculation for the 

tiles of specific interest, perhaps giving a higher weight to 

distances computed between the interesting regions.  

• Localized Matrix Profiles: When each tile is computed by a 

separate device, the intermediate result must be stored 

somewhere to later be merged into the final Matrix Profile; 

however, these intermediate results represent the Matrix Profiles 

for pairs of localized regions in the data and could be immediately 

useful to the user. For example, when performing a join on one 

year of data, the tile size could be chosen to be one month. In this 

case, the intermediate results of the year-long data represent the 

AB-join Matrix Profiles for each pair of months. The utility of 

localized Matrix Profiles is illustrated in Section 5.2. 

One disadvantage of SCAMP is that the subsequence window size 

cannot be larger than the tile size, and this is assumed in our 

implementation. If the window size was larger than the tile size, then 

each worker would have to process an overlapping region between 

tiles, resulting in a large amount of additional overhead and 

boundary checking, and would prevent SCAMP from partitioning 

the Matrix Profile computation into truly independent chunks. 

However, the subsequence length is almost always much smaller 

than the tile size, which is usually in the millions [43][44]. 

3.3 Numeric Changes for Speed and Stability 
The numerical stability (and performance) of algorithms involving 

floating-point arithmetic can often be improved by carefully 

reordering the operations. With this in mind, SCAMP replaces GPU-

STOMPOPT’s sliding dot product equation update with a centered-

sum-of-products formula, as shown in Equations 3-7.  

𝑑𝑓𝑖  =
𝑇𝑖+𝑚 − 𝑇𝑖

2
 (3) 

𝑑𝑔𝑖  = (𝑇𝑖+𝑚 −  𝜇𝑖+1.𝑚) + (𝑇𝑖 − 𝜇𝑖,𝑚)   (4) 

𝑄𝑇̅̅ ̅̅
𝑖,𝑗 =  𝑄𝑇̅̅ ̅̅

𝑖−1,𝑗−1 + 𝑑𝑓𝑖𝑑𝑔𝑗 + 𝑑𝑓𝑗𝑑𝑔𝑖 (5) 

𝑃𝑖,𝑗 =  𝑄𝑇̅̅ ̅̅
𝑖,𝑗 ∗

1

‖𝑇𝑖..𝑖+𝑚‖
∗

1

‖𝑇𝑖..𝑖+𝑚‖
 (6) 

𝐷𝑖,𝑗  = √2𝑚(1 − 𝑃𝑖,𝑗) (7) 

Equations 3 and 4 are precomputations which compute the terms 

used in the sum-of-products update formula of Equation 5, and 

incorporate incremental mean centering into the update. Equations 

3, 4, and 5 are specifically for self joins and are a special case of a 

more general formula for an AB-join (see Ref. [50] for a full 

derivation). Empirically, this new formula reduces the number of 

incorrectly rounded bits.  

Additionally, we replace the Euclidean Distance (ED) used in 

previous Matrix Profile computations [43][44][45] with the Pearson 

Correlation (P) in Equation 6; P can be computed incrementally 

using fewer computations that ED, and can be converted to a 

normalized ED in linear time using Equation 7. As a further 

optimization, we precompute the inverse L2-norms in Equation 6 to 

eliminate redundant division operations from SCAMP’s inner loop. 

3.4 More optimizations for GPU-STOMPOPT 
The improved numerical stability that results from the changes 

reported in the previous section enabled us to explore the usage of 

reduced-precision floating-point operation without substantially 

sacrificing computational accuracy. Using lower-precision values 

improved cache performance and increases the number of 

concurrent floating-point operations that each GPU can execute. 

Thus, we implemented SCAMP using three different precision 

modes: 

Double Precision (SCAMP DP): We store all intermediate shared 

memory values in double-precision floating-point and use double 



precision floating-point instructions for all computation. This 

provides accurate results for all datasets that we considered, 

regardless of size, noise, ill-conditioned regions etc. 

Single Precision (SCAMP SP): We store all intermediate data and 

perform all calculations in single precision. Using half the data width 

of double precision increases our memory and compute performance 

by approximately 2x. We found that this mode is adequate for highly 

regular datasets, such as ECG or accelerometer data, but may yield 

incorrect results for ill-conditioned data; a detailed analysis is 

deferred until Section 4.2. 

Mixed Precision (SCAMP MIX): This is similar to SCAMP SP, all 

intermediate values are stored in single precision and calculations 

are performed in single precision, except for Equation 5, which is 

computed using double-precision. Accumulating in double-

precision along the diagonal provides the numerical stability of 

double-precision, while allowing the use of faster single-precision 

operations for computations whose numerical stability is less 

critical; however, this necessitates the introduction of several type 

casting operations can which increases pressure on special floating-

point units (SFUs) which perform this conversion in the GPU. Some 

of this pressure can be alleviated by performing only the final add in 

Equation 5 in double-precision, keeping intermediate values in 

single precision only until the very end. This in turn prevents us from 

using floating-point multiply-add (FMA) instructions, as GPUs do 

not support mixed-precision FMA. We have found that SCAMP 

MIX provides accurate results for many datasets which can be 

represented in single precision. 

We also experimented with half-precision (16-bit) floating-point 

operations, but found that incorrect motifs were identified for many 

of our data sets; consequently, we exclude half-precision from 

further consideration in this paper.   

The new Matrix Profile computation in Eq. 3-7 reduces each 

thread’s demand for shared memory. We increase the amount of 

shared memory allocated to each thread, allowing each thread to 

compute four separate diagonals. Specifically, we unroll the loop 

four times so that each thread computes sixteen new distances (four 

distances for each of four diagonals) per iteration, while ensuring the 

per-thread-block memory usage remains low enough to achieve 50% 

occupancy on a Tesla V100 GPU. For the interested reader, more 

information on the Volta GPU architecture is detailed in [52]; we 

have empirically observed that Matrix Profile computation is bound 

by shared memory loads, not compute time.  

 

Figure 6: Illustration of one iteration of the innermost loop of 

our GPU implementation.  Note that for self-joins, since we only 

compute half of the distance matrix, we must track both the 

Matrix Profile value for the columns and for the rows. For AB-

joins we only need to look at the columns or the rows.  

Further, this unrolling scheme facilitates the usage of vectorized 

shared memory loads for dependencies, which further reduces the 

pressure on the shared memory bottleneck and increases throughput 

by reducing the number of shared memory transactions executed. 

The FP32 and mixed-precision modes can execute two 128-bit loads 

per column dependency and one 128-bit load per row dependency, 

and all intermediate values computed during the Matrix Profile 

calculation can be stored in registers without spilling.  

As the row or column distances are computed, we track the 

maximum per-row and per-column distances and update the 

corresponding Matrix Profile value in shared memory accordingly, 

resulting in row-wise and column-wise updates for each distance 

that is computed; this contrasts with GPU-STOMPOPT where every 

newly computed distance computed is compared to the Matrix 

Profile cache. Figure 6 illustrates our strategy for the innermost loop. 

3.5 Putting it all Together: A GPU Cluster 
We evaluate SCAMP, as described in the preceding subsections, on 

Amazon Web Services, which we selected as a being representative 

of commercially available cloud services. We illustrate our method 

in Figure 7. First, we partition a locally stored time series data set 

and partition it into equal-sized chunks ranging from 20 to 100 

million elements. There is a tradeoff here between distributed 

overhead of starting new jobs, intermediate data size, and the risk of 

a job being preempted and losing work. We compress each chunk 

store it on the cloud (Amazon S3), where Amazon EC2 instances 

can readily download it. We use AWS batch to set up a job queue 

backed by a compute cluster of p3.16xlarge spot instances. As noted 

in Section 3.2, spot instances allow us to exploit the fault-tolerance 

of SCAMP, by running on machines that can be preempted without 

the risk of losing all of our progress, we can purchase this compute 

power more cheaply than if we needed dedicated resources, and this 

improves the price per performance of SCAMP. We issue an array 

batch job where each job computes the Matrix Profile for one tile. 

We issue one job at a time to each worker, and the tile size is 

specified to ensure that we achieve full saturation of the compute 

resources in each worker, maximizing the throughput of this pipeline 

without losing exorbitant progress if our instance gets preempted.  

Each job first copies and decompresses the input segments that 

correspond to the row and column of its tile. Each tile has two inputs, 

one segment corresponding to the tile-row, and one segment 

corresponding to the tile-column, each job computes an AB-join on 

these inputs. Next, the job executes the SCAMP_host algorithm on 

the input, further subdividing its tile among its worker GPUs. Once 

SCAMP_host computes the Matrix Profile and index associated 

with the tile, it compresses the result and returns it to Amazon S3. 

The job is now complete and is dequeued.  After all jobs terminate, 

we use another job to decompress and merge each tile’s Matrix 

Profile into the final result. As long as the intermediate data doesn’t 

get too large, this is a relatively simple step. In our one billion 

datapoint experiment, we merged the 196 GB of intermediate results 

in only 1 hour using only a single machine on AWS. This merging 

could be parallelized to take just a few minutes in a MapReduce [10] 

framework. 

Intermediate output data volumes can be as large as tens or hundreds 

of gigabytes for input sizes as large as one billion elements. Small 

tile sizes produce too much localized information to reasonably store, 

even if it would otherwise be of interest to the user. SCAMP’s space 

requirement is RN where R is the number of tile rows, and N is the 

length of the final Matrix Profile. If the tile size is 1, then R = N and 

processing one billion elements would necessitate storage of the 

entire distance matrix comprising one quintillion values.  

To put these numbers into context, if each intermediate value was 

eight bytes compressed on disk, the total storage requirement would 

be eight exabytes, the estimated aggregate storage capacity of 

Google’s datacenters as recently as 2014 [42]. 



 

Figure 7: Illustration of how we distribute SCAMP in a cluster 

of GPU instances on AWS.   

4. Empirical Evaluation 
We begin by noting that all our experiments (including all the figures 

above) are reproducible. All code and data (and additional 

experiments omitted for brevity) are archived in perpetuity [50]. 

4.1 Performance Evaluation 

4.1.1 Comparison to GPU-STOMPOPT using V100 

We evaluate the performance of SCAMP against GPU-STOMPOPT 

and provide the results in Table 3. The first column shows the 

performance of GPU-STOMPOPT using the code from [45] on an 

Nvidia Tesla K80. The results here are very similar to those provided 

in [45] but vary slightly because we changed the timing of the 

experiment to be more precise. 

The second column shows the timing results for the same code 

running on a single Nvidia Tesla V100 SXM2 on Amazon Elastic 

Compute Cloud. The large speedup here is due to two factors. First, 

the V100 has a much higher instruction throughput and memory 

bandwidth. Secondly, and even more importantly, on the Tesla K80 

we are heavily bottlenecked by the instruction latency of the atomic 

updates to the Matrix Profile in shared memory. Shared memory 

atomics were emulated in software prior to the Maxwell 

architecture; post-Maxwell, they are implemented in hardware and 

included natively in the instruction set architecture (ISA) [49]. In 

some cases, emulated shared memory atomics could be slower than 

global memory atomics. Matrix Profile updates emerged as a 

performance bottleneck on the Tesla K80 due to these emulated 

atomics after all the other optimizations were applied.  

The third column shows the timing results for SCAMP over column 

1. The additional speedup is a result of the optimizations we made 

via our changes in Sections 3.3 and 3.4. The fourth and fifth columns 

show the additional speedup that using our two single precision 

modes in SCAMP provide. Recall that these results may not be 

identical to FP64 given the difference in numerical precision. 

Table 3: SCAMP Runtime Evaluation 

Algorithm STOMP-GPUOPT SCAMP 

Architecture K80 V100 V100 V100 V100 

Precision DP DP DP MIX SP 

218 3.04s 0.34s (8.9x) 0.28s (10.9x) 0.27 (11.3x) 0.24s (12.7x) 

219 11.4s 1.24s (9.2x) 0.68s (16.8x) 0.64 (17.8x) 0.57s (20.1x) 

220 44.1s 4.81s (9.2x) 2.05s (21.5x) 1.82 (24.2x) 1.42s (31.1x) 

221 174s 19.0s (9.2x) 6.99s (24.9x) 5.73 (30.4x) 4.38s (39.8x) 

222 629s 69.2s (9.1x) 25.8s (24.4x) 21.5 (29.3x) 15.5s (40.7x) 

223 2514s 277s (9.1x) 96.8s (26.0x) 77.8 (32.3x) 52.5s (47.9x) 

4.1.2 Ideal GPU Scalability 
Like prior algorithms that compute the Matrix Profile, SCAMP’s 

ideal execution time is quickly and deterministically computable. 

Given the runtime of SCAMP on one GPU on a dataset of sufficient 

size to saturate compute performance we can construct an analytical 

model to estimate the execution time across G V100 GPUs on any 

data size under ideal assumptions (e.g., no communication 

overhead). We can use this model to answer an arguably more 

interesting question: Given G V100 GPUs, what size Matrix Profile 

can SCAMP compute given time T? Equation 8 answers the 

question, where No and To are initialization parameters provided by 

a trial run on a single V100 GPU. This equation is derived from the 

O(n2) computational complexity of SCAMP. We use this equation 

and the double precision SCAMP runtime for input size 223 (Table 

3) to construct Figure 8.  

N = 𝑁𝑜√
𝑇𝐺

𝑇𝑜 
 (8) 

 

Figure 8: Equation 8 plotted using No and To from Table 3, the 

V100 double precision result for 223. Dots correspond to values 

measured during experiments throughout this paper. This is for 

a single non-preemptable instance equipped with GPUs. 

Equation 8 applies for multi-instance distributed work as well. 

Each dot in Figure 8 corresponds to an experiment we performed, to 

illustrate how our analytical model holds up empirically. Note that 

the data for our distributed workload for the Cascadia Subduction 

Zone also aligns well with this plot; however, we did not include it 

due to space/readability constraints. The reader can find the more 

detailed figure at our supporting webpage [50]. 

An interesting conclusion we can draw from this is that the cost for 

a problem is constant if there is no distributed overhead. For 

example, to compute a join of 530 million in FP32, you can either 

use 8 V100s for 8 hours, or 64 V100s for 1 hour. The cost for these 

two options is the same if the cost per hour per V100 is the same. 

4.1.3 Distributed Performance on p3 spot instances 

We evaluated SCAMP’s distributed capabilities on two very large 

earthquake datasets. Both datasets used forty V100 GPUs, each in a 

different configuration and both ran on an AWS EC2 Spot Instance 

fleet. A spot instance is a compute resource that AWS can preempt 

at any time (due to load, demand, etc.) so jobs running on a spot 

instance must be interruptible. When AWS preempts a SCAMP tile 

instance, we restart the tile which was being computed at the time, 

so some amount of work is lost. A spot instance fleet automatically 

provisions a consistent number of spot instances for the job queue. 

If one instance is preempted, AWS will provision another one for 

the fleet as long as there are instances available.  

In Table 4 we see the results for the two large experiments done. For 

the Parkfield dataset, we ran on a five p3.16xlarge spot instance 

fleet, each of which is equipped with eight V100 GPUs, totaling 

forty across the fleet. Unfortunately, we found that the p3.16xlarge 



instances were in high demand at the time we ran the experiment, so 

it took a long time to complete, as the jobs remained queued, during 

periods where AWS could not provide us with capacity to execute; 

however, we only paid for active GPU computation time.  

Table 4: Summary of various distributed runs 

Dataset Parkfield 1B Cascadia Subduction Zone 

Size 1 Billion 1 Billion 

Tile Size ~52M (1 month) ~ 25M (2 weeks) 

Total GPU time 375.2 hours 375.3 hours 

Spot Job Time 2.5 days 10hours 3min 

Approximate Spot Cost 480 USD 620 USD 

Intermediate Data Size 102.2 GB 196.4 GB 

For the Cascadia subduction zone dataset, we used ten Amazon EC2 

p3.8xlarge instances each equipped with four V100 GPUs. These 

instances were in lower demand and we were able to consistently 

maintain compute power (hence the shorter job time). The 

discrepancy in the cost of these two experiments is due to an increase 

in the spot price of these instances, which is driven by demand [51]. 

When using spot instances, we essentially scrape the ‘bottom of the 

barrel’ in terms of compute resources. We get the leftovers that were 

not paid for by customers who pay full price for non-preemptable 

instances. In other words, we are using resources that would have 

otherwise gone unused. When there is high demand for compute 

power, the value of the ‘bottom-of-the-barrel’ goes up. When there 

is low demand, the cloud provider is losing money and is willing to 

give that compute power to the highest bidder. 

4.1.4 CPU Comparison  

Table 5 compares an OpenMP-based multi-core CPU SCAMP 

implementation to our GPU optimized implementation. The CPU 

implementation uses a 72-core c5 18xlarge spot instance (Intel 

Skylake architecture). Both implementations compared in Table 5 

employ double-precision (FP64) calculations. 

As shown in Table 5, the 72 core c5.18xlarge instance saturates at 

an input size of 221, after which its runtime scales quadratically, as 

expected. At the time of writing, the c5.18xlarge has the same on-

demand price on AWS as a p3.2xlarge which employs one V100 

GPU. While it is difficult to compare runtimes across architectures, 

we can compare price per performance, which is shown in bold as a 

factor of improvement of the GPU over the CPU. In this case, the 

GPU is approximately one order of magnitude more cost-efficient. 

The price per performance for smaller input sizes is not a particularly 

good basis for comparison: we could have used a smaller instance 

type to achieve better price per performance on a CPU when small 

input data sizes do not saturate the 72 available cores on the c5 

18xlarge spot instance. 

Table 5: Optimized CPU SCAMP on a single AWS instance 

               Instance Type 

Input Size 

c5.18xlarge (72 cores) 

3.06 USD/hr    Seconds 

p3.2xlarge (1 Tesla V100) 

3.06 USD/hr  Sec/speedup 

218 7    0.28 (25x) 

219 14   0.68 (20x) 

220 32   2.0  (16x) 

221   76   7.0  (11x) 

222 252 25.8  (9.8x) 

223 933 96.8  (9.6x) 

4.2 Precision Evaluation 
Consider the three data snippets shown in Figure 9. Each has a 

constant region longer than the motif length m we are interested in. 

This is a source of numerical instability that is very common in many 

domains. However, as we will show, it is easy to fix. 

 

Figure 9: Three real time series from [9], each containing a 
constant region caused by different issue. left) An ECG (heart) 
with a disconnection artifact. center) An EOG (eye movement) 
with a hard-limit artifact. right) An ECoG (finger flexion) with 
constant region caused by low precision recording.  

Such constant regions are surprisingly common, even in datasets that 

one might not expect to contain them. For example, just in the 

context of medical datasets, we see constant regions caused by: 

• Disconnection Artifacts: We may see temporary disconnection 

of a monitoring lead, for example during a bed change. 

• Hard-Limit Artifacts. Some devices have a minimum and/or 

maximum value defined by a physical limit of the device. As 

shown in Figure 9.center, if the true value exceeds that limit, a 

constant region will be reported. 

• Low Precision Artifact: Many medical devices record at low-

precision fixed-point; these seemingly short period constant 

values would not be constant at a higher precision. 

The reason why constant regions matter is because we are interested 

in the similarity of z-normalized subsequences. Z-normalization 

requires dividing by the standard deviation, which is zero for a 

constant region. Moreover, there are often subsequences that are 

almost constant, and therefore would pass a bit-level test for “at least 

two different values”, but would nevertheless result in a division by 

a number very close to zero.  

We note that in the majority of cases these disconnection artifacts 

can be allowed to saturate to a Pearson Correlation of 1 or a z-

normalized Euclidean Distance of 0 and removed later via a post 

processing step. In many domains these flat regions have little 

semantic meaning. However, sometimes these regions only appear 

to be flat in lower precision, but are actually are full of very small 

peaks, valleys, and interesting behavior when kept in high precision. 

If these small peaks and valleys are important, we should compute 

the Matrix Profile in double precision, as motifs are likely to be lost 

at lower precision in these cases.  

Note that the majority of the instability here comes from the final 

distance calculation in Equation 3, where we must multiply by the 

inverse norm, which can get extremely large for these almost-flat 

regions. However, we should not introduce instability into the long 

running computation from this because Equation 4 does not utilize 

these inverse norms, making the potential for value explosion due to 

the multiplication of large numbers far less likely. 

Figure 10 shows the relative error between the distance matrices 

computed with SCAMP DP vs SCAMP SP on a subset of the 

Parkfield data. The relative errors greater than 10 percent are shown 

in gray. At the top of the matrix, there is very little error, once the 

earthquake occurs, the error becomes catastrophic. As stated 

previously, this error occurs because FP32 cannot represent large 

numbers (> 107, in this case) with sufficient accuracy. 

Note that there are two types of error occur the matrix. The first are 

scattered errors when the distance between the subsequences in the 

Parkfield earthquake and other arbitrary subsequences are 

computed. The second are poisoned diagonals, once a diagonal’s 

error grows too large, it essentially becomes ‘poisoned’ as it can 

cause other distances between subsequence pairs along that diagonal 

to have large error as well.  
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Figure 10:  The Distance matrix for a small subset of data 
containing the Parkfield earthquake. We plot the relative error 
greater than 10% in the distance matrix for single precision vs 
double precision. This illustrates what can go wrong if the data 
representation is not expressive enough.  

4.2.1 Comparison with Previous Update Method 
In Figure 11, we compare SCAMP’s update method with the 

previous method implemented in GPU-STOMP. We compute the 

result first in double precision, then plot the difference between the 

double and single precision results in Pearson Correlation of 

SCAMP and GPU-STOMP.  

 
Figure 11: Single precision error comparison between GPU-

STOMPOPT and SCAMP on White Fly EPG dataset. top) 

original data. middle) SCAMP absolute error. bottom) GPU-

STOMP absolute error.  

By comparing the bottom and middle of Figure 10, we can see how 

Equations 1 and 2, which compose the originally reported update 

method for GPU-STOMP, completely fail in single precision on this 

dataset.  In the figure, we capped the error at 1 for GPU-STOMP, 

which is half of the range of Pearson Correlation. The actual values 

reported by GPU-STOMP in some cases were many times larger 

than the entire range of Pearson Correlation.   

Notice that SCAMP only fails for the previously discussed 

disconnection artifacts. In such cases, the results for SCAMP can be 

cleaned up by a domain expert with very little effort, by simply not 

omitting small regions which where the signal was disconnected. On 

the other hand, GPU-STOMP cannot produce a meaningful result 

across almost the entire dataset. 

4.2.2 General Considerations for Precision 

Table 6 presents an analysis of the effects of reducing precision on 

various datasets of different lengths. In each case we use a tile size 

of 1 million for SCAMP and allow GPU-STOMP to extrapolate the 

entire length of the input (not a parameter in GPU-STOMP). As 

previously noted, the tile size affects the amount of extrapolation 

SCAMP must perform on the data to produce the final result. For 

our experiment, we generate the Matrix Profile using both SCAMP 

and GPU-STOMP in each of our precision modes. Each entry in the 

table is the max absolute error found between the double precision 

Matrix Profile calculation and the other precision modes. For Table 

6, we intentionally choose a window length longer than the longest 

flat artifact region in the data. This allows us to compare errors 

caused by the update formula only and not the inherent loss of 

information from an artifact that cannot be represented in lower 

precision. We have highlighted absolute errors greater than 0.01 in 

the Matrix Profile result in red as these results would probably not 

be considered accurate enough for most users. 

Table 6: Maximum absolute error (Pearson Correlation) for 

various datasets/algorithms. Red values denote high error 

Maximum 

absolute error 

Size (m) SCAMP 

SP 

SCAMP 

MIXED 

STOMP 

SP 

Whitefly EPG 2.5M (1000) 3.75*10-2 1.36*10-2 1.89*101 

ECG 8.4M (100) 3.14*10-4 2.20*10-4 2.07*10-3 

Earthquake 1.7M (200) 6.35*10-1 6.35*10-1 3.17*103 

Power Demand 10M (4000) 4.85*10-2 2.06*10-2 2.22*10-1 

Chicken 9M (1000) 4.92*10-2 7.71*10-3 2.27*101 

99.9 percentile 

absolute error 

Size (m) SCAMP 

SP 

SCAMP 

MIXED 

STOMP 

SP 

Whitefly EPG 2.5M (1000) 3.00*10-3 2.08*10-3 1.55*101 

ECG 8.4M (100) 4.40*10-5 2.59*10-5 4.02*10-4 

Earthquake 1.7M (200) 6.08*10-1 6.08*10-1 1.94*103 

Power Demand 10M (4000) 8.52*10-3 3.48*10-3 1.29*10-1 

Chicken 9M (1000) 1.96*10-3 7.25*10-4 1.70*101 

This experiment shows that while SCAMP is 3 or more orders of 

magnitude more accurate than STOMP on these datasets, SCAMP 

suffers a substantial loss in accuracy when using 32-bit data 

representations; however, this loss comes with the benefit of 

improved performance. If a user’s dataset and application are can 

tolerate the loss of accuracy, there is much to be gained in terms of 

efficiency. SCAMP SP has about 50% more error on average than 

SCAMP MIX, while STOMP SP struggles to find meaningful 

results. Empirically, we observe that SCAMP SP works well on data 

that is highly regular with a small min-max range. ECG would be an 

example of this kind of data. With some additional effort it may be 

possible to produce better results in for more types of data, but we 

leave this task for future work.  

Additionally, note that both SCAMP MIX and SCAMP SP 

completely fail on the Earthquake dataset in Table 6. The reason for 

this is that the large earthquake’s signal has a magnitude of greater 

107, which is outside the range of the values single precision can 

represent to the required accuracy.  

5. Case Studies in Seismology 
As Figure 1 and Figure 4 suggest, motifs are of interest in many 

domains. However, we confine our case studies to seismology, as it 

is a domain with obvious and direct importance for humankind. 

In geophysics, seismic data are a primary source of information 

about Earth’s interior structure and processes. We define seismic 

data as any recorded motion (i.e. displacement, velocity, 

acceleration) measured using seismic instruments at the Earth’s 

surface. We naturally think of this motion can be caused by 

earthquakes or volcanic activity, however it can also be created by 

thunderstorms, wind, ocean waves, nuclear tests, landslides, the 

movements of glaciers, or even, on rare occasions human activity 

(i.e. 100,000 soccer fans celebrating a goal). Seismic data are 

surprisingly versatile, but one of the most important applications is 

to detect and locate seismic events (earthquakes). Detected and 

located seismic events can be used for studying earthquake source 

processes and source physics, fault behavior and interactions, for 

determining Earth’s velocity structure, and in general helping to 

constrain seismic hazard [12]. Along with the improvement of 

seismic data instruments, reductions in cost, improvements in 

networking, data management and repositories, have resulted in a 
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power law increase in seismic data volume [19]. Probing this huge 

volume of data is an ongoing challenge in seismology. 

Performing query search for seismic data has been shown to increase 

the detectability of seismic events by one order of magnitude 

[29][36]. However, this method requires a priori known queries 

(often referred to as ‘waveform templates’ in seismology) as input. 

Although waveforms of events in a local earthquake catalog can be 

used, this relies on suitable events being present in the catalog. To 

identify suitable queries, [6] developed an ‘autocorrelation’ motif 

discovery method, but this was limited to one hour of waveform data 

at a time as the method is computationally expensive in terms of both 

memory and time [6][7][34]. Being restricted to one hour of data 

limited this otherwise potentially powerful method, as the 

seismologists wish to consider much larger time scales. For 

example, aftershocks of large earthquakes can occur over a time 

period of days to months [29], swarms (volcanic and non volcanic) 

can take weeks to months [17], and repeating earthquakes can have 

recurrence intervals on the order of months to years [25].  

Some other recent studies developed a fast motif discovery by 

“fingerprinting” – converting seismic time series to small and dense 

proxies, or “fingerprints” and then performing Locality-Sensitive 

Hashing (LSH) on them [4][32] LSH is a fast approximate nearest 

neighbor search method that reduces the similarity search 

dimensions. Although the LSH method sped up the similarity search 

process tremendously (i.e. ~143 times faster than traditional 

autocorrelation for one week of continuous data), it also produces 

false positive results (e.g. 12 events for one week of continuous data 

with 24 catalog events; [32]) and, more importantly, false negatives 

(e.g. 3 events out of 24 catalog events; [32]). In addition, LSH 

requires the careful selection of a number of tuning parameters that 

strongly influence the success of the search, and whose values may 

vary for different regions, data sets and applications. The tuning 

parameter selection process requires visual inspection, and 

validation against the results of other methods.  

In contrast, SCAMP can exactly search datasets that are can only be 

searched approximately using current methods. To show this, we 

consider the milestone of 1,000,000,000 data points. One billion data 

points is equivalent to ~579 days (~1.5 years) of seismic data with a 

20 Hz sample rate. Below, in two examples, we show how moving 

from motif discovery for hours of data to years of data is a potential 

game changer in seismic data mining. 

5.1  Foreshocks and aftershocks of Parkfield  
The town of Parkfield, located on the San Andreas fault in central 

California, experienced four magnitude ~6 earthquakes in the 20th 

Century, in 1901, 1922, 1934 and 1966 [25][29][36]. Based on the 

quasi-periodic nature of the events, a repeat event was predicted to 

occur between 1985 and 1993 [25], a prediction that spurred a major 

project, the ‘Parkfield Earthquake Prediction Experiment’, an 

attempt to capture the earthquake and all associated phenomena with 

the best available instrumentation. Although it occurred over a 

decade ‘late’ in 2004, the most recent Parkfield earthquake was 

recorded in extraordinary detail by the Parkfield High Resolution 

Seismic Network (HRSN), a dense array of borehole seismometers 

(preferred due to their low levels of noise). In addition, the thousands 

of aftershocks that followed the earthquake, as well as any possible 

foreshocks or other event precursors were also recorded at similarly 

high quality. 

In order to investigate i) whether the HRSN data contain information 

on any aftershocks that were not included in the earthquake catalog, 

and ii) whether there was any change in behavior of the seismicity 

before the mainshock; we ran SCAMP on 580 days (1,002,240,008 

points) of 20 Hz horizontal component seismic data (from 28 

November 2003 to 9 July 2005) from the HRSN station EADB, 

centered on the 2004 Parkfield event time (i.e. 28 September 2004). 

We set the query length at 100 samples, equivalent to 5 seconds of 

data. We band-pass filtered the data between 2 and 8 Hz, a frequency 

range suitable for detecting both local and low frequency 

earthquakes (LFEs), a class of events that typically have low signal 

to noise ratios. Figure 12 shows a zoom-in of two sections of the 

waveform and their corresponding Matrix Profile.  

 

Figure 12: Examples of a waveform snippet (top) and 
corresponding MP shape (bottom) for aftershocks of the 
Parkfield earthquake. left) a small aftershock. right) a larger 
aftershock with a waveform amplitude that is three orders of 
magnitude larger.  

Examining the motifs for aftershocks of the Parkfield earthquake, 

we notice that they have a very characteristic shape (a much higher 

resolution figure archived in Ref. [50] shows this more clearly). 

Note that the MP drops abruptly as the query window starts to 

capture the beginning of the earthquake waveforms and then 

gradually increases back to the background noise level. The duration 

of this gradual increase is longer for the larger event (Figure 

12.right), consistent with the empirical relationships of signal 

duration with event magnitude [21][8].  

This Matrix Profile shape indicates that the two waveforms being 

compared have similar shapes at their beginnings, and dissimilar 

shapes at their ends. The first arrivals (first motions) of seismic 

waves have polarities (either up or down) that reflect both the 

mechanism of the earthquakes that generated them and their location 

relative to the station. An abrupt initial drop in the MP, therefore 

indicates that the two waveforms have the same first motion polarity. 

The next few seconds of arrivals to the station include later arriving 

seismic phases that include reflections, refractions and 

reverberations of seismic waves – collectively referred to as the 

seismic ‘coda’ – these are much more sensitive to differences in 

earthquake location, and therefore much less similar between pairs 

of events [1]. Even so, while the MP for the coda is, as we would 

expect, higher than for the first motions, it remains lower than the 

background noise (Figure 12), and therefore remains indicative of 

an earthquake.  

From this observation we can propose two important applications 

the MP results for seismology: i) The abrupt initial drop of MP can 

be used to select the primary phase arrival of seismic events, which 

is an ongoing challenge in seismology [26][33] (ii) The length of the 

MP valley from the sudden drop to its recovery can help to measure 

the coda length, and it is been shown that the length of coda 

correlates with the magnitude of earthquakes [8][21]. 

To show the power of the MP for identifying earthquakes we 

performed a simple event-detection experiment. Note that as 

discussed above, here we are using a Matrix Profile containing the 

Pearson correlation coefficient (which we denote as MPCC). The  

Pearson correlation is the common metric used in seismological 

studies [31][25][37], rather than the Euclidean distance, to which it 

can be trivially converted (and vice versa). The MPCC has the 

advantage of being bounded in the range [-1,1]. 

0 0

a
m

p
li

tu
de

Small aftershock of the 
Parkfield earthquake.

(note the units)

Large aftershock of the 
Parkfield earthquake.

(note the units)

0 600 1200 18000

2
4

6
8

10

0 600 1200 1800

Five Seconds Five Seconds

M
a

tr
ix

 P
ro

fil
e



We count the number of MPCC peaks when they are separated by at 

least 100 samples (5 seconds); this prevents overcounting the same 

earthquake when multiple peaks are present for one event. 

Additionally, long traces of seismograph data often contain repeated 

patterns corresponding to a special types of sensor noise. 

Fortunately, these are easy to filter, as they create near perfect 

motifs. We thus count the number of MPCC peaks above 0.9 but 

below 0.99. 

Figure 13 shows the number of MPCC motifs per day for 580 days 

of EADB data. Although we targeted the Parkfield earthquake 

aftershocks, by looking at the number of MPCC motifs per day, we 

detected other nearby earthquakes and their aftershocks as well, 

notably the 2003 Mw 6.5 San Simeon event and two other moderate 

(Mw4.0–4.5) earthquakes nearby.  

 

Figure 13: Daily numbers of discovered motifs for 580 days of 
data centered on the Parkfield earthquake (04/09/28), measured 
on the horizontal component of station EADB, located ~10 km 
from the epicenter. Motifs are selected based on the peak values 
of the MP correlation coefficient (MPCC).  

A series of motif peaks in the lead-up to the Parkfield mainshock 

(around 04/07/01) may represent previously undetected foreshock 

activity (i.e. there are no corresponding events in the regional 

earthquake catalog), and merit further investigation.  

In Figure 14 we compare the total number of motifs with 0.9 ≤ 

MPCC < 0.99 over the first 90 days of the Parkfield aftershock 

sequence with the number of catalog aftershocks retrieved from the 

Northern California Earthquake Data Center (NCEDC), we find ~16 

times more detections for the former. 

 
Figure 14: Comparison between the number of events in the 
USGS NCSN Catalog (green line) and the number of motifs 
detected using SCAMP (red line) for the Parkfield earthquake 
aftershock sequence. For the catalog events we considered all 
events in a box with length ~200 km centered on the Parkfield 
mainshock epicenter. The start of seismicity in this plot is 4 days 
before the Parkfield earthquake 

Note that some small faction of these MP thresholding-based 

detections might be station artifacts; however, our visual inspection 

suggests that these account for less than 5% of the events.  

We also fit the Omori-Utsu aftershock rate equation [16] to the 

detected and catalogued aftershocks of the Parkfield earthquake. 

Figure 15 shows that the number of motifs per day fit the Omori-

Utsu law almost perfectly. 

 

Figure 15: A fit of an Omori-Utsu relationship (i.e. the law that 
describes aftershock rate behavior) to the number of motifs per 
day for the first 30 days after the Parkfield mainshock. The R-
squared of 0.988 indicates a very good fit and shows how the 
number of motifs can describe the expected aftershock behavior 
almost perfectly. 

The values retrieved from the Omori-Utsu law can provide 

information about the physics of the mainshock [16] and also even 

can be used for forecasting large aftershocks [28].  

Here we only present a small portion of the results that could be 

extracted from the MP for 580 days of data. The threshold of 0.9 that 

we use is relatively high and can be set to lower values for detecting 

(LFEs). In the next section we discuss LFEs and their importance in 

greater detail. There also some motifs in the months before the 

Parkfield earthquake that could represent foreshocks and/or 

precursory seismicity, and should be investigated in greater detail 

(Figure 13). Note that these applications are viable when the 

continuous data time series is long enough that there is a high 

probability a near neighbor exists for each seismic event. Our 

experience suggests that 580 days of seismic data for an area like 

Parkfield that has a high seismicity rate (i.e. tens of thousands of 

events in that period, Figure 13), would essentially guarantee this.  

5.2 Detecting subtle seismic motifs  
The Cascadia subduction zone, where the Juan de Fuca plate 

subducts beneath the North American plate, is a tectonic province 

extending from coastal Northern California north to Vancouver 

Island. Since the discovery of the episodic slow slip on the 

subduction interface in this region and the discovery of a non-

volcanic tremor (NVT) that accompanies these slow slips, there is 

an ongoing effort to better understand how these phenomena affect 

earthquakes on the subduction zone, particularly because it has the 

potential to produce great earthquakes i.e. magnitude ~9 [2][20]. 

It has been shown that the NVT likely consists of a swarm of low 

frequency content seismic events that are called ‘low frequency 

earthquakes’. For a better understanding the relationship of slow slip 

and tremor, the precise determination of the source of an NVT is an 

important task. As NVT waveforms typically have non-impulsive 

arrivals, meaning that it is difficult to pick the first seismic wave 

arrival times, the location process can have large uncertainties 

meaning that detecting and locating individual LFEs is often a better 

alternative.  

To test the SCAMP’s ability to detect LFEs, and more generally to 

explore the seismicity of the southern Cascadia subduction zone, we 

ran SCAMP on 579 days of data (start date 2006/03/01) for the 

vertical component of station I02A, located near Mapleton, OR. We 

band pass filter these data at 2–8 Hz and resample them to 20 Hz. 

We set the query length this time to 200 (10 seconds), based on the 

length of LFE templates used in previous studies. Figure 16 shows 

the motif density over time for this experiment.  
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Figure 16: Discovered motifs for 579 days of seismic data 
recorded on the vertical channel of station I02A, located near 
Mapleton, OR. The number of discovered motifs based on 
MPCC thresholding method shows two six-month periods were 
detected motifs gradually increase, that start in mid 2006 and 
mid 2007. We estimate that >90% of these discovered motifs are 
low frequency earthquakes (see Figure 17). 

By examining at the time series of daily motif detections, we observe 

that in 2006 the number of motifs starts to increase around August 

and decreases in November. The number of motifs again starts to 

increase in June 2007 and starts to decrease around October (Figure 

16). In order to classify some of these motifs as LFEs, we visually 

inspect some of the days with the highest number of detected motifs. 

We observe that most of these detections are LFEs based on their 

shapes, durations and frequency contents. We also observe that the 

MP shape around the motifs for regular earthquakes are different 

from those of the LFEs (Figure 17). The valley shape for the motifs 

corresponding to regular earthquakes has the same characteristics 

that we observe for earthquakes at Parkfield (i.e. a sudden drop and 

gradual increase back to the MP values for background noise, Figure 

17.left). However, the shapes of the MP around the LFEs are almost 

flat and stay low until the end of the LFE signal (Figure 17.right).   

By visual inspection, we conclude that a large portion of the detected 

motifs are LFEs and our result indicates two Episodic Tremor and 

Slip (ETS) events – one that starts in mid-2006 and one that start in 

mid-2007 (Figure 16). Our results broadly agree with those reported 

in [5] for the southern Cascadia region. They reported one main ETS 

event in August-September 2006 (that they name ‘E11’) and another 

in July-August 2007 (‘E26’). However our detection shows a more 

gradual increase in detected LFEs, rather than a sharp onset, as 

reported in that earlier study.  

 

Figure 17: left) An example of an earthquake waveform snippet 
(top) and MP shape (bottom) in the vicinity of a discovered motif 
for a ‘regular’ earthquake (i.e. an earthquake that contains high 
frequency content). Note that the MP drops abruptly when the 
tail of the query (length 200 samples) includes the beginning of 
the event and goes back to the background level after the query 
head passes the whole seismic signal. right) Another earthquake; 
based on the shape, duration and frequency content of the 
waveform, we suspect this is an LFE. In this case, the MP shape 
around the motif stays flat until the end of seismic event.  

More investigation is required to confirm that the ~90% of ‘LFE-

like’ motifs discovered in the Cascadia data set are indeed LFEs. 

This investigation should include inspections of data from multiple 

stations and determination of event locations.  

One open question is whether the sources of these LFEs are 

permanent ‘asperities’ (source regions on the fault) which repeatedly 

slip during each successive slow slip event, or temporary sources 

                                                                 
1 For the pedant. Since the pairwise distances are symmetric and the distance 

to self is always zero, to find motifs in a billion length time series, we only 

needed to compute four hundred ninety-nine quadrillion, nine hundred 

that repeat only during that specific slow slip event [53]. One novel 

feature of SCAMP is that it produces intermediate partial AB-join 

MPs (section 3.2.2) that can be used here to answer this question. 

Here using these partial AB-join MP we search for motifs between 

two subsets of our seismic data from Cascadia: one (A) containing 

data from the peak motif discovery period in 2006 (100 days from 

11/07/2006 to 19/10/2006) and the other (B) from the corresponding 

period in 2007 (84 days from 08/07/2007 to 30/09/2007).  By 

comparing the AB-join MP and the MP from all 579 days for the A 

period, we observe that the motif density only decreases by 20%. 

This implies that 80% of the LFEs in the 2006 slow slip event 

recurred in the 2007 slow slip event. 

On the basis of these results, we suggest that the majority of LFE 

sources are likely to have been stable at least during the 2006 and 

2007 slow slip events. 

 

Figure 18: Comparison of self-join and AB-join for seismic data 
from Cascadia. Red line shows the self-join results from Fig 16 
zoomed in for the time window of 11/07/2006 to 19/10/2006. Blue 
line is the motif density based on a partial AB-join MP. The B 
time period contains data from 08/07/2007 to 30/09/2007.  The 
motif discovery is based on thresholding of MPCC values 
between 0.9 and 0.99. The shapes of the motif density time series 
for both cases are similar but the AB-join case contains 20% 
fewer motifs. This implies that 80% of the motifs discovered in 
the A period (the 2006 slow slip event) have similar events in the 
B period (the 2007 slow slip event).  

All results presented here were obtained by simple post-processing 

of the MP produced by SCAMP, and possibilities for further 

refinement in analysis and interpretation remain open. The 

versatility and precision that SCAMP provides suggests that 

SCAMP has a rich future in seismic data mining – a discipline that 

traditionally has suffered from false negatives. 

6. Discussion and Conclusion 
We introduced novel algorithms and optimizations that can exploit 

modern GPU hardware to allow significant progress in the size of 

datasets that can be exactly searched for motifs. To the best of our 

knowledge, this work is the first time any research effort has 

reported performing a quintillion exact pairwise comparisons on a 

single dataset1. Likewise, this is the first work to do exact motif 

search on over a year (1.59 years) of continuous earthquake data.  

We believe that this work addresses a pent-up need that is near 

universal in data analytics. For example, [32] note that in the context 

of motif discovery in seismology, “scalability bottlenecks prevented 

seismologists from making use of the decades of data at their 

disposal.” [32]. Likewise, in neuroscience, [22] argue for the 

importance of “(motifs) of neural activity in understanding how 

information is encoded”. That work resorted to approximations and 

downsampling to make motif discovery tenable [22], however this 

work exactly searches datasets that are orders of magnitude larger 

that they were able to consider.   

We have made all code freely available to the community to 

confirm, extend and most importantly, exploit our work. 

ninety-nine trillion, nine hundred ninety-nine billion, five hundred million 

comparisons. 
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