
Towards Never-Ending Learning from Time Series Streams
Yuan Hao*, Yanping Chen*, Jesin Zakaria, Bing Hu, Thanawin Rakthanmanon#, Eamonn Keogh

Department of Computer Science & Engineering,
#
Kasetsart University

University of California, Riverside
{yhao,ychen053,eamonn}@cs.ucr.edu

ABSTRACT

Time series classification has been an active area of research in

the data mining community for over a decade, and significant

progress has been made in the tractability and accuracy of

learning. However, virtually all work assumes a one-time training

session in which labeled examples of all the concepts to be

learned are provided. This assumption may be valid in a handful

of situations, but it does not hold in most medical and scientific

applications where we initially may have only the vaguest

understanding of what concepts can be learned. Based on this

observation, we propose a never-ending learning framework for

time series in which an agent examines an unbounded stream of

data and occasionally asks a teacher (which may be a human or an

algorithm) for a label. We demonstrate the utility of our ideas with

experiments in domains as diverse as medicine, entomology,

wildlife monitoring, and human behavior analyses.

Categories and Subject Descriptors

H.2.8 [Information Systems]: Database Application – Data Mining

Keywords

Never-Ending Learning, Classification, Data Streams, Time Series

1. INTRODUCTION
Virtually all work on time series classification assumes a one-

time training session in which multiple labeled examples of all the

concepts to be learned are provided. This assumption is

sometimes valid, for example, when learning a set of gestures to

control a game or novel HCI interface. However, in many medical

and scientific applications, we initially may have only the vaguest

understanding of what concepts need to be learned. Given this

observation, and inspired by the Never-Ending Language

Learning (NELL) research project at CMU [6], we propose a time

series learning framework in which we observe streams forever,

and we continuously attempt to learn new (or drifting) concepts.

Our ideas are best illustrated with a simple visual example. In

Figure 1, we show a time series produced by a light sensor at Soda

Hall in Berkley. While the sensor will produce data forever, we

can only keep a fixed amount of data in a buffer. Here, the daily

periodicity is obvious, and a more careful inspection reveals two
very similar patterns, annotated A and B.

Figure 1: The light sensors at Soda Hall produce a never-
ending time series, of which we can cache only a small subset
main memory.

As we can see in Figure 2.left and Figure 2.center, these

patterns are even more similar after we z-normalize them [8].

Suppose that the appearance of these two similar patterns (or
“motif”) causes an agent to query a teacher as to their meaning.

Figure 2: left) A “motif” of two patterns annotated in Figure 1
aligned to highlight their similarity. center) We imagine
asking a teacher for a label for the pattern. right) This allows
us to detect and classify a new occurrence eleven days later.

This query could be implemented in a number of ways;

moreover, the teacher need not necessarily be human. Let us

assume here that an email is sent to the building supervisor with a

picture of the patterns and any other useful metadata. If the

teacher is willing to provide a label, in this case Weekday with no

classes, we have learned a concept for this time series, and we can

monitor for future occurrences of it.

An important generalization of the above is that the time series

may only be a proxy for another much higher dimensional

streaming data source, such as video or audio. For example,

suppose the classrooms are equipped with surveillance cameras,

and we had conducted our monitoring at a finer temporal

resolution, say seconds. We could imagine that our algorithm

might notice a novel pattern of short-lived but dramatic spikes in

light intensity. In this case we could send the teacher not the time

series data, but some short video clips that bracket the events. The

teacher might label the pattern Camera use with flash. This idea,

that the time series is only a (more tractable) proxy for the real

stream of interest, greatly expands the generality of our ideas, as

time series has been shown to be a useful proxy of audio, video,

text, networks, and a host of other types of data [5].

This example elucidates our aims, but suggested a wealth of

questions. How can we detect repeated patterns, especially when

the data arrives at a much faster rate, and the probability of two

patterns from a rare concept appearing close together is very

small? Assuming the teacher is a finite or expensive resource,

how can we optimize the set of questions we might ask of

it/him/her, and how do we act on this feedback?

The rest of this paper is organized as follows. In Section 2, we

briefly discuss related work before explaining our system

architecture and algorithms in Section 3. We provide an empirical

evaluation on a host of diverse domains in Section 4, and in

Section 5, we offer conclusions and directions for future work.

2. RELATED WORK
The task at hand requires contributions from, and an

understanding of, many areas, including: frequent item mining

[7], time series classification [8], hierarchical clustering,

crowdsourcing, active learning [20], semi-supervised learning,

etc. It would be impossible to consider all these areas with

appropriate depth in this work; thus, we refer the reader to [13]

where we have a detailed bibliography of the many research

efforts we draw from.

2,000 minutes ago 1,500 minutes ago 1,000 minutes ago 500 minutes ago now

time
A

B

Light Sensor 39-Soda Hall

0 300

A

15,840 minutes later 16,340 minutes later0 300

B

What is
this?

Weekday with
no classes

Weekday with no classes was detected

*
Joint first authors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

KDD’13, August 11—14, 2013, Chicago, Illinois, USA.

Copyright @ 2013 ACM 978-1-4503-2174-7/13/08…$15.00.

874

However, it would be remiss of us not to mention the

groundbreaking NELL project lead by Tom Mitchell at CMU [6],

which is the inspiration for the current work. Note, however, that

the techniques used by NELL are informed by very different

assumptions and goals. NELL is learning ontologies from discrete

data that it can crawl multiple times. In contrast, our system is

learning prototypical time series templates from real-valued data

that it can only see once.

The work closest in spirit to ours in the time series domain is

[3]. Here, the authors are interested in a human activity inference

system with an application to psychiatric patient monitoring. They

use time series streams from a wrist worn sensor to detect dense

motifs, which are used in a periodic (every few weeks)

retrospective interview/assessment of the patient. However, this

work is perhaps best described as a sequence of batch learning,

rather than a true continuous learning system. Moreover, the

system requires at least seven parameters to be set and significant

human intervention. In contrast, our system requires few (and

relatively non-critical) parameters, and where humans are used as

teachers, we limit our demands of them to providing labels only.

3. ALGORITHMS
The first decision facing us is which base classifier to use. Here,

the choice is easy; there is near universal agreement that the

special structure of time series lends itself particularly well to the

nearest neighbor classifier [8][14][18]. This only leaves the

question of which distance measure to use. There is increasing

empirical evidence that the best distance measure for time series is

either Euclidean Distance (ED), or its generalization to allow time

misalignments, Dynamic Time Warping (DTW) [8]. DTW has

been shown to be more accurate than ED on some problems;

however, it requires a parameter, the warping window width, to be

carefully set using training data, which we do not have.

Because ED is parameter-free, computationally more tractable,

allows several useful optimizations in our framework (triangular

inequality etc.), and works very well empirically [8][18], we use it

in this work. However, nothing in our overarching architecture

specifically precludes other measures.

3.1 Overview of System Architecture
We begin by stating our assumptions:

 We assume we have a never-ending1 data stream S.

S could be an audio stream, a video stream, a text document

stream, multi-dimensional time series telemetry, etc. Moreover, S

could be a combination of any of the above. For example, all

broadcast TV in the USA has simultaneous video, audio, and text.

 Given S, we assume we can record or create a real-time

proxy stream P that is “parallel” to S.

P is simply a single time series that is a low-dimensional (and

therefore easy to analyze in real time) proxy for the higher

dimensional/higher arrival rate stream S that we are interested in.

In some situations, P may be a companion to S. For example, in

[4], which manually attempts some of the goals of this work, S is

a night-vision camera recording sleeping postures and P is a time

series stream from a sensor worn on the wrist of the sleeper. In

other cases, P could be a transform or low-dimensional projection

of S. In one example we consider, S is a stereo audio stream

recorded at 44,100Hz, and P is a single channel 100Hz Mel-

frequency cepstral coefficient (MFCC) transformation of it. Note

1 For our purposes, a “never-ending” stream may only last for days or

hours. The salient point is the contrast with the batch learning

algorithms that the vast majority of time series papers consider [8].

that our framework includes the possibility of the special case

where S = P, as in Figure 1.

 We assume we have access to a teacher (or Oracle [20]),

possibly at some cost.

The space of possible teachers is large. The teacher may be

strong, giving only correct labels to examples, or weak, giving a

set of probabilities for the labels. The teacher may be

synchronous, providing labels on demand, or asynchronous,

providing labels after a significant delay, or at fixed intervals.

Given the sparseness of our assumptions and especially the

generality of our teaching model, we wish to produce a very

general framework in order to address a wealth of domains.

However, many of these domains come with unique domain

specific requirements. Thus, we have created the framework

outlined in Figure 3, which attempts to divorce the domain

dependent and domain independent elements.

Figure 3: An overview of our system architecture. The time
series P which is being processed may actually be a proxy for
a more complex data source such as audio or video (top right).

Recall that P itself may be the signal of interest, or it may just

be a proxy for a higher dimensional stream S, such as a video or

audio stream, as shown in Figure 3.top.right.

Our framework is further explained at a high level in Table 1.

We begin in Line 1 by initializing the class dictionary, in most

cases just to empty. The dictionary format is defined in Section

3.2. We then initialize a dendrogram of size w. We will explain

the motivation for using a dendrogram in Section 3.4. This

dendrogram is initialized with random data, but as we shall see,

these random data are quickly replaced with subsequences from P

as the algorithm runs.

After these initialization steps, we enter an infinite loop in

which we repeatedly extract the next available subsequence from

the time series stream P (Line 4), then pass it to a module for

subsequence processing. In this unit, domain dependent

normalization may take place (Line 5), and we will attempt to

classify the subsequence using the class dictionary. If the

subsequence is not classified and is regarded as valid (cf. Section

3.3), then it is passed to the frequent pattern maintenance

algorithm in Line 6, which attempts to maintain an approximate

history of all data seen thus far. If the new subsequence is similar

to previously seen data, this module may signal this by returning a

new ‘top’ motif. In Line 7, the active learning module decides if

the current top motif warrants seeking a label. If the motif is

labeled by a teacher, the current dictionary is updated to include

this now known pattern.

Table 1: The Never-Ending Learning Algorithm

Algorithm: Never_Ending_Learning(S,P,w)
1

2

3

4

5

6

7

8

dict initialize_class_dictionary

global dendro = create_random_dendrogram_of_size(w)

 For ever

 sub get_subsequence_from_P(S,P)

 sub subsequence_processsing(sub, dict)

 top frequent_pattern_maintenance(sub)

 dict active_learning_system(top, dict)

 End

now

time

Active Learning System
(Domain Dependent)

Time Series P

Psubsequence

S1subsequence S2subsequence

Frequent Pattern Maintenance
(Domain Independent)

Subsequence Processing
(Domain Dependent)

875

In the next four subsections, we expand our discussion of the class

dictionary and the three major modules introduced above.

3.2 Class Dictionaries
We limit our representation of a class concept i to a triple

containing: a prototype time series, Ci; its associated threshold, Ti;

and Counti, a counter to record how often we see sequences of this

class. As shown in Figure 4.right, a class dictionary is a set of

such concepts, represented by M triples.

Unlabeled objects that are within Ti of class Ci under the

Euclidean distance are classified as belonging to that class. Figure

4.left illustrates the representational power of our model. Note that

because a single class could be represented by two or more

templates with different thresholds (i.e. Weekend in Figure

4.right), this representation can in principle approximate any

decision boundary. It has been shown that for time series

problems this simple model can be very completive with more

complex models [14], at least in the case where both Ci and Ti are

carefully set.

Figure 4: An illustration of the expressiveness of our model.

It is possible that the volumes that define two different classes

could overlap (as C1 and C2 slightly do above) and that an

unlabeled object could fall into the intersection. In this case, we

assign the unlabeled object to the nearest center. We reiterate

that this model is adopted for simplicity; nothing in our overall

framework precludes more complex models, using different

distance measures [8], using logical connectives [18], etc.

As shown in Table 1-Line 1 our algorithm begins by initializing

the class dictionary. In most cases it will be initialized as empty;

however, in some cases, we may have some domain knowledge

we wish to “prime” the system with. For example, as shown in

Figure 5, our experience in medical domains suggests that we

should initialize our system to recognize and ignore the ubiquitous

flatlines caused by battery/sensor failure, patient bed transfers,

etc.

Figure 5: left) Sections of constant “flatline” signals are so
common in medical domains that it is worth initializing the
medical dictionaries with an example (right), thus suppressing
the need to waste a query asking a teacher for a label for it.

Whatever the size of the initial dictionary, it can only increase

by being appended to by the active learning module, as suggested

in Line 7 of Table 1 and explained in detail in Section 3.5.

3.3 Subsequence Processing
Subsequence processing refers to any domain specific

preprocessing that must be done to prepare the data for the next

stage (frequent pattern mining). We have already seen in Figure 1

and Figure 2 that z-normalization may be necessary [8]. More

generally, this step could include downsampling, smoothing,

wandering baseline removal, taking the derivative of the signal,

filling in missing values, etc. In some domains, very specialized

processing may take place. For example, for ECG datasets, robust

beat extraction algorithms exist that can detect and extract full

individual heartbeats, and as we show in Section 4.2, converting

from the time to the frequency domain may be required [2].

As shown in Table 2-Line 3, after processing, we attempt to

classify the subsequence by comparing it to each time series in

our dictionary and assigning its class label to its nearest neighbor,

if and only if it is within the appropriate threshold. If that is the

case, we increment the class counter and the subsequence is

simply discarded without passing it to the next stage.

Table 2: The Subsequence Processing Algorithm

Algorithm:sub = subsequence_processsing(sub,dict)
1

2

3

4

5

6

7

sub domain_dependent_processing(sub)

[dist,index] nearest_neighbor_in_dictionary(sub,dict)

if dist < Tindex // Item can be classified

 disp(‘An instance of class ’ index ‘ was detected!’)

 countindex countindex + 1

 sub null; // Return null to signal that no

end // further processing is needed

Assuming the algorithm processes the subsequence and finds it

is unknown, it passes it onto the next step of frequent pattern

maintenance, which is completely domain independent.

3.4 Frequent Pattern Maintenance
As we discuss in more detail in the next section, any attempt to

garner a label must have some cost, even if only CPU time. Thus,

as hinted at in Figure 1/Figure 2, we plan to only ask for labels for

patterns which appear to be repeated with some minimal fidelity.

This reflects the intuition that a repeated pattern probably reflects

some conserved concept that could be learned.

The need to detect repeated time series patterns opens a host of

problems. Note that the problem of maintaining discrete frequent

items from unbounded streams in bounded space is known to be

unsolvable in general, and thus has opened up an active area of

research in approximation algorithms for this task [7]. However,

we have the more difficult task of maintaining real-valued and

high dimensional frequent items. The change from discrete to

real-valued causes two significant difficulties.

 Meaningfulness: We never expect two real-valued items to

be equal, so how can we define a frequent time series?

 Tractability: The high dimensionality of the data objects,

combined with the inability to avail of common techniques

and representations for discrete frequent pattern mining

(hashing, graphs, trees, and lattices [7]) seems to bode ill for

our hopes to produce a highly tractable algorithm.

Fortunately, these issues are not as problematic as they may

seem. Frequent item mining algorithms for discrete data must

handle million-plus Hertz arrival rates [7]. However, most

medical/human behavior domains have arrival rates that are rarely

more than a few hundred Hertz. Likewise, for meaningfulness, a

small Euclidean distance between two or more time series tells us

that a pattern has been (approximately) repeated.

We begin with the intuition of our solution to these problems.

For the moment, imagine we can relax the space and time

limitations, and that we could buffer all the data seen thus far.

Further imagine, as shown in Figure 6, that we could build a

dendrogram for all the data. Under this assumption, frequent

patterns would show up as dense subtrees in the dendrogram.

Given this intuition, we have just two problems to solve. The

first is to produce a concrete definition of “unusually dense

subtree.” The second problem is to efficiently maintain a

dendrogram in constant space with unbounded streaming data.

While our constant space dendrogram can only approximate the

results of the idealized ever-growing dendrogram, we have good

reason to suspect this will be a good approximation. Consider the

Class Dictionary

C2 = Weekday no classes
T2 = 1.5

C3 = Weekend
T3 = 1.3

C4 = Weekend
T4 = 0.7

C1 = Weekday with classes
T1 = 3.7

Challenge 2010: 101a: ECG V

“Flatline”

Class Dictionary

C1 = Flatline
T1 = 0.001

seconds0 10

876

dense subtree shown in Figure 6; even if our constant space

algorithm discards any two of the four sequences in this clade, we

would still have a dense subtree of size two that would be

sufficient to report the existence of a repeated pattern. We will

revisit this intuition with more rigor below.

Figure 6: A visual intuition of our solution to the frequent
time series subsequence problem. The elements in a dense
subtree (or clade) can be seen as a frequent pattern.

We will maintain a dendrogram of size w in a buffer, where w is

as large as possible given the space or (more likely) time

limitations imposed by the domain. At most once per each time

step2, the Subsequence Processing Module will hand over a

subsequence for consideration. After this happens a subsequence

from the dendrogram will be randomly chosen to be discarded in

order to maintain constant space. At all times, our algorithm will

maintain the top most significant patterns in the dendrogram, and

it is only this top-1 motif that will be visible to the active learning

module discussed below.

In order to define most significant motif more concretely, we

must first define one parameter, MaxSubtreeSize. The dense

subtree shown in Figure 6 has four elements; a dense subtree may

have fewer elements, as few as two. However, what should be the

maximum allowed number of elements? If we allow the

maximum to be a significant fraction of w, the size of the

dendrogram, we can permit pathological solutions, as a subtree is

only dense relative to the rest of the tree. Thus, we define

MaxSubtreeSize to be a small constant. Empirically, the exact

value does not matter, so we simply use six throughout this work.

We calculate the significance of the top motif in the following

way. Offline, we take a sample time series from the domain in

question and remove existing patterns by permuting the data. We

use this “patternless” data to create multiple dendrograms with the

same parameters we intend to monitor P under. We examine these

dendrograms for all possible sizes of subtrees from two to

MaxSubtreeSize, and as shown in Figure 7 we record the mean
and standard deviation of the heights of these subtrees.

Figure 7: left) The (partial) dendrogram shown in Figure 6
has its subtrees of size four ranked by density. right) The
observed heights of the subtrees are compared to the expected
heights given the assumption of no patterns in the data.

These distributions tell us what we should expect to see if there

are no frequent patterns in the new data stream P, as clusters of

2 Recall from Section 3.3 that the Subsequence Processing Module may choose to

discard a subsequence rather than pass it to Frequent Pattern Maintenance.

frequent patterns will show up as unusually dense subtrees. These

distributions allow us to examine the subtrees of the currently

maintained dendrogram and rank them according to their

significance, which is simply defined as the number of standard

deviations less than the mean is the height of the ancestor node.

Thus, the significance of subtreei, which is of size j is:

For example, in Figure 7.right, we see that Subtree1 has a score

of 3.42, suggesting it is much denser than expected. Note that this

measure makes differently-sized subtrees commensurate.

There are two issues we need to address to prevent pathological

solutions.

 Redundancy: Consider Figure 7.left. If we report Subtree1 as

the most significant pattern, it would be fruitless to report a

contained subtree of size two as the next most significant

pattern. Thus, once we find the ith most significant subtree, all

its descendant and ancestor nodes are excluded from

consideration for the ith+1 to K most significant subtrees.

 Overflow: Suppose we are monitoring an accelerometer on an

individual’s leg. If she goes on a long walk, we might expect

that single gait cycles might flood the dendrogram, and

diminish our ability to detect other behaviors. Thus, we allow

any subtree in the current list of the top K to grow up to

MaxSubtreeSize. After that point, if a new instance is inserted

into this subtree, we test to see which of the MaxSubtreeSize +

1 items can be discarded to create the tightest subtree of size

MaxSubtreeSize, and the outlying object is discarded.

In Table 3, we illustrate a high level overview of the algorithm.

Table 3: Frequent Pattern Maintenance Algorithm

Algorithm:top = frequent_pattern_maintenance(sub)
1

2

3

4

5

6

7

if sub == null // If null was passed in,

 top null; return; // do nothing, return null

else

 dendro insert(dendro,sub) // |dendro| is now w + 1

 top find_most_significant_subtree(dendro)

 dendro discard_a_leaf_node(dendro) // back to size w

end

Our frequent pattern mining algorithm has only a single value,

w the number of objects we can keep in the buffer, which affects

its performance. This is not really a free parameter, as w should

be set as large as possible, given the more restrictive of the time or

space constraints. However, it is interesting to ask how large w

needs to be to allow successful learning. A detailed analysis is

perhaps worthy of its own paper, so we will content ourselves

here with a brief intuition. Imagine a version of our problem,

simplified by the following assumptions. One in one hundred

subsequences in the data stream belong to the same pattern;

everything else is random data. Moreover, assume that we can

unambiguously recognize the pattern the moment we see any two

examples of it. Under these assumptions, how does the size of w

affect how long we expect to wait to discover the pattern? Figure

8 shows this relationship for several values of w.

Figure 8: The average number of time steps required to find a
repeated pattern with a desired probability for various values
of w. All curves end when they reach 99.5%.

Unusually dense subtree

Most of the dendrogram truncated for clarity

0 6 12

Mean = 7.9

STD = 2.1

0 6 12

Subtree1

Subtree2

significance = (Mean – ObservedSubtreeHeight) / STD

significance(Subtree1) = (7.9 – 0.7) / 2.1 = 3.42

significance(Subtree2) = (7.9 – 7.2) / 2.1 = 0.33 0.7 7.2

SubtreeSize4

(distribution of

heights of subtrees

of size four, when

no obvious

repeated patterns

are observed)

0 2000 4000

0.2

0.4

0.6

0.8

1

6000

0

number of time steps

P
ro

b
a

b
il

it
y

 o
f

S
u

c
c

e
ss

877

If w is set to ten, we must wait about 5,935 time steps to have at

least a 99.5% chance of finding the pattern. If we increase w by a

factor of ten our wait time does decrease, but only by a factor of

3.6. In other words, there are rapidly diminishing returns for

larger and larger values of w. These results are borne out by

experiments on real datasets (cf. Section 4). A pathologically

small value for w, say w = 2, will almost never stumble on a

repeated pattern. However, once we make w large enough, we can

easily find repeated patterns, and making w larger again makes no

perceptible difference. The good news is that “large enough”

seems to be a surprisingly small number, of the order of a few

hundred for the many diverse domains we consider. Such values

are easily supported by off-the-shelf hardware or even

smartphones. In particular, all experiments in this paper are

performed in real time on cheap commodity hardware.

Finally, we note that there clearly exist real-world problems

with extraordinarily rare patterns that would push the limits of our

current naive implementation. However, it is important to note

that our description was optimized for clarity of presentation and

brevity, not efficiency. We can take advantage of recent research

in online [1] and incremental [19] hierarchical clustering to bring

the cost per time step down to O(w).

3.5 Active Learning System
The active learning system which exploits the frequent patterns

we discovered must be domain dependent. Nevertheless, we can

classify two broad approaches depending on the teacher (oracle)

available. Teachers may be:

 Strong Teachers which are assumed to give correct and

unambiguous class labels. Most, but not all, strong teachers are

humans. Strong teachers are assumed to have a significant cost.

 Weak Teachers which are assumed to provide more tentative

labels. Most, but not all, weak teachers are assumed to be

algorithms; however, they could be input of a crowdsourcing

algorithm or a classification algorithm that makes errors but
performs above the default rate.

The ability of our algorithm to maintain frequently occurring

time series opens a plethora of possibilities for active learning.

Two common frameworks for active learning are Pool-Based

sampling and Stream-Based sampling [20]. In Pool-Based

sampling, we assume there is a pool of unlabeled data available,

and we may (at some cost) request a label for some instances. In

Stream-Based sampling, we are presented with unlabeled

examples one at a time and the learner must decide whether or not

it is worth the cost to request its label. Our framework provides

opportunities that can take advantage of both scenarios; we are

both maintaining a pool of instances in the dendrogram and we

also see a continuous stream of unlabeled data.

Because this step is necessarily domain dependent, we will

content ourselves here with giving real world examples and defer

creating a more general framework to future work.

Given our dictionary-based model, the only questions that

remains are when we should trigger a query to the teacher, and

what action we should take given the teacher’s feedback.

3.5.1 When to trigger queries
Different assumptions about the teacher model and its

associated costs can lead to different triggering mechanisms [20].

However, most frameworks can reduce to questions of how

frequently we should ask questions. A conservative questioner

that only asks questions rarely may miss opportunities to learn

concepts, whereas an aggressive questioning policy will

accumulate large costs and will frequently ask questions about

data that are unlikely to represent any concept.

For any given domain, we assume that the teacher will tell us

how many queries on average they are willing to answer in a

given time period. For example, our cardiologist (c.f. Section 4.2)

is willing to answer two queries per day from a system recording a

healthy adult patient undergoing a routine sleep study, but twenty

queries per day from a system monitoring a child in an ICU who

has had recent increase in her SOFA score [10].

Let SR be the sampling rate of P, and QR be the mean number

of seconds between queries that the teacher is willing to tolerate.

We can then calculate the trigger threshold as:

Where probit is the standard statistical function. We defer a

detailed derivation to [13]. This equation assumes the

distributions of heights of subtrees (e.g. Figure 7.right) are

approximately Gaussian, a reasonable assumption when j ≪ w.

3.5.2 Learning a concept: Strong teacher case
In Table 4, the active learning system begins by comparing the

significance (c.f. Section 3.4) of the top motif to this user supplied

trigger threshold. If the motif warrants bothering the teacher, the

get_labels function is invoked. The exact implementation of

this is domain dependent, requiring the teacher to examine

images, short audio or video snippets, or in one instantiation we

discuss below, the bodies of insects, and provide labels for these

objects. Once the labels have been obtained, then in Line 5 the

dictionary is updated.

We have two tasks when updating the dictionary. First we must

create the concept Ci; we can do this by either averaging the

objects in the motif or choosing one randomly. Empirically, both

perform about the same, which is unsurprising since the variance

of the motif must be very low to pass the trigger threshold. The

second thing we must do is decide on a value for threshold Ti.

Here we could leverage off a wealth of recent advances in One-

Class Classification [9]; however, for simplicity we simply set the

threshold Ti to three times the top subtree’s height. As we shall

see, this simple idea works so well that more sophisticated ideas

are not warranted, at least the domains we investigated.

Table 4: The Active Learning Algorithm

Algorithm:dict = active_learning_system(top,dict)
1

2

3

4

5

6

7

8

if (significance(top)<trigger threshold) // The subtree is not

 dict dict; return; // worth investigating

elseif in_strong_teacher_mode

 labels get_labels(top)

 dict update_dictionary(dict,top,labels)

else

 spawn_weak_learner_agent(top)

end

3.5.3 Learning a concept: Weak teacher case
A weak teacher can leverage off side information. For

concreteness, we will give an illustration that closely matches an

experiment we consider in Section 4.6; however, we envision a

host of possible variants (hence our insistence that this phase be

domain dependent). As illustrated in Figure 9.top, we can measure

the X-axis acceleration on the wrist of the subject as he works

with various tools. Moreover, RFID tags mounted on the tools can

produce binary time series which record which tools are close to

the user’s hand, although these binary sensors clearly cannot

encode any information about whether the tool is being used or

carried or cleaned, etc. At some point, our active learning

algorithm is invoked in weak teacher mode with pattern C1, which

happens (although we do not know this) to correspond to an axe

swing.

The weak teacher simply waits for future occurrences of the

pattern to be observed, and then, as shown in Figure 9.middle,

immediately polls the binary sensors for clues as to C1’s label.

878

In the example shown in Figure 9.bottom, after the first

detection of C1, we have one vote for Axe, one for Cat, and

zero for Bar. However, by the third detection of C1, we have seen

three votes for Axe, one for Bar, and one for Cat. Thus, we can

compute that the most likely label for C1 is Axe, with a

probability of 0.6 = 3 / (3 + 1 +1).

Figure 9: An illustration of a weak teacher. top) A stream P in
which we detect three occurrences of the pattern C1. middle)
At the time of detection we poll a set of binary sensors to see
which of them are active. bottom) We can use the frequency of
associations between a pattern and binary “votes” to calculate
probabilities for C1’s class label.

This simple weak teaching scheme is the one we use in this

work and we empirically evaluate it in Section 4.6. However, we

recognize that more sophisticated formulations can be developed.

For example, our approach assumes that the binary sensors are

mostly in the off position. A more robust method would look at

the prior probability of a sensor’s state and the dependence

between sensors. Our point here is simply to provide an existence

proof of a system that can learn without human intervention.

Finally, note that the sensors polled do not have to be natively

binary. They could be normally real-valued; for example, an

accelerometer time series can be discretized to binary {has moved

in the last 10-sec, has not moved in the last 10-sec}.

4. EXPERIMENTS
We begin by noting that all code and data used in this paper,

together with additional details and many additional experiments,

are archived in perpetuity at [13].

While true never-ending learning systems are our ultimate goal,

here we content ourselves with experiments that last from minutes

to days. Our experiments are designed to demonstrate the vast

range of problems we can apply our framework to.

We do not consider the effect of varying w on our results. As

noted in Section 3.4, once it is set to a reasonable value (typically

around 250), its value makes almost no difference and we can

process streams with such values in real-time for all the problems

considered below.

Because our system discards subsequences randomly, where

possible, we test each dataset 100 times and report the average

performance. For each class, we report the number of times the

class is learned as well as the average precision and recall [22]. To

compute the average precision and recall, we count in each run the

number of true positives, false positives, and false negatives after

the class is first added to the dictionary.

4.1 Activity Data
We begin with a short but visually intuitive domain, the activity

dataset of [24]. This dataset consists of a 13.3 minute 10-fps video

sequence (thresholded to binary by the original authors) of an

actor performing one of eight activities. From this data, the

original authors extracted 721 optical flow time series. We

randomly chose just one of these time series to act as P, with S

being the original video.

We set our trigger threshold to 3.5, which is the value that we

expect to spawn about three requests for labels on each run, and

we assume a label is given after a delay of ten seconds (Figure
10.left shows the first query shown to the teacher on the first run.

Figure 10: left) A query shown to the user during a run on the
activity dataset; the teacher labeled it Pushing and a new

concept C1 was added to the dictionary. right) About 9.6
minutes later, the classifier detected a new example of the class.

The teacher labeled this Pushing, and the concept was inserted

into the dictionary. About 9.6 minutes later, this classifier

correctly claimed to spot a new example of this class, as shown in

Figure 10.right.

This dataset has the interesting property that the actor starts in a

canonical pose and returns to it after completing the scripted

action at eight-second intervals. This means that we can permute

the data so long as we only “cut and paste” at multiples of eight

seconds. This allows us to test over one hundred runs and smooth

our performance estimates.

Averaged over one hundred runs, we achieved an impressive

41.8% precision and 87.96% recall on the running concept. On

some other concepts, we did not fare so well. For example, we

only achieved 19.87% precision and 51.01% recall on the

smoking concept. However, this class has much higher

variability in its performance, and recall that we only used a single

time series of the 721 available for this dataset.

4.2 Invasive Species of Flying Insects
Recently, it has been shown that it is possible to accurately

classify the species3of flying insects by transforming the faint

audio produced by their flight into a periodogram and doing

nearest neighbor time series classification on this representation

[2]. Figure 11 demonstrates the practicality of this idea.

Figure 11: top) An audio snippet of a female Cx. stigmatosoma
pursued by a male. bottom left) An audio snippet of a common
house fly. bottom right) If we convert these sound snippets
into periodograms we can cluster and classify the insects.

This allows us to classify known species, for example, species

we have raised in our lab to obtain training data. However, in

many insect monitoring settings we are almost guaranteed to

encounter some unexpected or invasive species; can we use our

framework to detect and classify them? At first blush, this does

3 And for some sexually dimorphic species such as mosquitoes, the sex.

0 100 200 300

P

Bar (pry)

Axe

Cats Claw

on

off
on

off
on

off

Axe 1/1

Bar 0/1

Cat 1/1

Axe 2/2

Bar 1/2

Cat 1/2

Axe 3/3 P(C1= Axe) = 3/(3+1+1)

Bar 1/3 P(C1= Bar) = 1/(3+1+1)
Cat 1/3 P(C1= Cat) = 1/(3+1+1)

C1 observed

C1 observed
C1 observed

B (binary sensors)

0 20 40 60 80 5790 5830 5870

Pushing was detected

C1

0 6000

16kHz

Culex stigmatosoma MaleFemale

0 3000

Musca domestica

879

not seem possible. The S data source is a high quality audio

source, and while entomologists could act as our teachers, at best

they could recognize the sound at the family level, i.e. some kind

of Apoidea (bee). We could hardly expect them to recognize which

of the 21,000 or so species of bee they heard.

We had considered augmenting S with HD video, and sending

the teacher short video clips of the novel insects. However, many

medically and agriculturally important insects are tiny; for

example, some species of Trichogramma (parasitic wasps) are just

0.2 mm, about the size of the period at the end of this sentence.

Our solution is to exploit the fact that some insect traps can

physically capture the flying insects themselves and record their

time of capture [17]. Thus, the S data source is audio snippets of

the insects as they flew into the trap and the physical bodies of

insects. Naturally, this causes a delay in the teaching phase, as we

cannot digitally transmit S to the teacher but must wait until she

comes to physically inspect the trap once a day.

Using insects raised from larvae in our lab, we learned two

concepts: Culex stigmatosoma male (Cstig♂) and female (Cstig♀).

These concepts are just the periodograms shown in Figure 11 with

the thresholds that maximized cross-validated accuracy.

With the two concepts now hard coded into our dictionary, we

performed the following experiments. On day one we released

500 Cx. stigmatosoma of each sex, together with two members of

an invasive species. If we cannot detect the invasive species, we

increase their number for the next day, and try again until we do

detected them, After we detected the invasive species, the next

day we released 500 of them with 500 Cx. stigmatosoma of each

sex and measured the precision/recall of detection for all three

classes. We repeated the whole procedure for three different

species to act as our invasive species. Table 5 shows the results.

Table 5: Our Ability to Detect then Classify Invasive Insects

Number of insects before detection Precision / Recall

invasive species name triggered invasive species Cstig♂ Cstig♀
Aedes aegypti ♂ 3 0.91 / 0.86 0.88/0.94 0.96/0.92

Culex tarsalis ♂ 3 0.57 / 0.66 0.58/0.78 1.00/0.95

Musca domestica ♂ and ♀ 7 0.98 / 0.73 0.99/0.95 0.96/0.94

Recall that the results for Cstig♂ and Cstig♀ test only the

representational power of the dictionary model, as we learned

these concepts offline. However, the results for the three invasive

species do reflect our ability to learn rare concepts (just 3 to 7

sub-second occurrences in 24 hours), and having learned these

concepts, we tested our ability to use the dictionary to accurately

detect further instances. The only invasive species for which we

report less than 0.9 precision is Cx. tarsalis ♂, which is a sister

species of the Cx. stigmatosoma, and thus it is not surprising that

our precision falls to a (still respectable) 0.57.

4.3 Long Term Electrocardiogram
We investigated BIDMC Dataset ch07, a 20-hour long ECG

recorded from a 48-year old male with severe congestive heart

failure [11][12]. This record has 17,998,834 data points

containing 92,584 heartbeats. As shown in Table 6, the heartbeats

have been independently classified into five types.

Table 6: The ground truth frequencies of beats in BIDMCch07

Name Abbreviation Frequency (%)

Normal N 97.752

R-on-T Premature Ventricular Contraction r 1.909

Supraventricular Premature or Ectopic Beat S 0.209

Premature Ventricular Contraction V 0.104

Unclassifiable Beat Q 0.025

In Figure 12, we can see this data has both intermittent noise

and a wandering baseline; we did not attempt to remove either.

Figure 12: A small snippet (0.0065%) of BIDMCch07 Lead 1.

Let us consider a single test run. After 45 seconds, the system

asked for a label for the pattern shown in Figure 13.left. Our

teacher, Dr. Criley4, gave the label Normal(N). Just two minutes

later, the system asked for a label for the pattern shown in Figure

13.center; here, Dr. Criley annotated the pattern as R-on-T PVC (r).

These two requests happened so quickly that the attending

physician that hooked up the ECG apparatus will be in the same

room and able to answer the queries directly. The next request for

a label does not occur for another 9.5 hours, and we envision it

being sent by email to the teacher. As shown in Figure 13.right,

our teacher labeled it PVC (V).

Figure 13: left to right) Three patterns discovered in our ECG
experiment. top to bottom) The motif discovered and used to
query the teacher. The learned concept. Some examples of
true positives. Some examples of false positives.

In this run, the class (S) was also learned, but just thirty minutes

before the end of the experiment. We did not discover class (Q);

however, it is extremely rare and as hinted at by its name

(Unclassifiable Beat), very diverse in its appearance.

Because the data has been independently annotated beat-by-beat

by an algorithm, we can use this ground truth as a virtual teacher

and run our algorithm 100 times to find the average precision and

recall, as shown in Table 7. We note, however, that our

cardiologist examined some of the “false positives” of our

algorithm and declared them to be true positives, suggesting that

some of the annotations on the original data are incorrect. In

fairness, [12] notes the data was “prepared using an automated

detector and has not been corrected manually.” Thus, we feel the

numerical results here are pessimistic.

Table 7: Results on BIDMCch07

Class Detection Rate Precision Recall

Normal (N) 100% 0.9978 0.9948

R-on-T PVC (r) 100% 0.9147 0.8080

Supraventricular (S) 100% 0.5028 0.4141

PVC (V) 100% 0.2342 0.6775

Unclassifiable (Q) 0% - -

Beyond the objectively correct cardiac dysrhythmias discovered

by our system, we frequently found our algorithm has the ability

to surprise us. For example, after eighteen minutes of monitoring

BIDMC-chf07-lead 2 [12], the algorithm asked for a label for the

extraordinary repeated pattern shown in Figure 14.

Figure 14: A pattern (green/bold) shown with surrounding
data for context, discovered in lead 2 of BIDMCch07.

4 Dr. John Michael Criley, MD, FACC, MACP is Professor Emeritus at

the David Geffen School of Medicine at UCLA.

0 400 800 1200 1600 2000

BIDMC Dataset ch07: ECG lead 1

0 40 80 120

Normal Premature Ventricular

Contraction
R-on-T Premature

Ventricular Contraction

Learned
concept

True

positives

False

positives

Discovered

pattern

275,500 One Second 277,500

BIDMC-chf07 Lead 2

880

The label given by the teacher, Dr. Criley, was “Interference from

nearby electrical apparatus: probably infusion pump.” Having

learned this label, our algorithm detected fifty-nine more

occurrences of it in the remaining twenty hours of the trace. A

careful retrospective examination of the data suggests that the

algorithm had perfect precision/recall on this unexpected class.

4.4 Bird Song Classification
Recently, a worldwide citizen science project called Bat

Detective [16] has been using crowdsourcing to attempt to count

bat populations by having volunteers classify sounds as one of

{bat, insect, mechanical} (The latter class is an umbrella

term for sounds created by human activities.). In our efforts to

volunteer for this project, we noted that the majority of signals the

system asked us to classify are wind noise or other low interest

signals (see [13] for examples of screenshots. We wondered if our

framework would allow more useful queries to be sent to the

users, thus making more effective use of their time.

We do not have ready access to bat sounds, so we produced a

similar system for bird sounds. To produce a dataset for which we

had ground truth, we did the following. We recorded an hour at

midnight at the UCR botanical gardens on January 12, 2012. A

careful human annotation of the sound file reveals wind noise,

voices in the distance, low volume rumbles from aircraft, etc., but

no obvious wildlife calls. Using data from xeno-canto.org, we

randomly embedded ten examples of short (about 3 seconds) calls

of a Tawny Owl in the data. Using the raw audio as S, and a

single 100Hz Mel-Frequency Cepstral Coefficient (MFCC) as P,

we ran our algorithm on this data. As Figure 15 shows, our

system can easily recover the patterns.

Figure 15: The motif discovered in the first run on the bird
dataset. right) One snippet in three representations (bottom-to-
top): a spectrogram, an oscillogram, and the MFCC we used.

The snippets may be heard at [13]. They are easily identifiable

as an owl; however, it is less clear if an ornithological

crowdsourcing community could identify them as a Tawny Owl.

4.5 Understanding Sapsucking Insect Behavior
Insects in the order Homoptera feed on plants by using a

feeding tube called a stylet to suck out sap. This behavior is

damaging to the plants, and it has been estimated that species in

this order cause billions of dollars of damage to crops each year.

Given their economic importance, hundreds of researchers study

these insects, and increasingly they use a tool called an Electrical

Penetration Graph (EPG), which, as shown in Figure 16, adds the

insect to an electrical circuit and measures the minuscule changes

in voltage that occur as the insect feeds [15].

While there are now about ten widely agreed upon behaviors

that experts can recognize in the EPG signals, little progress has

been made in automatic classification in this domain. One reason

for this is that the 32,000 species that make up order Homoptera

are incredibly diverse; for example, their size ranges over at least

three orders of magnitude. Thus, for many species, an expert

could claim of a given behavior, “I know it when I see it,” but

he/she could not expect a template from even a related species to

match.

As such, this is a perfect application for our framework, and

several leading experts on this apparatus agreed to help us by

acting as teachers.

Figure 16: left) A tethered brown leafhopper. right) A
schematic diagram of the circuit for recording EPGs. bottom)
A snippet of data produced during one of our experiments.

Let us consider a typical run on a dataset consisting of a Beet

Leafhopper (Circulifer tenellus) recorded by Dr. Greg Walker of

UCR Entomology Department. Dr. Elaine Backus of the USDA,

one of the co-inventors of the EPG apparatus, agreed to act as the

teacher. She was only given access to the requests from our

system; she could not see the whole time series or the insect itself.

After 65 seconds, the system requested a label for the three

patterns shown in Figure 17.top.left. Dr. Backus labeled the

pattern: phloem ingestion with interruption for salivation. After 13.2

minutes, the system requested a label for behavior shown in

Figure 17.top.right. Dr. Backus labeled this pattern: transition

from non-probing to probing. The former learned concept went on

to classify twenty-four examples, and the latter concept classified

six. Examples of both can be seen in Figure 17.bottom.

Figure 17: top-row) The two concepts discovered in the EPG
data. bottom-row) Examples of classified patterns.

A careful retrospective study of this dataset suggests that we

had perfect precision and recall on this run. Other runs on

different datasets in this domain had similar success [13].

4.6 Weak Teaching Example: Elder Care
The use of sensors placed in the environment and/or on parts of

the human body has shown great potential in effective and

unobtrusive long term monitoring and recognizing the activities of

daily living [21][23]. However, labeling accelerometer and sensor

data is still a great challenge and requires significant human

intervention. In [23], the authors bemoaned the fact that high

quality annotation is an order of magnitude slower than real-time,

“A 30-minutes video footage requires about 7-10 hours to be

annotated.” In this example, we leverage off our weak teacher

framework to explore how well the framework can label the

sensor data without any human intervention.

We consider the dataset of [21] which comes from an activity

monitoring and recognition system created using a 3D

accelerometer and RFID tags mounted on household objects. A

sensor containing both an RFID tag reader and a 3D

accelerometer is mounted on the dominant wrist. Volunteers were

asked to perform housekeeping activities in any order of their

choosing to the natural distribution of activities in their daily life.

Thus, the dataset is multidimensional time series with three real-

valued and 38 binary dimensions.

Discovered pattern

0 100 200

Tawny Owl
(Strix aluco) F

re
q

u
en

cy
(k

H
z)

Orosius orientalis

0 200 400 600 800

stylet

resistor

ground

wire glued to head

plant surface

0 100 200 300 400 500

transition from non-

probing to probing
phloem ingestion with
interruption for salivation

881

For our experiment, we consider just the X-axis acceleration

sensor. The active learning algorithm is set in weak teacher mode.

After 24 seconds the system finds a concept, C1, worth exploring

(Figure 20.top.left). As we can see in Figure 18, our algorithm

waited for the next occurrence of the pattern (It happens that three

occur close together) and it polls the 38 binary RFID-detected

sensors to see which are on.

Figure 18: top) After we have learned the concept C1, our
system monitors for future occurrences of it. Here, it sees
three examples in a row. bottom) By polling the binary RFID
sensors when a “hit” for C1 is detected, we can learn that the
concept is associated with ‘glove’.

Our algorithm found an additional ten subsequences similar to

the template. For six of these subsequences, only the RFID tag

sensor labeled glove was on. Of the remaining four hits, just the

iron was on for three times and just fan was on once. Thus, we

end up with the probabilities shown in Figure 19.right.

Figure 19: top) A zoom-out of the time series shown in Figure
18. bottom) The probability of concept C1 being with various
tagged items. Of 38 possibilities, only 3 have non zero entries.

In Figure 20, we show the relevant subsequences. Here, the true

positives are subsequences that voted for glove, and the false

positives voted for iron or fan. After a careful check of the

original data we discovered that the pattern actually corresponds

to dishwashing, which is the only behavior for which the

participant wore gloves.

Figure 20: top-left) The motif discovered in our Elder care
sensor experiment and averaged into concept C1 (bottom-left).
right) examples of true positives and false positives.

5. CONCLUSION AND FUTURE WORK
We have introduced the first never-ending framework for real

valued time series streams. We have shown our system is scalable,

able to handle 250Hz with ease (cf. Section 4.3), and that it is

robust to significant noise (cf. Figure 17 and Figure 20).

Moreover, by applying it to diverse domains, we have shown it is

a very general and flexible framework. In future work, we hope to

remove the few assumption/parameters we have and apply our

ideas to year-plus length streams. We have made all our code and

data freely available [13] and hope to see our work built upon and

applied to an even richer set of domains.

6. ACKNOWLEDGEMENTS
We gratefully acknowledge the financial support for our research

provided by NSF IIS-1161997 and Vodafone.

7. REFERENCES
[1] E. Achtert, C. Bohm, H-P. Kriegel, P. Kröger. Online

Hierarchical Clustering in a Data Warehouse Environment Data
Mining. ICDM, 2005, pp.10–17.

[2] G. Batista, E. Keogh, A. Mafra-Neto, E. Rowton: Sensors and
software to allow computational entomology, an emerging
application of data mining. KDD 2011: 761-764.

[3] E. Berlin and K. Laerhoven. Detecting leisure activities with
dense motif discovery. Proceedings of the 2012 Intl Conference
on Uniquitous Computing. pp. 250-59.

[4] M. Borazio and K. Laerhoven. Combining Wearable and
Environmental Sensing into an Unobtrusive Tool for Long-Term
Sleep Studies”. 2

nd
 ACM SIGHIT 2012.

[5] A.S.L.O. Campanharo, M.I. Sirer, R.D. Malgren, F.M. Ramos,
L.A.N Nunes. Duality between time series and networks. Plos
One, 6 (2011), p. e23378.

[6] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka Jr.
and T.M. Mitchell. Toward an Architecture for Never-Ending
Language Learning. In Proc’ AAAI, 2010.

[7] G. Cormode, M. Hadjieleftheriou. Methods for finding frequent
items in data streams. VLDB J. 19(1): 3-20 (2010).

[8] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, E. J. Keogh.
Querying and mining of time series data. Experimental
comparison of representations and distance measures. PVLDB
1(2): 1542-1552 (2008).

[9] C. Elkan and K. Noto: Learning classifiers from only positive
and unlabeled data. KDD 2008: pp213-220

[10] F. Ferreira, D. Bota, A. Bross, C. Mélot, J Vincent. Serial
evaluation of the SOFA score to predict outcome in critically ill
patients. JAMA 2001 Oct 10; 286(14):1754-8.

[11] A. Goldberger et al. PhysioBank, PhysioToolkit, and PhysioNet:
Components of a New Research Resource for Complex Physiologic
Signals. Circulation 101(23):pp 215-20 2000.

[12] A. Goldberger et al. Physionet, accessed Feb-04-2013
physionet.ph.biu.ac.il/physiobank/database/chfdb/

[13] Y. Hao project webpage: www.cs.ucr.edu/~yhao/NELTS.html
[14] B. Hu, Y. Chen and E. J. Keogh. Time Series Classification

under More Realistic Assumptions. SDM 2013.
[15] S. Jin, Z. Chen, E. Backus, X. Sun, B. Xiao. 2012.

Characterization of EPG waveforms for the tea green leafhopper
on tea plants and their correlation with stylet activities. Journal
of Insect Physiology. 58:1235-1244.

[16] K. Jones (2012). www.batdetective.org
[17] L. Mitchell. Time Segregated Mosquito Collections with a CDC

Miniature Light Trap. Mosquito News 1981. 42: 12.
[18] A. Mueen, E. J. Keogh, N. Young: Logical-shapelets: an

expressive primitive for time series classification. KDD 2011:
1154-62.

[19] S. Nassar, J. Sander, C. Cheng: Incremental and Effective Data
Summarization for Dynamic Hierarchical Clustering. SIGMOD
Conference 2004: 467-478.

[20] B. Settles. Active Learning. Morgan & Claypool, 2012.
[21] M. Stikic, T. Huynh, K. V. Laerhoven and B. Schiele. ADL

Recognition Based on the Combination of RFID and
Accelerometer Sensing. PervasiveHealth, 2008. pp. 258–263.

[22] C. J. Van Rijsbergen, Information Retrieval, 2nd edition,
London, England: Butterworths, 1979.

[23] D. Roggen et al. Collecting complex activity data sets in highly
rich networked sensor environments, In Proc’ 7

th
 IEEE INSS

(2010), pp. 233-240
[24] A. Veeraraghavan, R. Chellappa, A. K. Roy-Chowdhury, The

Function Space of an Activity, Computer Vision and Pattern
Recognition, 2006.

P (X-axis acceleration
of right wrist)

0 1000 2000 3000

off
on

Glove

B (RFID tag)

C1 observed C1 observed C1 observed

Glove 1/1

Iron 0/1

(omitted)

off
on

Iron

(omitted)

Glove 2/2

Iron 0/2

(omitted)

Glove 3/3

Iron 0/3

(omitted)

5 seconds

0 minutes

0

0.5

1

iron P(C1=fan) = 0.07

P(C1=iron) = 0.23

P(C1=glove) = 0.70

fan

P X-axis acceleration of right wristEvents shown in Figure 18 take place here

55 minutes

glove

0 200 400 0 200 400

Learned concept C1

True

positives

False positives

Discovered pattern

882

