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ABSTRACT 

Time series classification has been an active area of research in 

the data mining community for over a decade, and significant 

progress has been made in the tractability and accuracy of 

learning.  However, virtually all work assumes a one-time training 

session in which labeled examples of all the concepts to be 

learned are provided. This assumption may be valid in a handful 

of situations, but it does not hold in most medical and scientific 

applications where we initially may have only the vaguest 

understanding of what concepts can be learned. Based on this 

observation, we propose a never-ending learning framework for 

time series in which an agent examines an unbounded stream of 

data and occasionally asks a teacher (which may be a human or an 

algorithm) for a label. We demonstrate the utility of our ideas with 

experiments in domains as diverse as medicine, entomology, 

wildlife monitoring, and human behavior analyses.       

Categories and Subject Descriptors 

H.2.8 [Information Systems]: Database Application – Data Mining 

Keywords 

Never-Ending Learning, Classification, Data Streams, Time Series 

1. INTRODUCTION 
Virtually all work on time series classification assumes a one-

time training session in which multiple labeled examples of all the 

concepts to be learned are provided. This assumption is 

sometimes valid, for example, when learning a set of gestures to 

control a game or novel HCI interface. However, in many medical 

and scientific applications, we initially may have only the vaguest 

understanding of what concepts need to be learned. Given this 

observation, and inspired by the Never-Ending Language 

Learning (NELL) research project at CMU [6], we propose a time 

series learning framework in which we observe streams forever, 

and we continuously attempt to learn new (or drifting) concepts.   

Our ideas are best illustrated with a simple visual example. In 

Figure 1, we show a time series produced by a light sensor at Soda 

Hall in Berkley. While the sensor will produce data forever, we 

can only keep a fixed amount of data in a buffer. Here, the daily 

periodicity is obvious, and a more careful inspection reveals two 
very similar patterns, annotated A and B.  

 
Figure 1: The light sensors at Soda Hall produce a never-
ending time series, of which we can cache only a small subset 
main memory.  

As we can see in Figure 2.left and Figure 2.center, these 

patterns are even more similar after we z-normalize them [8]. 

Suppose that the appearance of these two similar patterns (or 
“motif”) causes an agent to query a teacher as to their meaning.  

 

Figure 2: left) A “motif” of two patterns annotated in Figure 1 
aligned to highlight their similarity. center) We imagine 
asking a teacher for a label for the pattern. right) This allows 
us to detect and classify a new occurrence eleven days later.  

This query could be implemented in a number of ways; 

moreover, the teacher need not necessarily be human. Let us 

assume here that an email is sent to the building supervisor with a 

picture of the patterns and any other useful metadata. If the 

teacher is willing to provide a label, in this case Weekday with no 

classes, we have learned a concept for this time series, and we can 

monitor for future occurrences of it.  

An important generalization of the above is that the time series 

may only be a proxy for another much higher dimensional 

streaming data source, such as video or audio. For example, 

suppose the classrooms are equipped with surveillance cameras, 

and we had conducted our monitoring at a finer temporal 

resolution, say seconds. We could imagine that our algorithm 

might notice a novel pattern of short-lived but dramatic spikes in 

light intensity. In this case we could send the teacher not the time 

series data, but some short video clips that bracket the events. The 

teacher might label the pattern Camera use with flash. This idea, 

that the time series is only a (more tractable) proxy for the real 

stream of interest, greatly expands the generality of our ideas, as 

time series has been shown to be a useful proxy of audio, video, 

text, networks, and a host of other types of data [5]. 

This example elucidates our aims, but suggested a wealth of 

questions. How can we detect repeated patterns, especially when 

the data arrives at a much faster rate, and the probability of two 

patterns from a rare concept appearing close together is very 

small? Assuming the teacher is a finite or expensive resource, 

how can we optimize the set of questions we might ask of 

it/him/her, and how do we act on this feedback? 

The rest of this paper is organized as follows. In Section 2, we 

briefly discuss related work before explaining our system 

architecture and algorithms in Section 3. We provide an empirical 

evaluation on a host of diverse domains in Section 4, and in 

Section 5, we offer conclusions and directions for future work. 

2. RELATED WORK 
The task at hand requires contributions from, and an 

understanding of, many areas, including: frequent item mining 

[7], time series classification [8], hierarchical clustering, 

crowdsourcing, active learning [20], semi-supervised learning, 

etc. It would be impossible to consider all these areas with 

appropriate depth in this work; thus, we refer the reader to [13] 

where we have a detailed bibliography of the many research 

efforts we draw from. 
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However, it would be remiss of us not to mention the 

groundbreaking NELL project lead by Tom Mitchell at CMU [6], 

which is the inspiration for the current work. Note, however, that 

the techniques used by NELL are informed by very different 

assumptions and goals. NELL is learning ontologies from discrete 

data that it can crawl multiple times. In contrast, our system is 

learning prototypical time series templates from real-valued data 

that it can only see once.  

The work closest in spirit to ours in the time series domain is 

[3]. Here, the authors are interested in a human activity inference 

system with an application to psychiatric patient monitoring. They 

use time series streams from a wrist worn sensor to detect dense 

motifs, which are used in a periodic (every few weeks) 

retrospective interview/assessment of the patient. However, this 

work is perhaps best described as a sequence of batch learning, 

rather than a true continuous learning system. Moreover, the 

system requires at least seven parameters to be set and significant 

human intervention. In contrast, our system requires few (and 

relatively non-critical) parameters, and where humans are used as 

teachers, we limit our demands of them to providing labels only.        

3. ALGORITHMS 
The first decision facing us is which base classifier to use. Here, 

the choice is easy; there is near universal agreement that the 

special structure of time series lends itself particularly well to the 

nearest neighbor classifier [8][14][18]. This only leaves the 

question of which distance measure to use. There is increasing 

empirical evidence that the best distance measure for time series is 

either Euclidean Distance (ED), or its generalization to allow time 

misalignments, Dynamic Time Warping (DTW) [8]. DTW has 

been shown to be more accurate than ED on some problems; 

however, it requires a parameter, the warping window width, to be 

carefully set using training data, which we do not have. 

Because ED is parameter-free, computationally more tractable, 

allows several useful optimizations in our framework (triangular 

inequality etc.), and works very well empirically [8][18], we use it 

in this work. However, nothing in our overarching architecture 

specifically precludes other measures.     

3.1 Overview of System Architecture 
We begin by stating our assumptions:   

 We assume we have a never-ending1 data stream S. 

S could be an audio stream, a video stream, a text document 

stream, multi-dimensional time series telemetry, etc. Moreover, S 

could be a combination of any of the above. For example, all 

broadcast TV in the USA has simultaneous video, audio, and text. 

 Given S, we assume we can record or create a real-time 

proxy stream P that is “parallel” to S. 

P is simply a single time series that is a low-dimensional (and 

therefore easy to analyze in real time) proxy for the higher 

dimensional/higher arrival rate stream S that we are interested in. 

In some situations, P may be a companion to S. For example, in 

[4], which manually attempts some of the goals of this work, S is 

a night-vision camera recording sleeping postures and P is a time 

series stream from a sensor worn on the wrist of the sleeper. In 

other cases, P could be a transform or low-dimensional projection 

of S. In one example we consider, S is a stereo audio stream 

recorded at 44,100Hz, and P is a single channel 100Hz Mel-

frequency cepstral coefficient (MFCC) transformation of it. Note 

                                                                 

1 For our purposes, a “never-ending” stream may only last for days or 

hours. The salient point is the contrast with the batch learning 

algorithms that the vast majority of time series papers consider [8].   

that our framework includes the possibility of the special case 

where S = P, as in Figure 1. 

 We assume we have access to a teacher (or Oracle [20]), 

possibly at some cost.  

The space of possible teachers is large. The teacher may be 

strong, giving only correct labels to examples, or weak, giving a 

set of probabilities for the labels. The teacher may be 

synchronous, providing labels on demand, or asynchronous, 

providing labels after a significant delay, or at fixed intervals.  

Given the sparseness of our assumptions and especially the 

generality of our teaching model, we wish to produce a very 

general framework in order to address a wealth of domains. 

However, many of these domains come with unique domain 

specific requirements. Thus, we have created the framework 

outlined in Figure 3, which attempts to divorce the domain 

dependent and domain independent elements. 

 

Figure 3: An overview of our system architecture. The time 
series P which is being processed may actually be a proxy for 
a more complex data source such as audio or video (top right). 

Recall that P itself may be the signal of interest, or it may just 

be a proxy for a higher dimensional stream S, such as a video or 

audio stream, as shown in Figure 3.top.right. 

Our framework is further explained at a high level in Table 1. 

We begin in Line 1 by initializing the class dictionary, in most 

cases just to empty. The dictionary format is defined in Section 

3.2. We then initialize a dendrogram of size w. We will explain 

the motivation for using a dendrogram in Section 3.4. This 

dendrogram is initialized with random data, but as we shall see, 

these random data are quickly replaced with subsequences from P 

as the algorithm runs. 

After these initialization steps, we enter an infinite loop in 

which we repeatedly extract the next available subsequence from 

the time series stream P (Line 4), then pass it to a module for 

subsequence processing. In this unit, domain dependent 

normalization may take place (Line 5), and we will attempt to 

classify the subsequence using the class dictionary. If the 

subsequence is not classified and is regarded as valid (cf. Section 

3.3), then it is passed to the frequent pattern maintenance 

algorithm in Line 6, which attempts to maintain an approximate 

history of all data seen thus far. If the new subsequence is similar 

to previously seen data, this module may signal this by returning a 

new ‘top’ motif. In Line 7, the active learning module decides if 

the current top motif warrants seeking a label. If the motif is 

labeled by a teacher, the current dictionary is updated to include 

this now known pattern.  

Table 1: The Never-Ending Learning Algorithm  

Algorithm: Never_Ending_Learning(S,P,w) 
1 

2 

3 

4 

5 

6 

7 

8 

dict  initialize_class_dictionary 

global dendro = create_random_dendrogram_of_size(w)   

   For ever 

      sub   get_subsequence_from_P(S,P) 

      sub   subsequence_processsing(sub, dict) 

      top   frequent_pattern_maintenance(sub)  

      dict  active_learning_system(top, dict) 

   End 

now

time

Active Learning System
(Domain Dependent)

Time Series P

Psubsequence

S1subsequence S2subsequence

Frequent Pattern Maintenance
(Domain Independent)

Subsequence Processing 
(Domain Dependent)
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In the next four subsections, we expand our discussion of the class 

dictionary and the three major modules introduced above.   

3.2 Class Dictionaries  
We limit our representation of a class concept i to a triple 

containing: a prototype time series, Ci; its associated threshold, Ti; 

and Counti, a counter to record how often we see sequences of this 

class. As shown in Figure 4.right, a class dictionary is a set of 

such concepts, represented by M triples.  

Unlabeled objects that are within Ti of class Ci under the 

Euclidean distance are classified as belonging to that class. Figure 

4.left illustrates the representational power of our model. Note that 

because a single class could be represented by two or more 

templates with different thresholds (i.e. Weekend in Figure 

4.right), this representation can in principle approximate any 

decision boundary. It has been shown that for time series 

problems this simple model can be very completive with more 

complex models [14], at least in the case where both Ci and Ti are 

carefully set. 

 

Figure 4: An illustration of the expressiveness of our model. 

It is possible that the volumes that define two different classes 

could overlap (as C1 and C2 slightly do above) and that an 

unlabeled object could fall into the intersection. In this case, we 

assign the unlabeled object to the nearest center.   We reiterate 

that this model is adopted for simplicity; nothing in our overall 

framework precludes more complex models, using different 

distance measures [8], using logical connectives [18], etc.  

As shown in Table 1-Line 1 our algorithm begins by initializing 

the class dictionary. In most cases it will be initialized as empty; 

however, in some cases, we may have some domain knowledge 

we wish to “prime” the system with. For example, as shown in 

Figure 5, our experience in medical domains suggests that we 

should initialize our system to recognize and ignore the ubiquitous 

flatlines caused by battery/sensor failure, patient bed transfers, 

etc.   

 

Figure 5: left) Sections of constant “flatline” signals are so 
common in medical domains that it is worth initializing the 
medical dictionaries with an example (right), thus suppressing 
the need to waste a query asking a teacher for a label for it.  

Whatever the size of the initial dictionary, it can only increase 

by being appended to by the active learning module, as suggested 

in Line 7 of Table 1 and explained in detail in Section 3.5.   

3.3 Subsequence Processing 
Subsequence processing refers to any domain specific 

preprocessing that must be done to prepare the data for the next 

stage (frequent pattern mining). We have already seen in Figure 1 

and Figure 2 that z-normalization may be necessary [8]. More 

generally, this step could include downsampling, smoothing, 

wandering baseline removal, taking the derivative of the signal, 

filling in missing values, etc. In some domains, very specialized 

processing may take place. For example, for ECG datasets, robust 

beat extraction algorithms exist that can detect and extract full 

individual heartbeats, and as we show in Section 4.2, converting 

from the time to the frequency domain may be required [2]. 

As shown in Table 2-Line 3, after processing, we attempt to 

classify the subsequence by comparing it to each time series in 

our dictionary and assigning its class label to its nearest neighbor, 

if and only if it is within the appropriate threshold. If that is the 

case, we increment the class counter and the subsequence is 

simply discarded without passing it to the next stage.  

Table 2: The Subsequence Processing Algorithm  

Algorithm:sub = subsequence_processsing(sub,dict)  
1 

2 

3 

4 

5 

6 

7 

sub  domain_dependent_processing(sub) 

[dist,index]  nearest_neighbor_in_dictionary(sub,dict) 

if dist < Tindex         // Item can be classified 

  disp(‘An instance of class ’ index ‘ was detected!’) 

  countindex  countindex + 1 

  sub  null;         // Return null to signal that no  

end                    // further processing is needed  

Assuming the algorithm processes the subsequence and finds it 

is unknown, it passes it onto the next step of frequent pattern 

maintenance, which is completely domain independent.   

3.4 Frequent Pattern Maintenance  
As we discuss in more detail in the next section, any attempt to 

garner a label must have some cost, even if only CPU time. Thus, 

as hinted at in Figure 1/Figure 2, we plan to only ask for labels for 

patterns which appear to be repeated with some minimal fidelity. 

This reflects the intuition that a repeated pattern probably reflects 

some conserved concept that could be learned.  

The need to detect repeated time series patterns opens a host of 

problems. Note that the problem of maintaining discrete frequent 

items from unbounded streams in bounded space is known to be 

unsolvable in general, and thus has opened up an active area of 

research in approximation algorithms for this task [7]. However, 

we have the more difficult task of maintaining real-valued and 

high dimensional frequent items. The change from discrete to 

real-valued causes two significant difficulties.  

 Meaningfulness: We never expect two real-valued items to 

be equal, so how can we define a frequent time series? 

 Tractability: The high dimensionality of the data objects, 

combined with the inability to avail of common techniques 

and representations for discrete frequent pattern mining 

(hashing, graphs, trees, and lattices [7]) seems to bode ill for 

our hopes to produce a highly tractable algorithm. 

Fortunately, these issues are not as problematic as they may 

seem. Frequent item mining algorithms for discrete data must 

handle million-plus Hertz arrival rates [7]. However, most 

medical/human behavior domains have arrival rates that are rarely 

more than a few hundred Hertz. Likewise, for meaningfulness, a 

small Euclidean distance between two or more time series tells us 

that a pattern has been (approximately) repeated.  

We begin with the intuition of our solution to these problems. 

For the moment, imagine we can relax the space and time 

limitations, and that we could buffer all the data seen thus far. 

Further imagine, as shown in Figure 6, that we could build a 

dendrogram for all the data. Under this assumption, frequent 

patterns would show up as dense subtrees in the dendrogram. 

Given this intuition, we have just two problems to solve. The 

first is to produce a concrete definition of “unusually dense 

subtree.” The second problem is to efficiently maintain a 

dendrogram in constant space with unbounded streaming data. 

While our constant space dendrogram can only approximate the 

results of the idealized ever-growing dendrogram, we have good 

reason to suspect this will be a good approximation. Consider the 

Class Dictionary

C2 = Weekday no classes
T2 = 1.5

C3 = Weekend
T3 = 1.3

C4 = Weekend
T4 = 0.7

C1 = Weekday with classes
T1 = 3.7

Challenge 2010: 101a: ECG V 

“Flatline”

Class Dictionary

C1 = Flatline
T1 = 0.001

seconds0 10
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dense subtree shown in Figure 6; even if our constant space 

algorithm discards any two of the four sequences in this clade, we 

would still have a dense subtree of size two that would be 

sufficient to report the existence of a repeated pattern. We will 

revisit this intuition with more rigor below. 

 

Figure 6: A visual intuition of our solution to the frequent 
time series subsequence problem. The elements in a dense 
subtree (or clade) can be seen as a frequent pattern.    

We will maintain a dendrogram of size w in a buffer, where w is 

as large as possible given the space or (more likely) time 

limitations imposed by the domain. At most once per each time 

step2, the Subsequence Processing Module will hand over a 

subsequence for consideration. After this happens a subsequence 

from the dendrogram will be randomly chosen to be discarded in 

order to maintain constant space. At all times, our algorithm will 

maintain the top most significant patterns in the dendrogram, and 

it is only this top-1 motif that will be visible to the active learning 

module discussed below. 

In order to define most significant motif more concretely, we 

must first define one parameter, MaxSubtreeSize. The dense 

subtree shown in Figure 6 has four elements; a dense subtree may 

have fewer elements, as few as two. However, what should be the 

maximum allowed number of elements? If we allow the 

maximum to be a significant fraction of w, the size of the 

dendrogram, we can permit pathological solutions, as a subtree is 

only dense relative to the rest of the tree. Thus, we define 

MaxSubtreeSize to be a small constant. Empirically, the exact 

value does not matter, so we simply use six throughout this work.    

We calculate the significance of the top motif in the following 

way. Offline, we take a sample time series from the domain in 

question and remove existing patterns by permuting the data. We 

use this “patternless” data to create multiple dendrograms with the 

same parameters we intend to monitor P under. We examine these 

dendrograms for all possible sizes of subtrees from two to 

MaxSubtreeSize, and as shown in Figure 7 we record the mean 
and standard deviation of the heights of these subtrees.  

 
Figure 7: left) The (partial) dendrogram shown in Figure 6 
has its subtrees of size four ranked by density. right) The 
observed heights of the subtrees are compared to the expected 
heights given the assumption of no patterns in the data.   

These distributions tell us what we should expect to see if there 

are no frequent patterns in the new data stream P, as clusters of 

                                                                 

2 Recall from Section 3.3 that the Subsequence Processing Module may choose to 

discard a subsequence rather than pass it to Frequent Pattern Maintenance.   

frequent patterns will show up as unusually dense subtrees. These 

distributions allow us to examine the subtrees of the currently 

maintained dendrogram and rank them according to their 

significance, which is simply defined as the number of standard 

deviations less than the mean is the height of the ancestor node. 

Thus, the significance of subtreei, which is of size j is:   

                       
                                             

                           
 

For example, in Figure 7.right, we see that Subtree1 has a score 

of 3.42, suggesting it is much denser than expected. Note that this 

measure makes differently-sized subtrees commensurate.  

There are two issues we need to address to prevent pathological 

solutions. 

 Redundancy:  Consider Figure 7.left. If we report Subtree1 as 

the most significant pattern, it would be fruitless to report a 

contained subtree of size two as the next most significant 

pattern. Thus, once we find the ith most significant subtree, all 

its descendant and ancestor nodes are excluded from 

consideration for the ith+1 to K most significant subtrees. 

 Overflow: Suppose we are monitoring an accelerometer on an 

individual’s leg. If she goes on a long walk, we might expect 

that single gait cycles might flood the dendrogram, and 

diminish our ability to detect other behaviors. Thus, we allow 

any subtree in the current list of the top K to grow up to 

MaxSubtreeSize. After that point, if a new instance is inserted 

into this subtree, we test to see which of the MaxSubtreeSize + 

1 items can be discarded to create the tightest subtree of size 

MaxSubtreeSize, and the outlying object is discarded.  

In Table 3, we illustrate a high level overview of the algorithm. 

Table 3: Frequent Pattern Maintenance Algorithm 

Algorithm:top = frequent_pattern_maintenance(sub) 
1 

2 

3 

4 

5 

6 

7 

if sub == null                 // If null was passed in,  

   top  null; return;        // do nothing, return null 

else 

  dendro  insert(dendro,sub) // |dendro| is now w + 1 

  top  find_most_significant_subtree(dendro) 

  dendro  discard_a_leaf_node(dendro) // back to size w 

end 

Our frequent pattern mining algorithm has only a single value, 

w the number of objects we can keep in the buffer, which affects 

its performance. This is not really a free parameter, as w should 

be set as large as possible, given the more restrictive of the time or 

space constraints. However, it is interesting to ask how large w 

needs to be to allow successful learning. A detailed analysis is 

perhaps worthy of its own paper, so we will content ourselves 

here with a brief intuition. Imagine a version of our problem, 

simplified by the following assumptions. One in one hundred 

subsequences in the data stream belong to the same pattern; 

everything else is random data. Moreover, assume that we can 

unambiguously recognize the pattern the moment we see any two 

examples of it. Under these assumptions, how does the size of w 

affect how long we expect to wait to discover the pattern?  Figure 

8 shows this relationship for several values of w. 

 
Figure 8: The average number of time steps required to find a 
repeated pattern with a desired probability for various values 
of w. All curves end when they reach 99.5%.   
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If w is set to ten, we must wait about 5,935 time steps to have at 

least a 99.5% chance of finding the pattern. If we increase w by a 

factor of ten our wait time does decrease, but only by a factor of 

3.6. In other words, there are rapidly diminishing returns for 

larger and larger values of w. These results are borne out by 

experiments on real datasets (cf. Section 4). A pathologically 

small value for w, say w = 2, will almost never stumble on a 

repeated pattern. However, once we make w large enough, we can 

easily find repeated patterns, and making w larger again makes no 

perceptible difference. The good news is that “large enough” 

seems to be a surprisingly small number, of the order of a few 

hundred for the many diverse domains we consider. Such values 

are easily supported by off-the-shelf hardware or even 

smartphones. In particular, all experiments in this paper are 

performed in real time on cheap commodity hardware. 

Finally, we note that there clearly exist real-world problems 

with extraordinarily rare patterns that would push the limits of our 

current naive implementation. However, it is important to note 

that our description was optimized for clarity of presentation and 

brevity, not efficiency. We can take advantage of recent research 

in online [1] and incremental [19] hierarchical clustering to bring 

the cost per time step down to O(w). 

3.5 Active Learning System 
The active learning system which exploits the frequent patterns 

we discovered must be domain dependent. Nevertheless, we can 

classify two broad approaches depending on the teacher (oracle) 

available. Teachers may be: 

 Strong Teachers which are assumed to give correct and 

unambiguous class labels. Most, but not all, strong teachers are 

humans. Strong teachers are assumed to have a significant cost. 

 Weak Teachers which are assumed to provide more tentative 

labels. Most, but not all, weak teachers are assumed to be 

algorithms; however, they could be input of a crowdsourcing 

algorithm or a classification algorithm that makes errors but 
performs above the default rate. 

The ability of our algorithm to maintain frequently occurring 

time series opens a plethora of possibilities for active learning. 

Two common frameworks for active learning are Pool-Based 

sampling and Stream-Based sampling [20]. In Pool-Based 

sampling, we assume there is a pool of unlabeled data available, 

and we may (at some cost) request a label for some instances. In 

Stream-Based sampling, we are presented with unlabeled 

examples one at a time and the learner must decide whether or not 

it is worth the cost to request its label. Our framework provides 

opportunities that can take advantage of both scenarios; we are 

both maintaining a pool of instances in the dendrogram and we 

also see a continuous stream of unlabeled data.  

Because this step is necessarily domain dependent, we will 

content ourselves here with giving real world examples and defer 

creating a more general framework to future work.   

Given our dictionary-based model, the only questions that 

remains are when we should trigger a query to the teacher, and 

what action we should take given the teacher’s feedback.  

3.5.1 When to trigger queries  
Different assumptions about the teacher model and its 

associated costs can lead to different triggering mechanisms [20]. 

However, most frameworks can reduce to questions of how 

frequently we should ask questions. A conservative questioner 

that only asks questions rarely may miss opportunities to learn 

concepts, whereas an aggressive questioning policy will 

accumulate large costs and will frequently ask questions about 

data that are unlikely to represent any concept.  

For any given domain, we assume that the teacher will tell us 

how many queries on average they are willing to answer in a 

given time period. For example, our cardiologist (c.f. Section 4.2) 

is willing to answer two queries per day from a system recording a 

healthy adult patient undergoing a routine sleep study, but twenty 

queries per day from a system monitoring a child in an ICU who 

has had recent increase in her SOFA score [10].  

Let SR be the sampling rate of P, and QR be the mean number 

of seconds between queries that the teacher is willing to tolerate. 

We can then calculate the trigger threshold as: 

                                       

Where probit is the standard statistical function. We defer a 

detailed derivation to [13].  This equation assumes the 

distributions of heights of subtrees (e.g. Figure 7.right) are 

approximately Gaussian, a reasonable assumption when j ≪ w. 

3.5.2 Learning a concept: Strong teacher case 
In Table 4, the active learning system begins by comparing the 

significance (c.f. Section 3.4) of the top motif to this user supplied 

trigger threshold. If the motif warrants bothering the teacher, the 

get_labels function is invoked. The exact implementation of 

this is domain dependent, requiring the teacher to examine 

images, short audio or video snippets, or in one instantiation we 

discuss below, the bodies of insects, and provide labels for these 

objects.  Once the labels have been obtained, then in Line 5 the 

dictionary is updated.  

We have two tasks when updating the dictionary. First we must 

create the concept Ci; we can do this by either averaging the 

objects in the motif or choosing one randomly. Empirically, both 

perform about the same, which is unsurprising since the variance 

of the motif must be very low to pass the trigger threshold. The 

second thing we must do is decide on a value for threshold Ti. 

Here we could leverage off a wealth of recent advances in One-

Class Classification [9]; however, for simplicity we simply set the 

threshold Ti to three times the top subtree’s height. As we shall 

see, this simple idea works so well that more sophisticated ideas 

are not warranted, at least the domains we investigated.  

Table 4: The Active Learning Algorithm  

Algorithm:dict = active_learning_system(top,dict)  
1 

2 

3 

4 

5 

6 

7 

8 

if (significance(top)<trigger threshold) // The subtree is not 

   dict  dict; return;             // worth investigating 

elseif in_strong_teacher_mode 

  labels  get_labels(top)  

  dict  update_dictionary(dict,top,labels) 

else 

  spawn_weak_learner_agent(top) 

end 

3.5.3 Learning a concept: Weak teacher case 
A weak teacher can leverage off side information. For 

concreteness, we will give an illustration that closely matches an 

experiment we consider in Section 4.6; however, we envision a 

host of possible variants (hence our insistence that this phase be 

domain dependent). As illustrated in Figure 9.top, we can measure 

the X-axis acceleration on the wrist of the subject as he works 

with various tools. Moreover, RFID tags mounted on the tools can 

produce binary time series which record which tools are close to 

the user’s hand, although these binary sensors clearly cannot 

encode any information about whether the tool is being used or 

carried or cleaned, etc. At some point, our active learning 

algorithm is invoked in weak teacher mode with pattern C1, which 

happens (although we do not know this) to correspond to an axe 

swing.  

The weak teacher simply waits for future occurrences of the 

pattern to be observed, and then, as shown in Figure 9.middle, 

immediately polls the binary sensors for clues as to C1’s label. 
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In the example shown in Figure 9.bottom, after the first 

detection of C1, we have one vote for Axe, one for Cat, and 

zero for Bar. However, by the third detection of C1, we have seen 

three votes for Axe, one for Bar, and one for Cat. Thus, we can 

compute that the most likely label for C1 is Axe, with a 

probability of 0.6 = 3 / (3 + 1 +1). 

 

Figure 9: An illustration of a weak teacher. top) A stream P in 
which we detect three occurrences of the pattern C1. middle) 
At the time of detection we poll a set of binary sensors to see 
which of them are active.  bottom) We can use the frequency of 
associations between a pattern and binary “votes” to calculate 
probabilities for C1’s class label. 

This simple weak teaching scheme is the one we use in this 

work and we empirically evaluate it in Section 4.6. However, we 

recognize that more sophisticated formulations can be developed. 

For example, our approach assumes that the binary sensors are 

mostly in the off position. A more robust method would look at 

the prior probability of a sensor’s state and the dependence 

between sensors. Our point here is simply to provide an existence 

proof of a system that can learn without human intervention.  

Finally, note that the sensors polled do not have to be natively 

binary. They could be normally real-valued; for example, an 

accelerometer time series can be discretized to binary {has moved 

in the last 10-sec, has not moved in the last 10-sec}.   

4. EXPERIMENTS  
We begin by noting that all code and data used in this paper, 

together with additional details and many additional experiments, 

are archived in perpetuity at [13].  

While true never-ending learning systems are our ultimate goal, 

here we content ourselves with experiments that last from minutes 

to days. Our experiments are designed to demonstrate the vast 

range of problems we can apply our framework to. 

We do not consider the effect of varying w on our results. As 

noted in Section 3.4, once it is set to a reasonable value (typically 

around 250), its value makes almost no difference and we can 

process streams with such values in real-time for all the problems 

considered below. 

Because our system discards subsequences randomly, where 

possible, we test each dataset 100 times and report the average 

performance. For each class, we report the number of times the 

class is learned as well as the average precision and recall [22]. To 

compute the average precision and recall, we count in each run the 

number of true positives, false positives, and false negatives after 

the class is first added to the dictionary. 

4.1 Activity Data 
We begin with a short but visually intuitive domain, the activity 

dataset of [24]. This dataset consists of a 13.3 minute 10-fps video 

sequence (thresholded to binary by the original authors) of an 

actor performing one of eight activities. From this data, the 

original authors extracted 721 optical flow time series. We 

randomly chose just one of these time series to act as P, with S 

being the original video. 

We set our trigger threshold to 3.5, which is the value that we 

expect to spawn about three requests for labels on each run, and 

we assume a label is given after a delay of ten seconds (Figure 
10.left shows the first query shown to the teacher on the first run. 

 

Figure 10: left) A query shown to the user during a run on the 
activity dataset; the teacher labeled it Pushing and a new 

concept C1 was added to the dictionary. right) About 9.6 
minutes later, the classifier detected a new example of the class.  

The teacher labeled this Pushing, and the concept was inserted 

into the dictionary. About 9.6 minutes later, this classifier 

correctly claimed to spot a new example of this class, as shown in 

Figure 10.right.  

This dataset has the interesting property that the actor starts in a 

canonical pose and returns to it after completing the scripted 

action at eight-second intervals. This means that we can permute 

the data so long as we only “cut and paste” at multiples of eight 

seconds. This allows us to test over one hundred runs and smooth 

our performance estimates. 

Averaged over one hundred runs, we achieved an impressive 

41.8% precision and 87.96% recall on the running concept. On 

some other concepts, we did not fare so well. For example, we 

only achieved 19.87% precision and 51.01% recall on the 

smoking concept. However, this class has much higher 

variability in its performance, and recall that we only used a single 

time series of the 721 available for this dataset.  

4.2 Invasive Species of Flying Insects  
Recently, it has been shown that it is possible to accurately 

classify the species3of flying insects by transforming the faint 

audio produced by their flight into a periodogram and doing 

nearest neighbor time series classification on this representation 

[2]. Figure 11 demonstrates the practicality of this idea. 

 
Figure 11: top) An audio snippet of a female Cx. stigmatosoma 
pursued by a male. bottom left) An audio snippet of a common 
house fly.  bottom right) If we convert these sound snippets 
into periodograms we can cluster and classify the insects. 

This allows us to classify known species, for example, species 

we have raised in our lab to obtain training data. However, in 

many insect monitoring settings we are almost guaranteed to 

encounter some unexpected or invasive species; can we use our 

framework to detect and classify them? At first blush, this does 

                                                                 

3 And for some sexually dimorphic species such as mosquitoes, the sex. 
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not seem possible. The S data source is a high quality audio 

source, and while entomologists could act as our teachers, at best 

they could recognize the sound at the family level, i.e.  some kind 

of Apoidea (bee). We could hardly expect them to recognize which 

of the 21,000 or so species of bee they heard.  

We had considered augmenting S with HD video, and sending 

the teacher short video clips of the novel insects. However, many 

medically and agriculturally important insects are tiny; for 

example, some species of Trichogramma (parasitic wasps) are just 

0.2 mm, about the size of the period at the end of this sentence.  

Our solution is to exploit the fact that some insect traps can 

physically capture the flying insects themselves and record their 

time of capture [17]. Thus, the S data source is audio snippets of 

the insects as they flew into the trap and the physical bodies of 

insects. Naturally, this causes a delay in the teaching phase, as we 

cannot digitally transmit S to the teacher but must wait until she 

comes to physically inspect the trap once a day. 

Using insects raised from larvae in our lab, we learned two 

concepts: Culex stigmatosoma male (Cstig♂) and female (Cstig♀). 

These concepts are just the periodograms shown in Figure 11 with 

the thresholds that maximized cross-validated accuracy. 

With the two concepts now hard coded into our dictionary, we 

performed the following experiments. On day one we released 

500 Cx. stigmatosoma of each sex, together with two members of 

an invasive species. If we cannot detect the invasive species, we 

increase their number for the next day, and try again until we do 

detected them, After we detected the invasive species, the next 

day we released 500 of them with 500 Cx. stigmatosoma of each 

sex and measured the precision/recall of detection for all three 

classes. We repeated the whole procedure for three different 

species to act as our invasive species. Table 5 shows the results.   

Table 5: Our Ability to Detect then Classify Invasive Insects 

Number of insects before detection  Precision / Recall 

invasive species name triggered invasive species Cstig♂ Cstig♀ 
Aedes aegypti ♂ 3 0.91 / 0.86 0.88/0.94 0.96/0.92 

Culex tarsalis ♂ 3 0.57 / 0.66 0.58/0.78 1.00/0.95 

Musca domestica  ♂ and ♀ 7 0.98 / 0.73 0.99/0.95 0.96/0.94 

Recall that the results for Cstig♂ and Cstig♀ test only the 

representational power of the dictionary model, as we learned 

these concepts offline. However, the results for the three invasive 

species do reflect our ability to learn rare concepts (just 3 to 7 

sub-second occurrences in 24 hours), and having learned these 

concepts, we tested our ability to use the dictionary to accurately 

detect further instances. The only invasive species for which we 

report less than 0.9 precision is Cx. tarsalis ♂, which is a sister 

species of the Cx. stigmatosoma, and thus it is not surprising that 

our precision falls to a (still respectable) 0.57. 

4.3 Long Term Electrocardiogram 
We investigated BIDMC Dataset ch07, a 20-hour long ECG 

recorded from a 48-year old male with severe congestive heart 

failure [11][12]. This record has 17,998,834 data points 

containing 92,584 heartbeats. As shown in Table 6, the heartbeats 

have been independently classified into five types.  

Table 6: The ground truth frequencies of beats in BIDMCch07 

Name Abbreviation Frequency (%) 

Normal N 97.752 

R-on-T Premature Ventricular Contraction r 1.909 

Supraventricular Premature or Ectopic Beat S 0.209 

Premature Ventricular Contraction V 0.104 

Unclassifiable Beat Q 0.025 

In Figure 12, we can see this data has both intermittent noise 

and a wandering baseline; we did not attempt to remove either. 

 

Figure 12: A small snippet (0.0065%) of BIDMCch07 Lead 1. 

Let us consider a single test run. After 45 seconds, the system 

asked for a label for the pattern shown in Figure 13.left. Our 

teacher, Dr. Criley4, gave the label Normal(N). Just two minutes 

later, the system asked for a label for the pattern shown in Figure 

13.center; here, Dr. Criley annotated the pattern as R-on-T PVC (r).  

These two requests happened so quickly that the attending 

physician that hooked up the ECG apparatus will be in the same 

room and able to answer the queries directly. The next request for 

a label does not occur for another 9.5 hours, and we envision it 

being sent by email to the teacher. As shown in Figure 13.right, 

our teacher labeled it PVC (V). 

 
Figure 13: left to right) Three patterns discovered in our ECG 
experiment. top to bottom) The motif discovered and used to 
query the teacher. The learned concept. Some examples of 
true positives. Some examples of false positives.  

In this run, the class (S) was also learned, but just thirty minutes 

before the end of the experiment. We did not discover class (Q); 

however, it is extremely rare and as hinted at by its name 

(Unclassifiable Beat), very diverse in its appearance. 

Because the data has been independently annotated beat-by-beat 

by an algorithm, we can use this ground truth as a virtual teacher 

and run our algorithm 100 times to find the average precision and 

recall, as shown in Table 7. We note, however, that our 

cardiologist examined some of the “false positives” of our 

algorithm and declared them to be true positives, suggesting that 

some of the annotations on the original data are incorrect. In 

fairness, [12] notes the data was “prepared using an automated 

detector and has not been corrected manually.” Thus, we feel the 

numerical results here are pessimistic.       

Table 7: Results on BIDMCch07 

Class Detection Rate Precision Recall 

Normal (N) 100% 0.9978 0.9948 

R-on-T PVC (r) 100% 0.9147 0.8080 

Supraventricular (S) 100% 0.5028 0.4141 

PVC (V) 100% 0.2342 0.6775 

Unclassifiable (Q) 0% - - 

Beyond the objectively correct cardiac dysrhythmias discovered 

by our system, we frequently found our algorithm has the ability 

to surprise us. For example, after eighteen minutes of monitoring 

BIDMC-chf07-lead 2 [12], the algorithm asked for a label for the 

extraordinary repeated pattern shown in Figure 14. 

 

Figure 14: A pattern (green/bold) shown with surrounding 
data for context, discovered in lead 2 of BIDMCch07. 

                                                                 

4 Dr. John Michael Criley, MD, FACC, MACP is Professor Emeritus at 

the David Geffen School of Medicine at UCLA. 
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The label given by the teacher, Dr. Criley, was “Interference from 

nearby electrical apparatus:  probably infusion pump.” Having 

learned this label, our algorithm detected fifty-nine more 

occurrences of it in the remaining twenty hours of the trace. A 

careful retrospective examination of the data suggests that the 

algorithm had perfect precision/recall on this unexpected class. 

4.4 Bird Song Classification  
Recently, a worldwide citizen science project called Bat 

Detective [16] has been using crowdsourcing to attempt to count 

bat populations by having volunteers classify sounds as one of 

{bat, insect, mechanical} (The latter class is an umbrella 

term for sounds created by human activities.). In our efforts to 

volunteer for this project, we noted that the majority of signals the 

system asked us to classify are wind noise or other low interest 

signals (see [13] for examples of screenshots. We wondered if our 

framework would allow more useful queries to be sent to the 

users, thus making more effective use of their time.  

We do not have ready access to bat sounds, so we produced a 

similar system for bird sounds. To produce a dataset for which we 

had ground truth, we did the following. We recorded an hour at 

midnight at the UCR botanical gardens on January 12, 2012. A 

careful human annotation of the sound file reveals wind noise, 

voices in the distance, low volume rumbles from aircraft, etc., but 

no obvious wildlife calls. Using data from xeno-canto.org, we 

randomly embedded ten examples of short (about 3 seconds) calls 

of a Tawny Owl in the data. Using the raw audio as S, and a 

single 100Hz Mel-Frequency Cepstral Coefficient (MFCC) as P, 

we ran our algorithm on this data.  As Figure 15 shows, our 

system can easily recover the patterns. 

 
Figure 15: The motif discovered in the first run on the bird 
dataset. right) One snippet in three representations (bottom-to-
top): a spectrogram, an oscillogram, and the MFCC we used.  

The snippets may be heard at [13]. They are easily identifiable 

as an owl; however, it is less clear if an ornithological 

crowdsourcing community could identify them as a Tawny Owl.    

4.5 Understanding Sapsucking Insect Behavior  
Insects in the order Homoptera feed on plants by using a 

feeding tube called a stylet to suck out sap. This behavior is 

damaging to the plants, and it has been estimated that species in 

this order cause billions of dollars of damage to crops each year. 

Given their economic importance, hundreds of researchers study 

these insects, and increasingly they use a tool called an Electrical 

Penetration Graph (EPG), which, as shown in Figure 16, adds the 

insect to an electrical circuit and measures the minuscule changes 

in voltage that occur as the insect feeds [15]. 

While there are now about ten widely agreed upon behaviors 

that experts can recognize in the EPG signals, little progress has 

been made in automatic classification in this domain. One reason 

for this is that the 32,000 species that make up order Homoptera 

are incredibly diverse; for example, their size ranges over at least 

three orders of magnitude. Thus, for many species, an expert 

could claim of a given behavior, “I know it when I see it,” but 

he/she could not expect a template from even a related species to 

match.  

As such, this is a perfect application for our framework, and 

several leading experts on this apparatus agreed to help us by 

acting as teachers. 

 
Figure 16: left) A tethered brown leafhopper. right) A 
schematic diagram of the circuit for recording EPGs. bottom) 
A snippet of data produced during one of our experiments.  

Let us consider a typical run on a dataset consisting of a Beet 

Leafhopper (Circulifer tenellus) recorded by Dr. Greg Walker of 

UCR Entomology Department. Dr. Elaine Backus of the USDA, 

one of the co-inventors of the EPG apparatus, agreed to act as the 

teacher. She was only given access to the requests from our 

system; she could not see the whole time series or the insect itself. 

After 65 seconds, the system requested a label for the three 

patterns shown in Figure 17.top.left. Dr. Backus labeled the 

pattern: phloem ingestion with interruption for salivation. After 13.2 

minutes, the system requested a label for behavior shown in 

Figure 17.top.right. Dr. Backus labeled this pattern: transition 

from non-probing to probing. The former learned concept went on 

to classify twenty-four examples, and the latter concept classified 

six. Examples of both can be seen in Figure 17.bottom. 

 
Figure 17: top-row) The two concepts discovered in the EPG 
data. bottom-row) Examples of classified patterns.  

A careful retrospective study of this dataset suggests that we 

had perfect precision and recall on this run. Other runs on 

different datasets in this domain had similar success [13].  

4.6 Weak Teaching Example: Elder Care 
The use of sensors placed in the environment and/or on parts of 

the human body has shown great potential in effective and 

unobtrusive long term monitoring and recognizing the activities of 

daily living [21][23]. However, labeling accelerometer and sensor 

data is still a great challenge and requires significant human 

intervention. In [23], the authors bemoaned the fact that high 

quality annotation is an order of magnitude slower than real-time, 

“A 30-minutes video footage requires about 7-10 hours to be 

annotated.” In this example, we leverage off our weak teacher 

framework to explore how well the framework can label the 

sensor data without any human intervention. 

We consider the dataset of [21] which comes from an activity 

monitoring and recognition system created using a 3D 

accelerometer and RFID tags mounted on household objects. A 

sensor containing both an RFID tag reader and a 3D 

accelerometer is mounted on the dominant wrist. Volunteers were 

asked to perform housekeeping activities in any order of their 

choosing to the natural distribution of activities in their daily life. 

Thus, the dataset is multidimensional time series with three real-

valued and 38 binary dimensions.   
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For our experiment, we consider just the X-axis acceleration 

sensor. The active learning algorithm is set in weak teacher mode. 

After 24 seconds the system finds a concept, C1, worth exploring 

(Figure 20.top.left). As we can see in Figure 18, our algorithm 

waited for the next occurrence of the pattern (It happens that three 

occur close together) and it polls the 38 binary RFID-detected 

sensors to see which are on.    

 
Figure 18: top) After we have learned the concept C1, our 
system monitors for future occurrences of it. Here, it sees 
three examples in a row. bottom) By polling the binary RFID 
sensors when a “hit” for C1 is detected, we can learn that the 
concept is associated with ‘glove’. 

Our algorithm found an additional ten subsequences similar to 

the template. For six of these subsequences, only the RFID tag 

sensor labeled glove was on. Of the remaining four hits, just the 

iron was on for three times and just fan was on once. Thus, we 

end up with the probabilities shown in Figure 19.right.  

 

Figure 19: top) A zoom-out of the time series shown in Figure 
18. bottom) The probability of concept C1 being with various 
tagged items. Of 38 possibilities, only 3 have non zero entries.  

In Figure 20, we show the relevant subsequences. Here, the true 

positives are subsequences that voted for glove, and the false 

positives voted for iron or fan. After a careful check of the 

original data we discovered that the pattern actually corresponds 

to dishwashing, which is the only behavior for which the 

participant wore gloves. 

 

Figure 20: top-left) The motif discovered in our Elder care 
sensor experiment and averaged into concept C1 (bottom-left). 
right) examples of true positives and false positives. 

5. CONCLUSION AND FUTURE WORK 
We have introduced the first never-ending framework for real 

valued time series streams. We have shown our system is scalable, 

able to handle 250Hz with ease (cf. Section 4.3), and that it is 

robust to significant noise (cf. Figure 17 and Figure 20). 

Moreover, by applying it to diverse domains, we have shown it is 

a very general and flexible framework. In future work, we hope to 

remove the few assumption/parameters we have and apply our 

ideas to year-plus length streams. We have made all our code and 

data freely available [13] and hope to see our work built upon and 

applied to an even richer set of domains.  
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