
CS005 Lab 4:

Part 1:

Write a function IsEven that takes in an integer, and returns true (‘1’) if it is even, otherwise returns a

false (‘0’). This function is nearly identical to the IsOdd function we wrote in lecture. Read the lecture

slides again!

Test your function, by using some code like the code below.

EDU>> IsEven(12)

ans =

 1

EDU>> BobsAge = 15

EDU>> IsEven(BobsAge)

ans =

 0

Part 2:

Write a function called RobustIsEven. It will be identical to the above function, except if it is called

with a number that has a fractional part, it will give an error message and return an NaN. Test it carefully

as below. HINT: Do one of the below

1) Add the code that tests for the fractional part, after you test for evenness

2) Use nested if/else statements

EDU>> IsEven(12)

ans =

 1

EDU>> IsEven(12.87)

NOT defined!

ans =

 NaN

EDU>> BobsAge = 15.4

EDU>> IsEven(BobsAge)

NOT defined!

ans =

 NaN

EDU>> IsEven(round(BobsAge))

ans =

 0

Part 3:

Write a function called FiveTimesTable(). This function is nearly identical is

SevenTimesTable() in the lecture notes. It will display the five times table for numbers from zero

to ten (not 1 to ten).

Part 4:

Write a function called FiveTimesTable_KtoL() (Before you begin, read the

CountFromKuptoL(K,L) example in the slides again). This function prints a subset of the five times

table.

EDU>> FiveTimesTable_KtoL(3,6)
Five times
 3
 is
 15
Five times
 4
 is
 20
Five times
 5
 is
 25
Five times
 6
 is
 30

EDU>> FiveTimesTable_KtoL(0,2)
Five times
 0
 is
 0
Five times
 1
 is
 5
Five times
 2
 is
 10

Use good variable names, and comment your code carefully. We will deduct

points otherwise. Read the most recent slides, have them ready to show the

TA when you ask him questions.

Part 5:

Write a function GetTruncatedTriangularNumber that gets the truncated triangular number

(see below).

HINT: Here is the first line

 function TrucTriNum = GetTruncatedTriangularNumber(Start,Stop)

Here is how we will use it

EDU>> GetTruncatedTriangularNumber(1,3)

ans =

5

Look at the four “stacks” of dots to the right.

Note that they are all special subsets of triangular
numbers.

For example, to build the top left one (the one
with 5 dots), we could build a triangular number
with Stop equal to 3....

Then we could subtract the triangular number with

Start equal to 1....

Hint: If you code up the GetTriangularNumber function we wrote in lecture, then you can do this

problem in one line of new code. However, if you take more code, that is fine.

