
Scaling Time Series Motif Discovery with GPUs: Breaking
the Quintillion Pairwise Comparisons a Day Barrier

Zachary Zimmerman, Kaveh Kamgar, Yan Zhu, Nader Shakibay Senobari, Brian Crites, Gareth Funning, Philip

Brisk, and Eamonn Keogh

University of California, Riverside

{zzimm001, kkamg001, yzhu015, nshak006, bcrit001, gareth}@ucr.edu {philip, eamonn}@cs.ucr.edu

ABSTRACT

The discovery of conserved (repeated) patterns in time series is

arguably the most important primitive in time series data mining.

Called time series motifs, these primitive patterns are useful in their

own right, and are also used as inputs into classification, clustering,

segmentation, visualization, and anomaly detection algorithms.

Recently the Matrix Profile has emerged as a promising

representation to allow the efficient exact computation of the top-k

motifs in a time series. The state-of-the-art algorithms for computing

the Matrix Profile are STAMP and STOMP which are fast enough

for many tasks. However, in a handful of domains, including

astronomy and seismology, there is an insatiable appetite to consider

ever larger datasets. In this work we show that with several novel

insights we can push the motif discovery envelope using a novel

scalable framework in conjunction with a deployment to commercial

GPU clusters in the cloud. We demonstrate the utility of our ideas

with detailed case studies in seismology, demonstrating that the

efficiency of our algorithm allows us to exhaustively consider

datasets that are currently only approximately searchable, allowing

us to find subtle precursor earthquakes that had previously escaped

attention, and other novel seismic regularities.

1. INTRODUCTION
Time series motifs are approximately repeated subsequences of a

longer time series. As Figure 1 (and Figure 4) suggest, motifs can

often reveal unexpected regularities in large datasets. In the last

decade, time series motif discovery has become an increasingly

important primitive for time series analytics, and is used in domains

as diverse as seismology [4], astronomy, geology, ethology [44],

neuroscience [22], medicine [13], consumer behavior [45], music

[38] and sports analytics. In recent years, algorithmic advances

(coupled with hardware improvements) have greatly expanded the

purview of motif discovery. It has recently been shown that motif

discovery is trivial given a data structure called the Matrix Profile

(MP), and that the current state-of-the-art MP batch construction

algorithm STOMP, can discover motifs efficiently enough for many

users [44].

Moreover, an informal survey of the literature suggests that many

medical, scientific and industrial labs, analysts rarely have to deal

will datasets with more than a few million data points [24]. For such

datasets, STAMP which is an anytime algorithm, can produce a high

quality approximate MP in minutes, which approaches “interactive”

time for most purposes [43]. Note that “minutes” may not seem

impressively fast, until you recall that many of datasets in question

take days or weeks to collect. As a concrete example, in Figure 1 the

approximate motif discovery for this full-day chicken behavior

dataset takes well under an hour. The biologist using this tool reports

that “this is fast enough for what I need.” [24].

Nevertheless, we argue that there is an insatiable need for further

scalability. Some domains, including seismology, astronomy and

neuroscience have a near inexhaustible appetite to consider ever

larger datasets. For example, a recent paper reports that by simply

performing (approximate) motif search on larger datasets “directly

enabled the discovery of 597 new earthquakes near the Diablo

Canyon nuclear power plant in California” [22]. Undoubtedly,

exact search of the same dataset (or a larger superset thereof) would

yield even further subtle instances of unexpected regularities.

Figure 1: top) Twenty-four hours of time series from an

accelerometer worn by a chicken (Gallus domesticus). bottom-

left) A zoom-in shows that the data is apparently void of

structure. However, the top-1 motif (bottom.right) suggests that

some behaviors are highly conserved. Inspection of video

recorded in parallel suggests this a dustbathing behavior [22].

Given this demand from domain experts, we have created a

framework called SCAMP (SCAlable Matrix Profile) that greatly

expands the purview of exact motif discovery. We summarize our

major contributions below:

1. We provide a general distributed framework for the ultra-

scalable computation of the Matrix Profile [43]. Both the

performance and numerical stability are greatly improved via

our method when dealing with long time series.

2. Our framework allows us to work with time series data which

do not fit wholly into GPU memory, allowing Matrix Profiles to

be computed which are larger than previously considered.

3. We introduce novel numerical methods to increase performance

and improve stability of the Matrix Profile computation; this

allows the use of single-precision floating-point calculations for

many datasets, which in turn allows our methods to be applied

to larger datasets at a cheaper amortized cost.

4. We have created a novel fault-tolerant framework that is

compatible with the use of “spot” instances [47], which major

cloud providers (Amazon, Google, and Microsoft) offer at a

substantial discount, making motif discovery more affordable.

5. We provide a freely available open-source implementation of

our framework which runs on Amazon Web Services in a cluster

of instances equipped with Nvidia Tesla V100 GPUs, as well as

optimized CPU code at [50].

8,000,000
-10

0

10

0 Twenty -f our hours

0 6000One minute 0 150One and a half seconds

night nightday

X-axis acceleration

The rest of this paper is organized as follows. In Section 2, we state

our assumptions, introduce necessary definitions, and summarize

related work. Section 3 has a description of our novel scalable

framework and the improvements we made that allow us to further

push the boundary of Matrix Profile calculations. In Section 4, we

illustrate a few of the use cases for very large Matrix Profiles through

several case studies on challenging datasets. In Section 5, we

provide a detailed empirical analysis of our ideas, before offering

conclusions and directions for related work in Section 6.

2. DEFINITIONS AND ASSUMPTIONS
We begin by stating our key assumption; it has been developed at

length elsewhere [43][44], but we repeat it here for concreteness.

Key Assumption: Motif discovery under any reasonable

definition is trivial if given the Matrix Profile data structure.

That is to say, there are a handful of definitions of time series motifs,

top-k motifs, range motifs, biased motifs [9], contextual motifs [13]

etc. No matter which definition is required, the Matrix Profile alone

is all that is needed to extract the motif in linear time and space

[40][43]. Given this observation, in this paper we focus on solely on

computing the Matrix Profile as efficiently as possible; the reader

can appreciate that this implicitly solves the task at hand. Our key

assumption actually understates the case. Having the Matrix Profile

computed is sufficient to solve many additional time series data

mining tasks, including, discord discovery, chain discovery, snippet

discovery, segmentation etc. [40][43]. For simplicity we ignore

these additional uses of the Matrix Profile here.

We can now formally define the data type of interest, time series:

Definition 1: A time series T is a sequence of real-valued numbers

ti: T = t1, t2, ..., tn where n is the length of T.

We are typically interested not in global, but local properties of a

time series. A local region of time series is called a subsequence:

Definition 2: A subsequence Ti,m of a time series T is a continuous

subset of the values from T of length m starting from position i.

Formally, Ti,m = ti, ti+1,…, ti+m-1, where 1 ≤ i ≤ n-m+1.

Given a query subsequence Ti,m and a time series T, we can compute

the distance between Ti,m and all the subsequences in T. We call this

a distance profile:

Definition 3: A distance profile Di corresponding to query Ti,m

and time series T is a vector of the Euclidean distances between a

given query subsequence Ti,m and each subsequence in time series

T. Formally, Di = [di,1, di,2,…, di,n-m+1], where di,j (1 ≤ j ≤ n-m+1)

is the distance between Ti,m and Tj,m.

We assume that the distance is measured by Euclidean distance

between z-normalized subsequences [43][44]. Once we obtain Di,

we can extract the nearest neighbor of Ti,m in T. Note that if the query

Ti,m is a subsequence of T, the ith location of distance profile Di is

zero (i.e., di,i = 0) and close to zero just to the left and right of i. This

is called a trivial match in the literature. We avoid such matches by

ignoring an “exclusion” zone of length m/k before and after i, the

location of the query, where 1 < k < m-1.

What should the value of k be set to? In more than a dozen works

considering hundreds of diverse datasets it has been shown to be

inconsequential [9][43][44]. There is one possible case that would

require more careful introspection. It is best explained by an analogy

to text motifs in the presence of anadiplosis. Consider this line of

wordplay from a Monty Python sketch “.. the very meaning of life
itselfish bastard…”. Here the string “self’ belongs to both ‘itself’
and to ‘selfish’. Something similar can happen with time series data.

For example, in a motion captured ASL performance, the end of one

signed word can overlap the beginning of the next word. In such a

case the user needs to decide if he is willing to allow such

overlapping by setting k to a smaller value.

However, given the relative unimportance of k, we simply set di,j (i-

m/4 ≤ j ≤ i+m/4) to ∞, and the nearest neighbor of Ti,m can thus be

found by evaluating min(Di).

We wish to find the nearest neighbor of every subsequence in T. The

nearest neighbor information is stored in two meta time series, the

Matrix Profile and the Matrix Profile index.

Definition 4: A Matrix Profile P of time series T is a vector of the

Euclidean distances between every subsequence of T and its

nearest neighbor in T. Formally, P = [min(D1), min(D2),…,

min(Dn-m+1)], where Di (1 ≤ i ≤ n-m+1) is the distance profile Di

corresponding to query Ti,m and time series T.

The ith element in the Matrix Profile P tells us the Euclidean distance

from subsequence Ti,m to its nearest neighbor in time series T.

However, it does not tell us the location of that nearest neighbor;

this information is stored in the companion Matrix Profile index:

Definition 5: A Matrix Profile index I of time series T is a vector

of integers: I=[I1, I2, … In-m+1], where Ii=j if di,j = min(Di).

Figure 2 illustrates the relationship between distance matrix,

distance profile (Definition 3) and Matrix Profile (Definition 4).

Each element of the distance matrix di,j is the distance between Ti,m

and Tj,m (1 ≤ i, j ≤ n-m+1) of time series T.

Figure 2: The relationship between the distance matrix, distance

profile and Matrix Profile. A distance profile is a column (also a

row) of the distance matrix. The Matrix Profile stores the

minimum (off diagonal) value of each column of the distance

matrix; the location of the minimum value within each column

is stored in the companion Matrix Profile index.

Figure 3 shows a visual example of a distance profile and a Matrix

Profile created from the same time series T.

Figure 3: top) A distance profile Di created from Ti,m shows the

distance between Ti,m and all the subsequences in T. The values

in the dark zone are ignored to avoid trivial matches. bottom)

The Matrix Profile P is the element-wise minimum of all the

distance profiles (Di is one of them). Note that the two lowest

values in P are at the location of the 1st motif in T).

Note that as we presented it, the Matrix Profile is a self-join: for

every subsequence in a time series T, it records information about its

(non-trivial-match) nearest neighbor in the same time series T.

D1 D2 … Dn-m+1

D1 d1,1 d1,2 … d1,n-m+1

D2 d2,1 d2,2 … d2,n-m+1

… … … … …

Dn-m+1 dn-m+1,1 dn-m+1,2 … dn-m+1,n-m+1

P min(D1) min(D2) … min(Dn-m+1)

|Di|=|T|-m+1

|P|=|T|-m+1

0 500

time series T

distance profile Di

Ti,m, a subsequence of length m

matrix profile P

time series T
Exclusion Zone

However, we can trivially generalize it to be an AB-join; for every

subsequence in a time series A, record information about its nearest

neighbor in time series B [44][45]. Note that A and B can be of

different lengths, and that in general, AB-join ≠ BA-join.

2.1 Observations on Precision
It has noted by several independent research groups that at least for

some time series retrieval tasks, 64-bit precision is unnecessarily

precise [3][40]. In recent years, and in various disciplines,

researchers have shown that reduced precision computation can be

exploited to have significant performance benefits with little to no

observable difference in quality of results [40][15]. This observation

has been heavily exploited in deep learning [15][48]; however, it is

rarely exploited for time series, except for to allow the use of

Minimal Description Length to score and rank models [3], which is

orthogonal to scalability considerations. In Figure 4 we show a

Matrix Profile computed on some insect electrical penetration graph

(EPG) using 64-bit precision.

Figure 4: top-row) A snippet of whitefly insect EPG data. second-

row) The Matrix Profile computed with 64-bit precision. third-

row) Because the 64-bit and 32-bit Matrix Profiles are visually

identical at this scale, we subtract them, and multiplied the

difference by 5,000. bottom-row) The whitefly is a tiny insect,

yet is produces extraordinary well conserved motifs.

This plot is very suggestive; There is a difference between the

Matrix Profiles computed at 64 and 32-bit precision, but it is so small

it does not affect the motifs discovered, and indeed is not even

visible unless we multiple the difference by a huge constant.

However, there are two caveats to consider.

• The time series shown in Figure 4 is relatively short. As we

address ever longer time series, there is more potential for

accumulated floating-point error making a significant difference

[18]. Indeed, even in this example we can see that the difference

vector gets larger as we scan left to right (Figure 4.third-row). We

address this issue in Section 4.2

• The time series shown in Figure 4 also has the property that the

information within it is contained within small range. This is true

for some types of data, ECGs, accelerometer and gyroscope

readings etc. However, there are handful of application domains

for which this is not true, and seismology is one of them. A “great”

earthquake has a magnitude of 8 or greater, but humans can feel

earthquakes with a magnitude of just 2.5, a difference of more than

five orders of magnitude. Processing raw data that spans such a

range requires careful thought and very careful implementation,

we address this in Sections 3.2, 3.3, and 4.2

Before moving on, we note that this illustration offers another

example of the utility of motif discovery. The data in Figure 4

represents a tiny fraction of the entomologist’s data archive [23].

The pattern represented by the 2nd motif is common and immediately

recognizable by the entomologists as ingestion of xylem sap

behavior [35]. However, the 1st motif was unexpected, there is a

“missed beat” during the xylem sap ingestion cycle. If we had

observed a single example of this, we might have attributed it to

chance or noise. However, motif discovery shows us that there are

at least two strongly conserved examples (in fact, there are several

other examples). This suggests that there is some semantic meaning

to this motif, which the entomologists are currently exploring [23].

In order to support the massive computations required to find

unexpected regularities in these huge archives, we turn to the

compute potential of GPUs and introduce our GPU framework for

computing massive Matrix Profiles.

3. The SCAMP Framework
To compute large Matrix Profiles, we introduce a framework that

can be used by a combination of a host and one or more workers. A

host could be a local machine, or a master server in a compute

cluster. Workers follow the host’s direction and can be other CPU-

based systems in a cluster, or an accelerator such as a GPU. We use

the term cluster to refer to a host and all of its associated workers.

While a cluster can refer to the typical group of co-located nodes in

a cloud, it can also refer to a single node with accelerators attached

(e.g. a server equipped with several GPUs).

3.1 A Brief Overview of GPU-STOMPOPT
GPU-STOMPOPT [45] is the current state of the art for computing

Matrix Profiles on the GPU. The SCAMP algorithm can best be

described in terms of a set of modifications and extensions to GPU-

STOMPOPT. Thus, for completeness, we include a brief description

of the GPU-STOMPOPT algorithm below. The reader familiar with

this material can skip to Section 3.2.

An illustration of the GPU-STOMPOPT algorithm is shown in Figure

5 (left). In GPU-STOMPOPT, each thread computes a diagonal of the

distance matrix shown in Figure 2 by updating the dot product, QT,

at each point along the diagonal using Equation 1 and then

computing the distance, di,j, via Equation 2.

𝑄𝑇𝑖,𝑗 = 𝑄𝑇𝑖−1,𝑗−1 − 𝑡𝑖−1𝑡𝑗−1 + 𝑡𝑖+𝑚−1𝑡𝑗+𝑚−1 (1)

𝑑𝑖,𝑗 = √2𝑚 (1 −
𝑄𝑇𝑖,𝑗 − 𝑚𝜇𝑖𝜇𝑗

𝑚𝜎𝑖𝜎𝑗
) (2)

Each GPU thread block computes the distances in parallelogram-

shaped tiles along a ‘meta’-diagonal. For each tile, the values needed

to compute the distances are loaded into GPU shared memory. By

loading the intermediate values into shared memory we achieve

spatial and temporal reuse of local data. We keep a best-so-far cache

of the Matrix Profile in shared memory as well; when a new distance

is computed we update this cached value if its value is lower than

the smallest distance computed thus far. After every tile’s distances

are computed, we check if any values in our thread-block-local copy

of the Matrix Profile need to be pushed to the global Matrix Profile,

and update via atomic access if necessary.

In SCAMP, we improve several aspects of GPU-STOMPOPT, which

leads to a several-fold improvement in the performance of the

algorithm and allows us to exploit newer GPU hardware more

efficiently. We explain these improvements in great detail in the

following sections. For additional details on STOMP, GPU-STOMP

and GPU-STOMPOPT please refer to [40][41][45].

1 80

1 20,000

Matrix Profile (64-bits)

Whitefly EPG data

(Matrix Profile 64-bits - Matrix Profile 32-bits) times 5,000

1st motif

2nd motif

Actual size

Zoom-in

Whitefly

(Bemisia tabaci)

5.5 minutes

1.3 seconds

Missed “beat”

Figure 5: left) The GPU-STOMPOPT GPU execution pattern.

This execution pattern is shared with the SCAMP_tile

algorithm. right) The SCAMP tiling scheme using 4 GPUs. The

illustration of the tiling scheme is for self-joins only. Note that

while we only illustrate an upper triangular tile, the lower

triangular tile is computed with the same implementation, but

with the inputs transposed. For AB-joins we also need to

compute the lower-triangular portion of the distance matrix.

3.2 Tiling Scheme
Instead of computing the entire distance matrix in one operation we

can split the distance matrix into tiles, where each tile computes an

AB-join between two segments of the input time series. Each tile is

computed independently, which allows us to scale the computation

to very large input sizes and distribute the work to many independent

machines. Figure 5 (right) illustrates the intuition of our tiling

scheme

The host machine maintains information about its workers their

available hardware, such as the type of GPUs are available on the

system, the memory capacity, and the CPU speed to determine a tile

width that can saturate its workers and to delegate jobs among them.

In the general case, this delegation can be complex and challenging

to do effectively. For simplicity, in this paper we assume that all of

the workers are the same and that the most effective tile size is one

that fully saturates the worker during execution. This is currently

discovered empirically, but once it is discovered for a given system

it can be hardcoded. While our framework is compatible with

heterogeneous infrastructure, for simplicity of presentation we

assume a homogeneous compute cluster. We leave a detailed

exploration of tile size and heterogeneous compute clusters to future

work. For our use case, V100 GPUs become saturated around a tile

width of one million, which is used as the default tile size for

SCAMP and is the tile size used throughout the rest of this paper,

unless otherwise noted. The host splits the distance matrix into

square tiles whenever possible using the desired tile width and

assigns each one to a worker; the following subsections describe the

algorithms run on the host and the workers.

3.2.1 SCAMP_host
The host executes the SCAMP_host algorithm, shown in Table 1.

SCAMP_host employs asynchronous streams, which allow the host

to issue tasks to workers without blocking and without needing to

explicitly manage the ordering of each operation and completion.

The stream manages the dependencies of each event issued on it and

enforces that the events within a stream execute sequentially.

Lines 1 and 2 determine the appropriate tile size for the problem

instance and determines the tile ordering. For this work, the reader

can assume that tiles are issued in order along the diagonal as shown

in Figure 5, this allows us to use the host as a ‘cache’ for the current

best-so-far Matrix Profile values. As additional tiles are computed,

they can use the current information as their initial value, instead of

having to start from scratch. This results in fewer memory

reads/writes during computation.

Table 1: The SCAMP_host Algorithm

Procedure SCAMP_host()

Input: User provided time series T, window length w, workers

Output: Matrix profile P and Matrix Profile index I, of time series T

using window length w

1

2
3

4

5
6

7
8

9

10

11

12

13
14

15

16
17

18

19
20

21

n ← Length(T)

TileSize ← GetTileSize(), TileOrder ← GetTileOrder()
for each worker do:

 mem[worker] = AllocateStorage(T, TileSize)

 streams[worker] = AllocateAsynchronousStream(worker)
 tile ← PopTile(TileOrder)

 // Start the first tile on each stream

 SCAMP_tile(mem[worker], tile, stream[worker])
done

while TileOrder not empty do:

 for each worker do:
 // Add operations to each stream

 // streams wait for previous ops before starting the next

 // Retrieve the data, then start the next tile if it exists
 RetrieveDataAsync(mem[worker], tile, streams[worker])

 if TileOrder not empty:

 next_tile ←PopTile(TileOrder)
 SCAMP_tile(mem[worker], tile, streams[worker])

 done

 // Gather the data from each worker, then start then next tile on
 // the worker while the host merges the results from the

 // previous tile in parallel.

 for each stream in streams:
 mp, mpi = SynchronizeAndRetrieveData(stream)

 MergeResult(P, I, mp, mpi)

 done

done

return P, I

For each worker: line 4 allocates memory for all temporary arrays

required to produce the result (the array length depends on the tile

size); line 5 allocates an asynchronous stream for each worker; line

6 chooses the next tile to execute; and line 7 asynchronously issues

a tile to each worker.

Lines 10-15 issue events to retrieve the result from each worker as

it finishes its current tile, and issues the next tile to the worker when

the data transfer finishes; this ensures that the steady state always

has an in-flight tile executing on each worker. Once the data transfer

is complete and the worker starts processing the next tile lines 16-19

merge the partial results into the Matrix Profile.

Note that there are some minor optimizations that can be performed

to further improve tile ordering and reduce the overhead of tiling in

certain cases. To improve the flow of this work, this optimizations

are relegated to the supporting documentation at [50].

3.2.2 SCAMP_tile
Each worker executes the SCAMP_tile algorithm, shown in Table

2, to compute the intermediate result for that particular tile. The

implementation of the SCAMP_tile algorithm depends on the

worker’s architecture. The host, which is aware of each worker’s

respective architecture, distributes the work accordingly.

Line 1 initializes the current Matrix Profile value to the best-so-far

value computed for other tiles. Line 2 computes the initial dot

product values associated with the upper triangular tile. Line 3

executes an architecture-optimized kernel to compute the Matrix

Profile and Index for that tile. Line 4 computes the initial dot product

values associated with the lower triangular tile and line 5 computes

the result associated with that tile.

Prior work established that the self-join problem exhibits symmetry

in the distance matrix [41][42]; however, it was less obvious that the

memory access pattern and the order in which distances are

computed in SCAMP and GPU-STOMPOPT also exhibit symmetry.

In particular, the inputs can be transposed and our framework can

generate the lower-triangular portion of the matrix as if it were the

upper-triangular portion using the same implementation. We exploit

this property to implement AB-joins in the SCAMP framework.

Table 2: SCAMP Tile Computation

Procedure SCAMP_tile()

Input: Tile data d, time series A, time series section B

Output: Matrix Profile mp and index mpi between section A and B

1

2

3

4

5
6

mp ← d.best_so_far_mp, mpi ← d.best_so_far_index
// Generate the initial dot products for the upper-right tile

QT ← SlidingDotProducts(A,B)

// Compute the Matrix Profile for the upper-right tile
// DoTriangularTile is implemented similarly to GPU-STOMPopt

mp, mpi ← DoTriangularTile(A, B, d, QT, mp, mpi)

// Generate the initial dot products for the lower-left tile
QT ← SlidingDotProducts (B,A)

// Update the Matrix Profile using results from the lower-left tile

mp, mpi ← DoTriangularTile (B,A, d, QT, mp, mpi)
return mp, mpi

This approach has several distinct advantages GPU-STOMPOPT:

• Numerical Stability: Every new tile introduces a ‘reset’ point

for SCAMP’s extrapolation. Each time a tile is started we directly

compute the value of the initial dot products at that row and

column of the distance matrix in high precision. This reduces the

chance that we have large rounding errors and that when there is

a rounding error, we do not propagate it as far. This contrasts with

GPU-STOMPOPT where we extrapolate the diagonals of the

distance matrix from a single initial value.

• Preemptability: Each tile is independently issued and completed.

The SCAMP_tile algorithm is therefore preemptable, increasing

the fault-tolerance of our framework. If a worker executing a tile

“dies” or otherwise fails to complete its work, the host can just

issue that work again without having to recompute work

performed by machines other than the worker that failed. This

benefit is extremely useful: as mentioned in Section 1, many

commercial cloud providers allow for users to purchase spot

instances at significantly reduced prices. These spot instances are

only useful to fault-tolerant applications, as the cloud provider

can kill the instance at any point. Using the fault-tolerance of

SCAMP, we are able to use cloud resources at much cheaper rates

than other applications which are not fault-tolerant. Enabling

immense scalability requires significant compute resources, by

reducing the cost of these compute resources we can afford more

compute resources, thereby increasing the size of the datasets we

can consider given a limited financial budget.

• Extensibility: Since each tile is independently computed, we can

provide different options for each tile’s computation. This allows

for the potential of utilizing a heterogeneous infrastructure, with

varying amounts of memory and compute power. Additionally a

user could provide a separate, optimized implementation of the

SCAMP_tile algorithm for each individual type of worker.

Allowing for high performance even in a highly heterogeneous

environment. There are other benefits to this extensibility,

perhaps the user knows that a particular segment of the time

series is important and wants to ‘promote’ motif discovery in that

region. The user could customize the distance calculation for the

tiles of specific interest, perhaps giving a higher weight to

distances computed between the interesting regions.

• Localized Matrix Profiles: When each tile is computed by a

separate device, the intermediate result must be stored

somewhere to later be merged into the final Matrix Profile;

however, these intermediate results represent the Matrix Profiles

for pairs of localized regions in the data and could be immediately

useful to the user. For example, when performing a join on one

year of data, the tile size could be chosen to be one month. In this

case, the intermediate results of the year-long data represent the

AB-join Matrix Profiles for each pair of months. The utility of

localized Matrix Profiles is illustrated in Section 5.2.

One disadvantage of SCAMP is that the subsequence window size

cannot be larger than the tile size, and this is assumed in our

implementation. If the window size was larger than the tile size, then

each worker would have to process an overlapping region between

tiles, resulting in a large amount of additional overhead and

boundary checking, and would prevent SCAMP from partitioning

the Matrix Profile computation into truly independent chunks.

However, the subsequence length is almost always much smaller

than the tile size, which is usually in the millions [43][44].

3.3 Numeric Changes for Speed and Stability
The numerical stability (and performance) of algorithms involving

floating-point arithmetic can often be improved by carefully

reordering the operations. With this in mind, SCAMP replaces GPU-

STOMPOPT’s sliding dot product equation update with a centered-

sum-of-products formula, as shown in Equations 3-7.

𝑑𝑓𝑖 =
𝑇𝑖+𝑚 − 𝑇𝑖

2
 (3)

𝑑𝑔𝑖 = (𝑇𝑖+𝑚 − 𝜇𝑖+1.𝑚) + (𝑇𝑖 − 𝜇𝑖,𝑚) (4)

𝑄𝑇̅̅ ̅̅
𝑖,𝑗 = 𝑄𝑇̅̅ ̅̅

𝑖−1,𝑗−1 + 𝑑𝑓𝑖𝑑𝑔𝑗 + 𝑑𝑓𝑗𝑑𝑔𝑖 (5)

𝑃𝑖,𝑗 = 𝑄𝑇̅̅ ̅̅
𝑖,𝑗 ∗

1

‖𝑇𝑖..𝑖+𝑚‖
∗

1

‖𝑇𝑖..𝑖+𝑚‖
 (6)

𝐷𝑖,𝑗 = √2𝑚(1 − 𝑃𝑖,𝑗) (7)

Equations 3 and 4 are precomputations which compute the terms

used in the sum-of-products update formula of Equation 5, and

incorporate incremental mean centering into the update. Equations

3, 4, and 5 are specifically for self joins and are a special case of a

more general formula for an AB-join (see Ref. [50] for a full

derivation). Empirically, this new formula reduces the number of

incorrectly rounded bits.

Additionally, we replace the Euclidean Distance (ED) used in

previous Matrix Profile computations [43][44][45] with the Pearson

Correlation (P) in Equation 6; P can be computed incrementally

using fewer computations that ED, and can be converted to a

normalized ED in linear time using Equation 7. As a further

optimization, we precompute the inverse L2-norms in Equation 6 to

eliminate redundant division operations from SCAMP’s inner loop.

3.4 More optimizations for GPU-STOMPOPT
The improved numerical stability that results from the changes

reported in the previous section enabled us to explore the usage of

reduced-precision floating-point operation without substantially

sacrificing computational accuracy. Using lower-precision values

improved cache performance and increases the number of

concurrent floating-point operations that each GPU can execute.

Thus, we implemented SCAMP using three different precision

modes:

Double Precision (SCAMP DP): We store all intermediate shared

memory values in double-precision floating-point and use double

precision floating-point instructions for all computation. This

provides accurate results for all datasets that we considered,

regardless of size, noise, ill-conditioned regions etc.

Single Precision (SCAMP SP): We store all intermediate data and

perform all calculations in single precision. Using half the data width

of double precision increases our memory and compute performance

by approximately 2x. We found that this mode is adequate for highly

regular datasets, such as ECG or accelerometer data, but may yield

incorrect results for ill-conditioned data; a detailed analysis is

deferred until Section 4.2.

Mixed Precision (SCAMP MIX): This is similar to SCAMP SP, all

intermediate values are stored in single precision and calculations

are performed in single precision, except for Equation 5, which is

computed using double-precision. Accumulating in double-

precision along the diagonal provides the numerical stability of

double-precision, while allowing the use of faster single-precision

operations for computations whose numerical stability is less

critical; however, this necessitates the introduction of several type

casting operations can which increases pressure on special floating-

point units (SFUs) which perform this conversion in the GPU. Some

of this pressure can be alleviated by performing only the final add in

Equation 5 in double-precision, keeping intermediate values in

single precision only until the very end. This in turn prevents us from

using floating-point multiply-add (FMA) instructions, as GPUs do

not support mixed-precision FMA. We have found that SCAMP

MIX provides accurate results for many datasets which can be

represented in single precision.

We also experimented with half-precision (16-bit) floating-point

operations, but found that incorrect motifs were identified for many

of our data sets; consequently, we exclude half-precision from

further consideration in this paper.

The new Matrix Profile computation in Eq. 3-7 reduces each

thread’s demand for shared memory. We increase the amount of

shared memory allocated to each thread, allowing each thread to

compute four separate diagonals. Specifically, we unroll the loop

four times so that each thread computes sixteen new distances (four

distances for each of four diagonals) per iteration, while ensuring the

per-thread-block memory usage remains low enough to achieve 50%

occupancy on a Tesla V100 GPU. For the interested reader, more

information on the Volta GPU architecture is detailed in [52]; we

have empirically observed that Matrix Profile computation is bound

by shared memory loads, not compute time.

Figure 6: Illustration of one iteration of the innermost loop of

our GPU implementation. Note that for self-joins, since we only

compute half of the distance matrix, we must track both the

Matrix Profile value for the columns and for the rows. For AB-

joins we only need to look at the columns or the rows.

Further, this unrolling scheme facilitates the usage of vectorized

shared memory loads for dependencies, which further reduces the

pressure on the shared memory bottleneck and increases throughput

by reducing the number of shared memory transactions executed.

The FP32 and mixed-precision modes can execute two 128-bit loads

per column dependency and one 128-bit load per row dependency,

and all intermediate values computed during the Matrix Profile

calculation can be stored in registers without spilling.

As the row or column distances are computed, we track the

maximum per-row and per-column distances and update the

corresponding Matrix Profile value in shared memory accordingly,

resulting in row-wise and column-wise updates for each distance

that is computed; this contrasts with GPU-STOMPOPT where every

newly computed distance computed is compared to the Matrix

Profile cache. Figure 6 illustrates our strategy for the innermost loop.

3.5 Putting it all Together: A GPU Cluster
We evaluate SCAMP, as described in the preceding subsections, on

Amazon Web Services, which we selected as a being representative

of commercially available cloud services. We illustrate our method

in Figure 7. First, we partition a locally stored time series data set

and partition it into equal-sized chunks ranging from 20 to 100

million elements. There is a tradeoff here between distributed

overhead of starting new jobs, intermediate data size, and the risk of

a job being preempted and losing work. We compress each chunk

store it on the cloud (Amazon S3), where Amazon EC2 instances

can readily download it. We use AWS batch to set up a job queue

backed by a compute cluster of p3.16xlarge spot instances. As noted

in Section 3.2, spot instances allow us to exploit the fault-tolerance

of SCAMP, by running on machines that can be preempted without

the risk of losing all of our progress, we can purchase this compute

power more cheaply than if we needed dedicated resources, and this

improves the price per performance of SCAMP. We issue an array

batch job where each job computes the Matrix Profile for one tile.

We issue one job at a time to each worker, and the tile size is

specified to ensure that we achieve full saturation of the compute

resources in each worker, maximizing the throughput of this pipeline

without losing exorbitant progress if our instance gets preempted.

Each job first copies and decompresses the input segments that

correspond to the row and column of its tile. Each tile has two inputs,

one segment corresponding to the tile-row, and one segment

corresponding to the tile-column, each job computes an AB-join on

these inputs. Next, the job executes the SCAMP_host algorithm on

the input, further subdividing its tile among its worker GPUs. Once

SCAMP_host computes the Matrix Profile and index associated

with the tile, it compresses the result and returns it to Amazon S3.

The job is now complete and is dequeued. After all jobs terminate,

we use another job to decompress and merge each tile’s Matrix

Profile into the final result. As long as the intermediate data doesn’t

get too large, this is a relatively simple step. In our one billion

datapoint experiment, we merged the 196 GB of intermediate results

in only 1 hour using only a single machine on AWS. This merging

could be parallelized to take just a few minutes in a MapReduce [10]

framework.

Intermediate output data volumes can be as large as tens or hundreds

of gigabytes for input sizes as large as one billion elements. Small

tile sizes produce too much localized information to reasonably store,

even if it would otherwise be of interest to the user. SCAMP’s space

requirement is RN where R is the number of tile rows, and N is the

length of the final Matrix Profile. If the tile size is 1, then R = N and

processing one billion elements would necessitate storage of the

entire distance matrix comprising one quintillion values.

To put these numbers into context, if each intermediate value was

eight bytes compressed on disk, the total storage requirement would

be eight exabytes, the estimated aggregate storage capacity of

Google’s datacenters as recently as 2014 [42].

Figure 7: Illustration of how we distribute SCAMP in a cluster

of GPU instances on AWS.

4. Empirical Evaluation
We begin by noting that all our experiments (including all the figures

above) are reproducible. All code and data (and additional

experiments omitted for brevity) are archived in perpetuity [50].

4.1 Performance Evaluation

4.1.1 Comparison to GPU-STOMPOPT using V100

We evaluate the performance of SCAMP against GPU-STOMPOPT

and provide the results in Table 3. The first column shows the

performance of GPU-STOMPOPT using the code from [45] on an

Nvidia Tesla K80. The results here are very similar to those provided

in [45] but vary slightly because we changed the timing of the

experiment to be more precise.

The second column shows the timing results for the same code

running on a single Nvidia Tesla V100 SXM2 on Amazon Elastic

Compute Cloud. The large speedup here is due to two factors. First,

the V100 has a much higher instruction throughput and memory

bandwidth. Secondly, and even more importantly, on the Tesla K80

we are heavily bottlenecked by the instruction latency of the atomic

updates to the Matrix Profile in shared memory. Shared memory

atomics were emulated in software prior to the Maxwell

architecture; post-Maxwell, they are implemented in hardware and

included natively in the instruction set architecture (ISA) [49]. In

some cases, emulated shared memory atomics could be slower than

global memory atomics. Matrix Profile updates emerged as a

performance bottleneck on the Tesla K80 due to these emulated

atomics after all the other optimizations were applied.

The third column shows the timing results for SCAMP over column

1. The additional speedup is a result of the optimizations we made

via our changes in Sections 3.3 and 3.4. The fourth and fifth columns

show the additional speedup that using our two single precision

modes in SCAMP provide. Recall that these results may not be

identical to FP64 given the difference in numerical precision.

Table 3: SCAMP Runtime Evaluation

Algorithm STOMP-GPUOPT SCAMP

Architecture K80 V100 V100 V100 V100

Precision DP DP DP MIX SP

218 3.04s 0.34s (8.9x) 0.28s (10.9x) 0.27 (11.3x) 0.24s (12.7x)

219 11.4s 1.24s (9.2x) 0.68s (16.8x) 0.64 (17.8x) 0.57s (20.1x)

220 44.1s 4.81s (9.2x) 2.05s (21.5x) 1.82 (24.2x) 1.42s (31.1x)

221 174s 19.0s (9.2x) 6.99s (24.9x) 5.73 (30.4x) 4.38s (39.8x)

222 629s 69.2s (9.1x) 25.8s (24.4x) 21.5 (29.3x) 15.5s (40.7x)

223 2514s 277s (9.1x) 96.8s (26.0x) 77.8 (32.3x) 52.5s (47.9x)

4.1.2 Ideal GPU Scalability
Like prior algorithms that compute the Matrix Profile, SCAMP’s

ideal execution time is quickly and deterministically computable.

Given the runtime of SCAMP on one GPU on a dataset of sufficient

size to saturate compute performance we can construct an analytical

model to estimate the execution time across G V100 GPUs on any

data size under ideal assumptions (e.g., no communication

overhead). We can use this model to answer an arguably more

interesting question: Given G V100 GPUs, what size Matrix Profile

can SCAMP compute given time T? Equation 8 answers the

question, where No and To are initialization parameters provided by

a trial run on a single V100 GPU. This equation is derived from the

O(n2) computational complexity of SCAMP. We use this equation

and the double precision SCAMP runtime for input size 223 (Table

3) to construct Figure 8.

N = 𝑁𝑜√
𝑇𝐺

𝑇𝑜
 (8)

Figure 8: Equation 8 plotted using No and To from Table 3, the

V100 double precision result for 223. Dots correspond to values

measured during experiments throughout this paper. This is for

a single non-preemptable instance equipped with GPUs.

Equation 8 applies for multi-instance distributed work as well.

Each dot in Figure 8 corresponds to an experiment we performed, to

illustrate how our analytical model holds up empirically. Note that

the data for our distributed workload for the Cascadia Subduction

Zone also aligns well with this plot; however, we did not include it

due to space/readability constraints. The reader can find the more

detailed figure at our supporting webpage [50].

An interesting conclusion we can draw from this is that the cost for

a problem is constant if there is no distributed overhead. For

example, to compute a join of 530 million in FP32, you can either

use 8 V100s for 8 hours, or 64 V100s for 1 hour. The cost for these

two options is the same if the cost per hour per V100 is the same.

4.1.3 Distributed Performance on p3 spot instances

We evaluated SCAMP’s distributed capabilities on two very large

earthquake datasets. Both datasets used forty V100 GPUs, each in a

different configuration and both ran on an AWS EC2 Spot Instance

fleet. A spot instance is a compute resource that AWS can preempt

at any time (due to load, demand, etc.) so jobs running on a spot

instance must be interruptible. When AWS preempts a SCAMP tile

instance, we restart the tile which was being computed at the time,

so some amount of work is lost. A spot instance fleet automatically

provisions a consistent number of spot instances for the job queue.

If one instance is preempted, AWS will provision another one for

the fleet as long as there are instances available.

In Table 4 we see the results for the two large experiments done. For

the Parkfield dataset, we ran on a five p3.16xlarge spot instance

fleet, each of which is equipped with eight V100 GPUs, totaling

forty across the fleet. Unfortunately, we found that the p3.16xlarge

instances were in high demand at the time we ran the experiment, so

it took a long time to complete, as the jobs remained queued, during

periods where AWS could not provide us with capacity to execute;

however, we only paid for active GPU computation time.

Table 4: Summary of various distributed runs

Dataset Parkfield 1B Cascadia Subduction Zone

Size 1 Billion 1 Billion

Tile Size ~52M (1 month) ~ 25M (2 weeks)

Total GPU time 375.2 hours 375.3 hours

Spot Job Time 2.5 days 10hours 3min

Approximate Spot Cost 480 USD 620 USD

Intermediate Data Size 102.2 GB 196.4 GB

For the Cascadia subduction zone dataset, we used ten Amazon EC2

p3.8xlarge instances each equipped with four V100 GPUs. These

instances were in lower demand and we were able to consistently

maintain compute power (hence the shorter job time). The

discrepancy in the cost of these two experiments is due to an increase

in the spot price of these instances, which is driven by demand [51].

When using spot instances, we essentially scrape the ‘bottom of the

barrel’ in terms of compute resources. We get the leftovers that were

not paid for by customers who pay full price for non-preemptable

instances. In other words, we are using resources that would have

otherwise gone unused. When there is high demand for compute

power, the value of the ‘bottom-of-the-barrel’ goes up. When there

is low demand, the cloud provider is losing money and is willing to

give that compute power to the highest bidder.

4.1.4 CPU Comparison

Table 5 compares an OpenMP-based multi-core CPU SCAMP

implementation to our GPU optimized implementation. The CPU

implementation uses a 72-core c5 18xlarge spot instance (Intel

Skylake architecture). Both implementations compared in Table 5

employ double-precision (FP64) calculations.

As shown in Table 5, the 72 core c5.18xlarge instance saturates at

an input size of 221, after which its runtime scales quadratically, as

expected. At the time of writing, the c5.18xlarge has the same on-

demand price on AWS as a p3.2xlarge which employs one V100

GPU. While it is difficult to compare runtimes across architectures,

we can compare price per performance, which is shown in bold as a

factor of improvement of the GPU over the CPU. In this case, the

GPU is approximately one order of magnitude more cost-efficient.

The price per performance for smaller input sizes is not a particularly

good basis for comparison: we could have used a smaller instance

type to achieve better price per performance on a CPU when small

input data sizes do not saturate the 72 available cores on the c5

18xlarge spot instance.

Table 5: Optimized CPU SCAMP on a single AWS instance

 Instance Type

Input Size

c5.18xlarge (72 cores)

3.06 USD/hr Seconds

p3.2xlarge (1 Tesla V100)

3.06 USD/hr Sec/speedup

218 7 0.28 (25x)

219 14 0.68 (20x)

220 32 2.0 (16x)

221 76 7.0 (11x)

222 252 25.8 (9.8x)

223 933 96.8 (9.6x)

4.2 Precision Evaluation
Consider the three data snippets shown in Figure 9. Each has a

constant region longer than the motif length m we are interested in.

This is a source of numerical instability that is very common in many

domains. However, as we will show, it is easy to fix.

Figure 9: Three real time series from [9], each containing a
constant region caused by different issue. left) An ECG (heart)
with a disconnection artifact. center) An EOG (eye movement)
with a hard-limit artifact. right) An ECoG (finger flexion) with
constant region caused by low precision recording.

Such constant regions are surprisingly common, even in datasets that

one might not expect to contain them. For example, just in the

context of medical datasets, we see constant regions caused by:

• Disconnection Artifacts: We may see temporary disconnection

of a monitoring lead, for example during a bed change.

• Hard-Limit Artifacts. Some devices have a minimum and/or

maximum value defined by a physical limit of the device. As

shown in Figure 9.center, if the true value exceeds that limit, a

constant region will be reported.

• Low Precision Artifact: Many medical devices record at low-

precision fixed-point; these seemingly short period constant

values would not be constant at a higher precision.

The reason why constant regions matter is because we are interested

in the similarity of z-normalized subsequences. Z-normalization

requires dividing by the standard deviation, which is zero for a

constant region. Moreover, there are often subsequences that are

almost constant, and therefore would pass a bit-level test for “at least

two different values”, but would nevertheless result in a division by

a number very close to zero.

We note that in the majority of cases these disconnection artifacts

can be allowed to saturate to a Pearson Correlation of 1 or a z-

normalized Euclidean Distance of 0 and removed later via a post

processing step. In many domains these flat regions have little

semantic meaning. However, sometimes these regions only appear

to be flat in lower precision, but are actually are full of very small

peaks, valleys, and interesting behavior when kept in high precision.

If these small peaks and valleys are important, we should compute

the Matrix Profile in double precision, as motifs are likely to be lost

at lower precision in these cases.

Note that the majority of the instability here comes from the final

distance calculation in Equation 3, where we must multiply by the

inverse norm, which can get extremely large for these almost-flat

regions. However, we should not introduce instability into the long

running computation from this because Equation 4 does not utilize

these inverse norms, making the potential for value explosion due to

the multiplication of large numbers far less likely.

Figure 10 shows the relative error between the distance matrices

computed with SCAMP DP vs SCAMP SP on a subset of the

Parkfield data. The relative errors greater than 10 percent are shown

in gray. At the top of the matrix, there is very little error, once the

earthquake occurs, the error becomes catastrophic. As stated

previously, this error occurs because FP32 cannot represent large

numbers (> 107, in this case) with sufficient accuracy.

Note that there are two types of error occur the matrix. The first are

scattered errors when the distance between the subsequences in the

Parkfield earthquake and other arbitrary subsequences are

computed. The second are poisoned diagonals, once a diagonal’s

error grows too large, it essentially becomes ‘poisoned’ as it can

cause other distances between subsequence pairs along that diagonal

to have large error as well.

1850 2350

-100

0

100

200

1000 1500

-100

-50

0

50

100

2100 2450

-0.8

-0.6

-0.4

-0.2

0

0.2

Electrooculogram (EOG) Electrocorticogram (ECoG) Electrocardiogram (ECG)

m

m

m

Figure 10: The Distance matrix for a small subset of data
containing the Parkfield earthquake. We plot the relative error
greater than 10% in the distance matrix for single precision vs
double precision. This illustrates what can go wrong if the data
representation is not expressive enough.

4.2.1 Comparison with Previous Update Method
In Figure 11, we compare SCAMP’s update method with the

previous method implemented in GPU-STOMP. We compute the

result first in double precision, then plot the difference between the

double and single precision results in Pearson Correlation of

SCAMP and GPU-STOMP.

Figure 11: Single precision error comparison between GPU-

STOMPOPT and SCAMP on White Fly EPG dataset. top)

original data. middle) SCAMP absolute error. bottom) GPU-

STOMP absolute error.

By comparing the bottom and middle of Figure 10, we can see how

Equations 1 and 2, which compose the originally reported update

method for GPU-STOMP, completely fail in single precision on this

dataset. In the figure, we capped the error at 1 for GPU-STOMP,

which is half of the range of Pearson Correlation. The actual values

reported by GPU-STOMP in some cases were many times larger

than the entire range of Pearson Correlation.

Notice that SCAMP only fails for the previously discussed

disconnection artifacts. In such cases, the results for SCAMP can be

cleaned up by a domain expert with very little effort, by simply not

omitting small regions which where the signal was disconnected. On

the other hand, GPU-STOMP cannot produce a meaningful result

across almost the entire dataset.

4.2.2 General Considerations for Precision

Table 6 presents an analysis of the effects of reducing precision on

various datasets of different lengths. In each case we use a tile size

of 1 million for SCAMP and allow GPU-STOMP to extrapolate the

entire length of the input (not a parameter in GPU-STOMP). As

previously noted, the tile size affects the amount of extrapolation

SCAMP must perform on the data to produce the final result. For

our experiment, we generate the Matrix Profile using both SCAMP

and GPU-STOMP in each of our precision modes. Each entry in the

table is the max absolute error found between the double precision

Matrix Profile calculation and the other precision modes. For Table

6, we intentionally choose a window length longer than the longest

flat artifact region in the data. This allows us to compare errors

caused by the update formula only and not the inherent loss of

information from an artifact that cannot be represented in lower

precision. We have highlighted absolute errors greater than 0.01 in

the Matrix Profile result in red as these results would probably not

be considered accurate enough for most users.

Table 6: Maximum absolute error (Pearson Correlation) for

various datasets/algorithms. Red values denote high error

Maximum

absolute error

Size (m) SCAMP

SP

SCAMP

MIXED

STOMP

SP

Whitefly EPG 2.5M (1000) 3.75*10-2 1.36*10-2 1.89*101

ECG 8.4M (100) 3.14*10-4 2.20*10-4 2.07*10-3

Earthquake 1.7M (200) 6.35*10-1 6.35*10-1 3.17*103

Power Demand 10M (4000) 4.85*10-2 2.06*10-2 2.22*10-1

Chicken 9M (1000) 4.92*10-2 7.71*10-3 2.27*101

99.9 percentile

absolute error

Size (m) SCAMP

SP

SCAMP

MIXED

STOMP

SP

Whitefly EPG 2.5M (1000) 3.00*10-3 2.08*10-3 1.55*101

ECG 8.4M (100) 4.40*10-5 2.59*10-5 4.02*10-4

Earthquake 1.7M (200) 6.08*10-1 6.08*10-1 1.94*103

Power Demand 10M (4000) 8.52*10-3 3.48*10-3 1.29*10-1

Chicken 9M (1000) 1.96*10-3 7.25*10-4 1.70*101

This experiment shows that while SCAMP is 3 or more orders of

magnitude more accurate than STOMP on these datasets, SCAMP

suffers a substantial loss in accuracy when using 32-bit data

representations; however, this loss comes with the benefit of

improved performance. If a user’s dataset and application are can

tolerate the loss of accuracy, there is much to be gained in terms of

efficiency. SCAMP SP has about 50% more error on average than

SCAMP MIX, while STOMP SP struggles to find meaningful

results. Empirically, we observe that SCAMP SP works well on data

that is highly regular with a small min-max range. ECG would be an

example of this kind of data. With some additional effort it may be

possible to produce better results in for more types of data, but we

leave this task for future work.

Additionally, note that both SCAMP MIX and SCAMP SP

completely fail on the Earthquake dataset in Table 6. The reason for

this is that the large earthquake’s signal has a magnitude of greater

107, which is outside the range of the values single precision can

represent to the required accuracy.

5. Case Studies in Seismology
As Figure 1 and Figure 4 suggest, motifs are of interest in many

domains. However, we confine our case studies to seismology, as it

is a domain with obvious and direct importance for humankind.

In geophysics, seismic data are a primary source of information

about Earth’s interior structure and processes. We define seismic

data as any recorded motion (i.e. displacement, velocity,

acceleration) measured using seismic instruments at the Earth’s

surface. We naturally think of this motion can be caused by

earthquakes or volcanic activity, however it can also be created by

thunderstorms, wind, ocean waves, nuclear tests, landslides, the

movements of glaciers, or even, on rare occasions human activity

(i.e. 100,000 soccer fans celebrating a goal). Seismic data are

surprisingly versatile, but one of the most important applications is

to detect and locate seismic events (earthquakes). Detected and

located seismic events can be used for studying earthquake source

processes and source physics, fault behavior and interactions, for

determining Earth’s velocity structure, and in general helping to

constrain seismic hazard [12]. Along with the improvement of

seismic data instruments, reductions in cost, improvements in

networking, data management and repositories, have resulted in a

0 9000
0

9000

Scattered Errors

from Signal

Magnitude (mostly

imperceptible)

“ Poisoned” Diagonals

in which Distance

Matrix Relative Error

> 10 %. (gray)

0

2

4

6 White Fly EPG

0

1

0

1

0 2,500,000

SCAMP error

STOMP error

power law increase in seismic data volume [19]. Probing this huge

volume of data is an ongoing challenge in seismology.

Performing query search for seismic data has been shown to increase

the detectability of seismic events by one order of magnitude

[29][36]. However, this method requires a priori known queries

(often referred to as ‘waveform templates’ in seismology) as input.

Although waveforms of events in a local earthquake catalog can be

used, this relies on suitable events being present in the catalog. To

identify suitable queries, [6] developed an ‘autocorrelation’ motif

discovery method, but this was limited to one hour of waveform data

at a time as the method is computationally expensive in terms of both

memory and time [6][7][34]. Being restricted to one hour of data

limited this otherwise potentially powerful method, as the

seismologists wish to consider much larger time scales. For

example, aftershocks of large earthquakes can occur over a time

period of days to months [29], swarms (volcanic and non volcanic)

can take weeks to months [17], and repeating earthquakes can have

recurrence intervals on the order of months to years [25].

Some other recent studies developed a fast motif discovery by

“fingerprinting” – converting seismic time series to small and dense

proxies, or “fingerprints” and then performing Locality-Sensitive

Hashing (LSH) on them [4][32] LSH is a fast approximate nearest

neighbor search method that reduces the similarity search

dimensions. Although the LSH method sped up the similarity search

process tremendously (i.e. ~143 times faster than traditional

autocorrelation for one week of continuous data), it also produces

false positive results (e.g. 12 events for one week of continuous data

with 24 catalog events; [32]) and, more importantly, false negatives

(e.g. 3 events out of 24 catalog events; [32]). In addition, LSH

requires the careful selection of a number of tuning parameters that

strongly influence the success of the search, and whose values may

vary for different regions, data sets and applications. The tuning

parameter selection process requires visual inspection, and

validation against the results of other methods.

In contrast, SCAMP can exactly search datasets that are can only be

searched approximately using current methods. To show this, we

consider the milestone of 1,000,000,000 data points. One billion data

points is equivalent to ~579 days (~1.5 years) of seismic data with a

20 Hz sample rate. Below, in two examples, we show how moving

from motif discovery for hours of data to years of data is a potential

game changer in seismic data mining.

5.1 Foreshocks and aftershocks of Parkfield
The town of Parkfield, located on the San Andreas fault in central

California, experienced four magnitude ~6 earthquakes in the 20th

Century, in 1901, 1922, 1934 and 1966 [25][29][36]. Based on the

quasi-periodic nature of the events, a repeat event was predicted to

occur between 1985 and 1993 [25], a prediction that spurred a major

project, the ‘Parkfield Earthquake Prediction Experiment’, an

attempt to capture the earthquake and all associated phenomena with

the best available instrumentation. Although it occurred over a

decade ‘late’ in 2004, the most recent Parkfield earthquake was

recorded in extraordinary detail by the Parkfield High Resolution

Seismic Network (HRSN), a dense array of borehole seismometers

(preferred due to their low levels of noise). In addition, the thousands

of aftershocks that followed the earthquake, as well as any possible

foreshocks or other event precursors were also recorded at similarly

high quality.

In order to investigate i) whether the HRSN data contain information

on any aftershocks that were not included in the earthquake catalog,

and ii) whether there was any change in behavior of the seismicity

before the mainshock; we ran SCAMP on 580 days (1,002,240,008

points) of 20 Hz horizontal component seismic data (from 28

November 2003 to 9 July 2005) from the HRSN station EADB,

centered on the 2004 Parkfield event time (i.e. 28 September 2004).

We set the query length at 100 samples, equivalent to 5 seconds of

data. We band-pass filtered the data between 2 and 8 Hz, a frequency

range suitable for detecting both local and low frequency

earthquakes (LFEs), a class of events that typically have low signal

to noise ratios. Figure 12 shows a zoom-in of two sections of the

waveform and their corresponding Matrix Profile.

Figure 12: Examples of a waveform snippet (top) and
corresponding MP shape (bottom) for aftershocks of the
Parkfield earthquake. left) a small aftershock. right) a larger
aftershock with a waveform amplitude that is three orders of
magnitude larger.

Examining the motifs for aftershocks of the Parkfield earthquake,

we notice that they have a very characteristic shape (a much higher

resolution figure archived in Ref. [50] shows this more clearly).

Note that the MP drops abruptly as the query window starts to

capture the beginning of the earthquake waveforms and then

gradually increases back to the background noise level. The duration

of this gradual increase is longer for the larger event (Figure

12.right), consistent with the empirical relationships of signal

duration with event magnitude [21][8].

This Matrix Profile shape indicates that the two waveforms being

compared have similar shapes at their beginnings, and dissimilar

shapes at their ends. The first arrivals (first motions) of seismic

waves have polarities (either up or down) that reflect both the

mechanism of the earthquakes that generated them and their location

relative to the station. An abrupt initial drop in the MP, therefore

indicates that the two waveforms have the same first motion polarity.

The next few seconds of arrivals to the station include later arriving

seismic phases that include reflections, refractions and

reverberations of seismic waves – collectively referred to as the

seismic ‘coda’ – these are much more sensitive to differences in

earthquake location, and therefore much less similar between pairs

of events [1]. Even so, while the MP for the coda is, as we would

expect, higher than for the first motions, it remains lower than the

background noise (Figure 12), and therefore remains indicative of

an earthquake.

From this observation we can propose two important applications

the MP results for seismology: i) The abrupt initial drop of MP can

be used to select the primary phase arrival of seismic events, which

is an ongoing challenge in seismology [26][33] (ii) The length of the

MP valley from the sudden drop to its recovery can help to measure

the coda length, and it is been shown that the length of coda

correlates with the magnitude of earthquakes [8][21].

To show the power of the MP for identifying earthquakes we

performed a simple event-detection experiment. Note that as

discussed above, here we are using a Matrix Profile containing the

Pearson correlation coefficient (which we denote as MPCC). The

Pearson correlation is the common metric used in seismological

studies [31][25][37], rather than the Euclidean distance, to which it

can be trivially converted (and vice versa). The MPCC has the

advantage of being bounded in the range [-1,1].

0 0

a
m

p
li

tu
de

Small aftershock of the
Parkfield earthquake.

(note the units)

Large aftershock of the
Parkfield earthquake.

(note the units)

0 600 1200 18000

2
4

6
8

10

0 600 1200 1800

Five Seconds Five Seconds

M
a

tr
ix

 P
ro

fil
e

We count the number of MPCC peaks when they are separated by at

least 100 samples (5 seconds); this prevents overcounting the same

earthquake when multiple peaks are present for one event.

Additionally, long traces of seismograph data often contain repeated

patterns corresponding to a special types of sensor noise.

Fortunately, these are easy to filter, as they create near perfect

motifs. We thus count the number of MPCC peaks above 0.9 but

below 0.99.

Figure 13 shows the number of MPCC motifs per day for 580 days

of EADB data. Although we targeted the Parkfield earthquake

aftershocks, by looking at the number of MPCC motifs per day, we

detected other nearby earthquakes and their aftershocks as well,

notably the 2003 Mw 6.5 San Simeon event and two other moderate

(Mw4.0–4.5) earthquakes nearby.

Figure 13: Daily numbers of discovered motifs for 580 days of
data centered on the Parkfield earthquake (04/09/28), measured
on the horizontal component of station EADB, located ~10 km
from the epicenter. Motifs are selected based on the peak values
of the MP correlation coefficient (MPCC).

A series of motif peaks in the lead-up to the Parkfield mainshock

(around 04/07/01) may represent previously undetected foreshock

activity (i.e. there are no corresponding events in the regional

earthquake catalog), and merit further investigation.

In Figure 14 we compare the total number of motifs with 0.9 ≤

MPCC < 0.99 over the first 90 days of the Parkfield aftershock

sequence with the number of catalog aftershocks retrieved from the

Northern California Earthquake Data Center (NCEDC), we find ~16

times more detections for the former.

Figure 14: Comparison between the number of events in the
USGS NCSN Catalog (green line) and the number of motifs
detected using SCAMP (red line) for the Parkfield earthquake
aftershock sequence. For the catalog events we considered all
events in a box with length ~200 km centered on the Parkfield
mainshock epicenter. The start of seismicity in this plot is 4 days
before the Parkfield earthquake

Note that some small faction of these MP thresholding-based

detections might be station artifacts; however, our visual inspection

suggests that these account for less than 5% of the events.

We also fit the Omori-Utsu aftershock rate equation [16] to the

detected and catalogued aftershocks of the Parkfield earthquake.

Figure 15 shows that the number of motifs per day fit the Omori-

Utsu law almost perfectly.

Figure 15: A fit of an Omori-Utsu relationship (i.e. the law that
describes aftershock rate behavior) to the number of motifs per
day for the first 30 days after the Parkfield mainshock. The R-
squared of 0.988 indicates a very good fit and shows how the
number of motifs can describe the expected aftershock behavior
almost perfectly.

The values retrieved from the Omori-Utsu law can provide

information about the physics of the mainshock [16] and also even

can be used for forecasting large aftershocks [28].

Here we only present a small portion of the results that could be

extracted from the MP for 580 days of data. The threshold of 0.9 that

we use is relatively high and can be set to lower values for detecting

(LFEs). In the next section we discuss LFEs and their importance in

greater detail. There also some motifs in the months before the

Parkfield earthquake that could represent foreshocks and/or

precursory seismicity, and should be investigated in greater detail

(Figure 13). Note that these applications are viable when the

continuous data time series is long enough that there is a high

probability a near neighbor exists for each seismic event. Our

experience suggests that 580 days of seismic data for an area like

Parkfield that has a high seismicity rate (i.e. tens of thousands of

events in that period, Figure 13), would essentially guarantee this.

5.2 Detecting subtle seismic motifs
The Cascadia subduction zone, where the Juan de Fuca plate

subducts beneath the North American plate, is a tectonic province

extending from coastal Northern California north to Vancouver

Island. Since the discovery of the episodic slow slip on the

subduction interface in this region and the discovery of a non-

volcanic tremor (NVT) that accompanies these slow slips, there is

an ongoing effort to better understand how these phenomena affect

earthquakes on the subduction zone, particularly because it has the

potential to produce great earthquakes i.e. magnitude ~9 [2][20].

It has been shown that the NVT likely consists of a swarm of low

frequency content seismic events that are called ‘low frequency

earthquakes’. For a better understanding the relationship of slow slip

and tremor, the precise determination of the source of an NVT is an

important task. As NVT waveforms typically have non-impulsive

arrivals, meaning that it is difficult to pick the first seismic wave

arrival times, the location process can have large uncertainties

meaning that detecting and locating individual LFEs is often a better

alternative.

To test the SCAMP’s ability to detect LFEs, and more generally to

explore the seismicity of the southern Cascadia subduction zone, we

ran SCAMP on 579 days of data (start date 2006/03/01) for the

vertical component of station I02A, located near Mapleton, OR. We

band pass filter these data at 2–8 Hz and resample them to 20 Hz.

We set the query length this time to 200 (10 seconds), based on the

length of LFE templates used in previous studies. Figure 16 shows

the motif density over time for this experiment.

04/01/01 04/04/01 04/07/01 04/10/01 05/01/01 05/04/01

date (y y /mm/dd)

0

2000

of

 M
P

C
C

 p
ea

ks
 p

er
 d

ay

2003 Mw 6.5 San

Simeon earthquake
2004 Mw 6.0 Parkf ield

earthquake

2004-03-17

Mw 4.5

2005-05-23

Mw 4.1
2004 Mw

6.0 Parkf ield

earthquake

af tershock

swarm

Unknown

#
 o

f
d
e
te

c
te

d

s
e
is

m
ic

e
v
e
n
ts Number of MP peaks

NCSN catalog

2004/10/01 2004/11/01 2004/12/01
0

2000

Coefficients (with 95% conf idence bounds)
a = 2424 (2332, 2516)

b = 0.746 (0.7174, 0.7745)

Goodness of fit:
SSE: 7.09e+04, R-square: 0.988, RMSE: 50.33

0 5 10 15 20 25 30

days after 2004 Parkfield earthquake

2500 MP peaks per day v s. day s af ter earthquake

Omori-Utsu Model f (X) = a/(Xb)

0

of

 M
P

C
C

 p
ea

ks
 p

er
 d

ay

Figure 16: Discovered motifs for 579 days of seismic data
recorded on the vertical channel of station I02A, located near
Mapleton, OR. The number of discovered motifs based on
MPCC thresholding method shows two six-month periods were
detected motifs gradually increase, that start in mid 2006 and
mid 2007. We estimate that >90% of these discovered motifs are
low frequency earthquakes (see Figure 17).

By examining at the time series of daily motif detections, we observe

that in 2006 the number of motifs starts to increase around August

and decreases in November. The number of motifs again starts to

increase in June 2007 and starts to decrease around October (Figure

16). In order to classify some of these motifs as LFEs, we visually

inspect some of the days with the highest number of detected motifs.

We observe that most of these detections are LFEs based on their

shapes, durations and frequency contents. We also observe that the

MP shape around the motifs for regular earthquakes are different

from those of the LFEs (Figure 17). The valley shape for the motifs

corresponding to regular earthquakes has the same characteristics

that we observe for earthquakes at Parkfield (i.e. a sudden drop and

gradual increase back to the MP values for background noise, Figure

17.left). However, the shapes of the MP around the LFEs are almost

flat and stay low until the end of the LFE signal (Figure 17.right).

By visual inspection, we conclude that a large portion of the detected

motifs are LFEs and our result indicates two Episodic Tremor and

Slip (ETS) events – one that starts in mid-2006 and one that start in

mid-2007 (Figure 16). Our results broadly agree with those reported

in [5] for the southern Cascadia region. They reported one main ETS

event in August-September 2006 (that they name ‘E11’) and another

in July-August 2007 (‘E26’). However our detection shows a more

gradual increase in detected LFEs, rather than a sharp onset, as

reported in that earlier study.

Figure 17: left) An example of an earthquake waveform snippet
(top) and MP shape (bottom) in the vicinity of a discovered motif
for a ‘regular’ earthquake (i.e. an earthquake that contains high
frequency content). Note that the MP drops abruptly when the
tail of the query (length 200 samples) includes the beginning of
the event and goes back to the background level after the query
head passes the whole seismic signal. right) Another earthquake;
based on the shape, duration and frequency content of the
waveform, we suspect this is an LFE. In this case, the MP shape
around the motif stays flat until the end of seismic event.

More investigation is required to confirm that the ~90% of ‘LFE-

like’ motifs discovered in the Cascadia data set are indeed LFEs.

This investigation should include inspections of data from multiple

stations and determination of event locations.

One open question is whether the sources of these LFEs are

permanent ‘asperities’ (source regions on the fault) which repeatedly

slip during each successive slow slip event, or temporary sources

1 For the pedant. Since the pairwise distances are symmetric and the distance

to self is always zero, to find motifs in a billion length time series, we only

needed to compute four hundred ninety-nine quadrillion, nine hundred

that repeat only during that specific slow slip event [53]. One novel

feature of SCAMP is that it produces intermediate partial AB-join

MPs (section 3.2.2) that can be used here to answer this question.

Here using these partial AB-join MP we search for motifs between

two subsets of our seismic data from Cascadia: one (A) containing

data from the peak motif discovery period in 2006 (100 days from

11/07/2006 to 19/10/2006) and the other (B) from the corresponding

period in 2007 (84 days from 08/07/2007 to 30/09/2007). By

comparing the AB-join MP and the MP from all 579 days for the A

period, we observe that the motif density only decreases by 20%.

This implies that 80% of the LFEs in the 2006 slow slip event

recurred in the 2007 slow slip event.

On the basis of these results, we suggest that the majority of LFE

sources are likely to have been stable at least during the 2006 and

2007 slow slip events.

Figure 18: Comparison of self-join and AB-join for seismic data
from Cascadia. Red line shows the self-join results from Fig 16
zoomed in for the time window of 11/07/2006 to 19/10/2006. Blue
line is the motif density based on a partial AB-join MP. The B
time period contains data from 08/07/2007 to 30/09/2007. The
motif discovery is based on thresholding of MPCC values
between 0.9 and 0.99. The shapes of the motif density time series
for both cases are similar but the AB-join case contains 20%
fewer motifs. This implies that 80% of the motifs discovered in
the A period (the 2006 slow slip event) have similar events in the
B period (the 2007 slow slip event).

All results presented here were obtained by simple post-processing

of the MP produced by SCAMP, and possibilities for further

refinement in analysis and interpretation remain open. The

versatility and precision that SCAMP provides suggests that

SCAMP has a rich future in seismic data mining – a discipline that

traditionally has suffered from false negatives.

6. Discussion and Conclusion
We introduced novel algorithms and optimizations that can exploit

modern GPU hardware to allow significant progress in the size of

datasets that can be exactly searched for motifs. To the best of our

knowledge, this work is the first time any research effort has

reported performing a quintillion exact pairwise comparisons on a

single dataset1. Likewise, this is the first work to do exact motif

search on over a year (1.59 years) of continuous earthquake data.

We believe that this work addresses a pent-up need that is near

universal in data analytics. For example, [32] note that in the context

of motif discovery in seismology, “scalability bottlenecks prevented

seismologists from making use of the decades of data at their

disposal.” [32]. Likewise, in neuroscience, [22] argue for the

importance of “(motifs) of neural activity in understanding how

information is encoded”. That work resorted to approximations and

downsampling to make motif discovery tenable [22], however this

work exactly searches datasets that are orders of magnitude larger

that they were able to consider.

We have made all code freely available to the community to

confirm, extend and most importantly, exploit our work.

ninety-nine trillion, nine hundred ninety-nine billion, five hundred million

comparisons.

2006/04/01 2006/10/01 2007/04/01 2007/10/01
0

50

100

150

#
 o

f
M

P
C

C

p
e
a
k
s

p
e
r

d
a
y

a
m

p
li

tu
d

e
M

a
tr

ix
 P

ro
fil

e

0

0 800 1600
0

5

10

15

0

0 800 1600
0

10

20

2006/04/01 2006/10/01 2007/04/01 2007/10/01
0

50

100

150

#
 o

f
M

P
C

C

p
e
a
k
s

p
e
r

d
a
y Motif density based on a partial AB-join MP

Same as Figure 16

7. REFERENCES
[1] K. Aki and B. Chouet. Origin of coda waves: source,

attenuation, and scattering effects. Journal of Geophysical

Research, 80(23): 3322-3342, 1975.

[2] B. Atwater, A. Nelson, J. Clague, G. Carver, D. Yamaguchi,

P. Bobrowsky, and H. Kelsey. Summary of coastal geologic

evidence for past great earthquakes at the Cascadia subduction

zone. Earthquake spectra, 11(1): 1-18, 1995.

[3] N. Begum, B. Hu, T. Rakthanmanon, and E. J. Keogh.

Towards a minimum description length based stopping

criterion for semi-supervised time series classification. IRI,

333-340, 2013.

[4] K. J. Bergen and G. C. Beroza. Detecting earthquakes over a

seismic network using single-station similarity measures.

Geophysical Journal International, 213(3): 1984-1998, 2018.

[5] D. Boyarko, Det al. (2015). Automated detection and location

of tectonic tremor along the entire Cascadia margin from 2005

to 2011. Earth and Planetary Science Letters, 430, 160-170.

[6] J. Brown, G Beroza, & D. Shelly (2008). An autocorrelation

method to detect low frequency earthquakes within tremor.

Geophysical Research Letters, 35(16).

[7] R. Butler, T. Lay, K. Creager, P. Earl, K. Fischer, J. Gaherty,

and J. Tromp. The Global Seismographic Network surpasses

its design goal. Eos, Transactions American Geophysical

Union, 85(23): 225-229, 2004.

[8] B. Castello, M. Olivieri, and G. Selvaggi. Local and duration

magnitude determination for the Italian earthquake catalog,

1981–2002. Bulletin of the Seismological Society of America,

97(1B): 128-139, 2007.

[9] H. A. Dau and E. J. Keogh. Matrix Profile V: A Generic

Technique to Incorporate Domain Knowledge into Motif

Discovery. KDD, 125-134, 2017.

[10] J. Dean and S. Ghemawat. MapReduce: simplified data

processing on large clusters. Communications of the

ACM, 51(1): 107-113, 2008.

[11] C. W. Ebeling and S. Stein. Seismological identification and

characterization of a large hurricane. Bulletin of the

seismological society of America, 101(1): 399-403, 2011.

[12] E. H. Field, et al. Uniform California earthquake rupture

forecast, version 3 (UCERF3)—The time-independent model.

Bulletin of the Seismological Society of America, 104(3):

1122-1180, 2014.

[13] I. Fox, L. Ang, M. Jaiswal, R. Pop-Busui, and J. Wiens.

Contextual motifs: Increasing the utility of motifs using

contextual data. In Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining, KDD ’17, pages 155– 164, 2017.

[14] L. Gualtieri, S. J. Camargo, S. Pascale, F. M. Pons, and G.

Ekström. The persistent signature of tropical cyclones in

ambient seismic noise. Earth and Planetary Science Letters,

484: 287-294, 2018.

[15] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan.

Deep learning with limited numerical precision.

In Proceedings of the 32nd International Conference on

Machine Learning, pages. 1737-1746. JMLR, 2015.

[16] S. Hainzl and D. Marsan. (2008). Dependence of the Omori‐
Utsu law parameters on main shock magnitude: Observations

and modeling. Journal of Geophysical Research: Solid Earth,

113(B10), 2008.

[17] D. Hill, W. Ellsworth, M. Johnston, J. Langbein, D.

Oppenheimer, A. Pitt, and S. McNutt. The 1989 earthquake

swarm beneath Mammoth Mountain, California: An initial

look at the 4 May through 30 September activity. Bulletin of

the Seismological Society of America, 80(2): 325-339, 1990.

[18] N. M. Ho and W. F. Wong. Exploiting half precision

arithmetic in Nvidia GPUs. HPEC, 1-7, 2017.

[19] A. Hutko, M. Bahavar, C. Trabant, R. Weekly, M. Fossen,

and T. Ahern. Data products at the IRIS‐DMC: Growth and

usage. Seismological Research Letters, 88(3): 892-903, 2017.

[20] R. Hyndman and K. Wang. The rupture zone of Cascadia

great earthquakes from current deformation and the thermal

regime. Journal of Geophysical Research: Solid Earth,

100(B11): 22133-22154, 1995.

[21] F. Klein. (2002). User's guide to HYPOINVERSE-2000, a

Fortran program to solve for earthquake locations and

magnitudes. US Geological Survey, 02-171(1.0), 2002.

[22] I. Kolb, G. T. Franzesi, M. Wang, S. B. Kodandaramaiah, C.

R. Forest, E. S. Boyden, and A. C. Singer. Evidence for long-

timescale patterns of synaptic inputs in CA1 of awake

behaving mice. Journal of Neuroscience, 1519-17, 2017.

[23] K. Mauck. (2018) Personal communication

[24] A. Murillo (2018). Personal Communication.

[25] R. Nadeau, W. Foxall, and T. McEvilly. Clustering and

periodic recurrence of microearthquakes on the San Andreas

fault at Parkfield, California. Science, 267: 503-7, 1995.

[26] S. E. J. Nippress, A. Rietbrock, and A. E. Heath. Optimized

automatic pickers: application to the ANCORP data set.

Geophysical Journal International, 181(2): 911-925, 2010.

[27] T. Ogita, S. Rump, and S. Oishi. Accurate sum and dot

product. SIAM Journal on Scientific Computing, 26(6): 1955-

1988, 2005.

[28] T. Omi, Y. Ogata, Y. Hirata, and K. Aihara. Forecasting large

aftershocks within one day after the main shock. Scientific

reports, 3: 2218, 2013.

[29] Z. Peng and P. Zhao. Migration of early aftershocks

following the 2004 Parkfield earthquake. Nature Geoscience,

2(12): 877, 2009.

[30] T. Perol, M. Gharbi, and M. Denolle. Convolutional neural

network for earthquake detection and location. Science

Advances, 4(2): e1700578, 2018.

[31] G. Poupinet, W. L. Ellsworth, and J. Frechet. Monitoring

velocity variations in the crust using earthquake doublets: An

application to the Calaveras Fault, California. Journal of

Geophysical Research: Solid Earth, 89(B7): 5719-31, 1984.

[32] K. Rong, C. Yoon, K. Bergen, H. Elezabi, P. Bailis, P. Levis,

and G. Beroza. Locality sensitive hashing for earthquake

detection: a case study of scaling data-driven science. In

Proceedings of the Very Large Database Endowment.To

Appear.

[33] Z. Ross and Y. Ben-Zion. Automatic picking of direct P, S

seismic phases and fault zone head waves. Geophysical

Journal International, 199(1): 368-381, 2014.

[34] A. Royer and M. Bostock. A comparative study of low

frequency earthquake templates in northern Cascadia. Earth

and Planetary Science Letters, 402: 247-256, 2014.

[35] W. Sandanayaka, Y. Jia, and J. G. Charles. EPG technique as

a tool to reveal host plant acceptance by xylem sap-feeding

insects. Journal of Applied Entomology, 137: 519–529, 2013.

[36] D. P. Schaff and F. Waldhauser. One magnitude unit

reduction in detection threshold by cross correlation applied to

Parkfield (California) and China seismicity. Bulletin of the

Seismological Society of America, 100(6): 3224-3238, 2010.

[37] D. P. Schaff and F. Waldhauser. Waveform cross-correlation-

based differential travel-time measurements at the Northern

California Seismic Network. Bulletin of the Seismological

Society of America, 95(6): 2446-2461, 2005.

[38] D. Silva, C-C M. Yeh, G. Batista, E. Keogh: SiMPle:

Assessing Music Similarity Using Subsequences Joins.

ISMIR 2016: 23-29.

[39] D. W. van Liere. The significance of fowls' bathing in dust.

Animal Welfare, 1:187–202, 1992.

[40] R. D. Vatavu. Small gestures go a long way: how many bits

per gesture do recognizers actually need? In DIS ‘12, pages

328-337. ACM, 2012.

[41] K. Wang and A. M. Tréhu. Invited review paper: Some

outstanding issues in the study of great megathrust

earthquakes—The Cascadia example. Journal of

Geodynamics, 98: 1-18, 2016.

[42] What-if. https://what-if.xkcd.com/63/.

[43] C. C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A.

Dau, D. F. Silva, A. Mueen, and E. Keogh. Matrix Profile I:

All Pairs Similarity Joins for Time Series: A Unifying View

that Includes Motifs, Discords and Shapelets. In ICDM, pages

1317-1322. IEEE, 2016.

[44] Y. Zhu, Z. Zimmerman, N. S. Senobari, C. C. M. Yeh, G.

Funning, A. Mueen, P. Brisk, and E. Keogh. Matrix Profile II:

Exploiting a Novel Algorithm and GPUs to Break the One

Hundred Million Barrier for Time Series Motifs and Joins. In

ICDM, pages 739-748. IEEE, 2016.

[45] Y. Zhu, Z. Zimmerman, N. S. Senobari, C. C. M. Yeh, G.

Funning, A. Mueen, and E. Keogh. Exploiting a novel

algorithm and GPUs to break the ten quadrillion pairwise

comparisons barrier for time series motifs and

joins. Knowledge and Information Systems, 1-34, 2018.

[46] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum,

Anthony Bagnall, Abdullah Mueen and Gustavo Batista

(2015). The UCR Time Series Classification Archive. URL

www.cs.ucr.edu/~eamonn/time_series_data/

[47] https://aws.amazon.com/ec2/spot/

[48] Han, S., Mao, H. and Dally, W.J. Deep compression:

Compressing deep neural networks with pruning, trained

quantization and huffman coding. ICLR, 2016

[49] https://devblogs.nvidia.com/gpu-pro-tip-fast-histograms-

using-shared-atomics-maxwell/

[50] TODO: Project website

[51] https://aws.amazon.com/ec2/spot/pricing/

[52] Nvidia Tesla V100 Whitepaper:

http://images.nvidia.com/content/volta-architecture/pdf/volta-

architecture-whitepaper.pdf

[53] Sweet, J. R., Creager, K. C., & Houston, H. (2014). A family

of repeating low‐frequency earthquakes at the downdip edge

of tremor and slip. Geochemistry, Geophysics, Geosystems,

15(9), 3713-3721.

